Сегодня 19 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → солнечная энергия
Быстрый переход

Первая передача солнечной энергии с орбиты на Землю подтвердила перспективность платформы Калтеха

Примерно год назад американский спутник SSPD-1 впервые передал энергию с орбиты на Землю. Спутниковая платформа Momentus Vigoride российского бизнесмена Михаила Кокорича несла на себе три экспериментальных модуля в области выработки и получения энергии из космоса. Самым значимым из них стал блок по передаче микроволновой энергии с орбиты на наземный приёмник. Это было первое такого рода испытание, и оно увенчалось успехом.

 Художественное представление миссии. Источник изображения: Mmdi/Getty Images

Художественное представление миссии. Источник изображения: Mmdi/Getty Images

Эксперимент стартовал в январе 2023 года. На проведение одних исследований потребовались дни или недели, а другие затянулись на месяцы. Сейчас настал срок первых публикаций по проведённым экспериментам и время узнать интересные подробности.

На платформе Momentus Vigoride были размещены модули DOLCE, ALBA и MAPLE. Самый внушительный из них — это DOLCE. Это система автоматического развёртывания полей солнечных батарей на орбите. В перспективе, если создание солнечных электростанций в космосе для передачи энергии на Землю станет реальностью, солнечные фермы должны разворачиваться самостоятельно из достаточно компактных конструкций, помещающихся в обтекатели ракет. Это будут сегменты со сторонами в сотни метров.

Модуль DOLCE — это лишь первый шаг в этом направлении. Он не несёт солнечных панелей. Это лишь голый каркас со сторонами 1,8 м. Целью эксперимента была проверка способности конструкции развернуться в космосе, а камеры должны были снять этот процесс. Эксперимент признан удачным, а его проведение можно увидеть на видео ниже. В далёком будущем подобные модули будут разворачиваться и дрейфовать по орбите. Они не будут крепиться один к одному. Вместо этого на каждом углу площадки-панели будут установлены двигатели ориентации для выбора лучшего освещения. Сложная система управления будет следить за Солнцем и соседними модулями, чтобы они не перекрывали друг другу свет от звезды и караваном кружили по орбите.

Модуль ALBA представлял собой коллекцию из 32 миниатюрных фотоэлектрических панелей. Что хорошо работает на Земле, может не подойти для открытого космоса, поэтому учёные Калтеха отобрали наиболее перспективные образы для проверки их в условиях космоса в течение года. От части образцов отказались ещё до старта. Например, была идея создавать миниатюрные фотоприемники с линзами, чтобы увеличить сбор солнечного света и повысить мощность фотоприёмников. Но в итоге от этого отказались ввиду необходимости строгой ориентации подобных систем в сторону Солнца.

Крайне перспективными признаны фотопанели из арсенида галлия. Они очень тонкие и при этом высокоэффективные, а вес для космических систем всегда на вес золота. Также они могут быть лучше приспособлены для развёртывания по типу парусов, что важно для автоматических конструкций будущих орбитальных электростанций. Оказался интересен для космоса и перовскит. На Земле он подвержен влаге и быстро теряет свои свойства. В космосе влаги нет, поэтому перовскитные панели меньше подвержены деградации, хотя в открытом пространстве полно других воздействий на материалы.

Эксперимент MAPLE (Microwave Array for Power-transfer Low-orbit Experiment) был центральным в программе испытаний, но он был разбит на две фазы. Во-первых, он продемонстрировал возможность специализированной электроники работать в условиях космоса. Во-вторых, он обеспечил передачу мощности на Землю. Платформа управления должна была суметь поменять прицеливание по передаче энергии с космических объектов на наземные и наоборот. Также в космосе проверялась беспроводная передача энергии, но на короткую дистанцию — от стенки до стенки внутри модуля MAPLE. В отличие от других подобных разработок, созданная в Калтехе платформа отличается компактностью, лёгкостью и гибкостью, что может в будущем изменить подход к космической электронике. Будущие интернет-спутники могут стать многократно легче и дешевле, чем современные спутники сети Starlink, например.

 Модуль MAPLE изнутри. Разнесённые пустым пространством приёмник и передатчик энергии и светодиод, подтверждающий передачу энерегии. Источник изображения: Caltech

Модуль MAPLE изнутри. Разнесённые пустым пространством приёмник и передатчик энергии и светодиод, подтверждающий передачу энергии. Источник изображения: Caltech

Что касается передачи энергии на Землю в эксперименте MAPLE, то разработчики говорят скорее о регистрации сигнала, чем о передаче мощности. Передающая фазированная антенная решётка была небольшая и поэтому она не могла сфокусировать микроволновый луч на небольшой площади. Сигнал разошёлся по большой площади на Земле, но смог попасть на приёмный антенный комплекс на крыше одного из кампусов Калтеха. Фактически разработчики зафиксировали уровень сигнала, сравнимый со спутниковой передачей, чем подтвердили расчётные характеристики опытной платформы. Это с трудом можно назвать передачей энергии из космоса. Тем не менее, система работала так, как от неё ожидали, а остальное приложится, хотя путь предстоит долгий.

Евросоюз проверит китайские солнечные панели на предмет нечестной конкуренции

Накануне Европейская комиссия заявила о начале расследования возможного субсидирования китайских производителей солнечных панелей властями Китая. В случае вскрытия таких фактов, на панели из Поднебесной могут ввести заградительные пошлины, что позволит европейским производителям оставаться в рамках честной конкуренции.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Подозрения о возможном субсидировании частного китайского производственного сектора властями Китая начали появляться после оценки торгов за контракт на строительство и эксплуатацию солнечного парка в Румынии. Контракт выиграли дочки двух китайских корпораций: LONGi Green Energy Technology и Shanghai Electric Group. Как опасаются в Брюсселе, иностранные субсидии могли представить двум консорциумам «неоправданно» конкурентные предложения при проведении торгов. Комиссию это волнует по той причине, что Брюссель будет частично финансировать это проект.

Следует напомнить, что проблема наводнения Европы китайскими солнечными панелями более широкая. Её в принципе невозможно решить на фундаментальном уровне, создав в ЕС конкурентоспособное производство солнечных панелей. Этому помешают дорогие энергоресурсы и отсутствие собственных источников сырья. Поэтому установка заградительных пошлин может стать единственным решением проблемы и, как всегда, за это заплатят граждане ЕС, потому, что солнечная энергетика — это неизбежное и очень недешёвое будущее.

Ранее власти ЕС начали аналогичные расследования в отношении китайских электромобилей и биодизеля. Европейские производители биодизеля открыто говорят, что китайцы сбрасывают в Европу дешёвое биотопливо, не позволяя местным производителям развивать собственные мощности. Китай, кстати, тоже умеет играть в эти игры. Если ЕС не будет покупать электромобили, солнечные панели, биодизель и другие товары по хорошим ценам, то Поднебесная перестанет покупать в Европе коньяк, в отношении импорта которого в Китай в январе 2024 года начато антидемпинговое расследование.

Германия рискует первой в Европе превратиться в свалку списанных солнечных панелей

В новом отчете Международного энергетического агентства по программе PVPS (фотоэлектрические системы) сказано, что в Германии первостепенное значение приобретает практика сбора и переработки списанных солнечных панелей. Страна первой начала активно использовать солнечные панели и первой столкнётся с необходимостью их массовой утилизации. К 2030 году объём отходов солнечной энергетики достигнет 1 млн т и это вызов для Германии.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Германия входит в пятёрку ведущих стран по установленной мощности фотоэлектрических систем вместе с Китаем, США, Японией и Индией. Согласно оценке Института систем солнечной энергетики Фраунгофера (ISE), к концу 2020 года в Германии было установлено солнечных панелей общей мощностью около 67 ГВт. Кроме того, с обновлением в 2023 году Закона Германии о возобновляемых источниках энергии целевые показатели расширения производства фотоэлектрических систем были значительно увеличены до совокупной установленной мощности фотоэлектрических систем 215 ГВт в 2030 году и 400 ГВт в 2040 году.

На фоне проблем Австралии с ежегодным объёмом списанных солнечных панелей к 2030 году на уровне 100 тыс. т в год (эквивалент 1,2 ГВт), объёмы Германии на порядок выше. Другое дело, что в этой европейской стране традиционно чуть больше порядка и заводы по переработке списанных солнечных панелей худо-бедно работают. Но этого недостаточно, заявляют в МЭА. Причём нужно не только больше перерабатывающих мощностей (намного больше!), но также большая прозрачность в сборе и управлении отходами и специальное обучение персонала.

Например, сегодня нередка практика, когда списанные солнечные панели свозились на «неподходящие» объекты первичной обработки. Так, на предприятия для переработки солнечных панелей из кремния свозились панели на основе другого сырья. Также, по словам специалистов, система сбора отходов солнечной энергетики «очень сложная». Всё вместе приводит к перерасходу административных ресурсов.

МЭА признаёт, что Германия предприняла шаги для обеспечения надлежащего сбора и вторичной переработки фотоэлектрических модулей, но отмечает необходимость улучшения всего процесса переработки, особенно в части прозрачности объёма отходов фотоэлектрических модулей, процесса возврата и сбора, а также утилизации модулей.

Дело в том, что объёмы собранных и переработанных отходов фотоэлектрических модулей, указанные в официальной статистике, меньше объёма отходов, что приводит к предположению, что значительное количества списанных панелей утилизируется «альтернативными путями», минуя системы переработки. Поэтому важно улучшить отслеживание списанных панелей по всей цепочке предприятий, что можно было бы сделать с помощью разного рода стимулов. Например, обеспечив доставку списанных модулей в пункты сортировки без дополнительных сборов.

В целом, Германия сможет справиться с кризисом утилизации списанных солнечных панелей, если немедленно начнёт совершенствовать и расширять производства по переработке и извлечению ценных составляющих из панелей. Полностью 50-страничный отчёт доступен по ссылке.

Австралия стремительно превращается в свалку убитых солнечных панелей

Исследователи из Австралийского центра передовой фотовольтаики (ACAP) при Университете Нового Южного Уэльса (UNSW) бьют тревогу. Свежий анализ ситуации с растущим числом отходов от солнечных электростанций грозит скорой катастрофой. Ситуацию может исправить быстрейшее создание сети перерабатывающих заводов в крупнейших городах континента, но пока на это нет денег и воли властей.

 Источник изображения: UNSW

Источник изображения: UNSW

Обновлённый прогноз до конца десятилетия показал, что к 2030 году количество отходов от солнечной энергетики достигнет 100 тыс. т в год, что эквивалентно списанию в утиль 1,2 ГВт панелей в год. Ранее прогнозировалось, что проблема начнёт ощутимо расти после 2030 года, что давало время на раскачку. Больше этого запаса нет. Вопрос создания перерабатывающих центров учёные считают первоочередным и безотлагательным. К 2035 году, как следует из нового анализа, ежегодно будет выбрасываться не менее 1 млн т списанных солнечных панелей.

«По прогнозам, более 80 % выведенных к 2030 году из эксплуатации солнечных панелей будут поступать от небольших распределенных фотоэлектрических систем, что связано с более ранней эволюцией австралийского рынка фотоэлектрических систем для жилых помещений», — уточняют эксперты. По прогнозам, около 892 тыс. т солнечных отходов поступят от систем на крышах, а 265 тыс. т — от крупномасштабных солнечных ферм.

«В ближайшие 12 лет нам нужна чётко определенная структура управления, доступные методы сбора данных и новые технологии, чтобы превратить проблему использования солнечных панелей с истёкшим сроком службы в устойчивые бизнес-возможности с положительными экономическими, экологическими и социальными результатами», — добавляют учёные и настоятельно рекомендуют, что уже к 2027 году в Сиднее, Мельбурне, Брисбене, Перте и Аделаиде должны быть созданы и запущены перерабатывающие предприятия.

Сегодня панели проще отвезти на свалку. Это обходится в $2 за панель, тогда как переработка каждой панели будет стоить до $20. Сегодня никто не хочет брать на себя такие расходы и это приведёт к тому, что стоимость списанных панелей к 2035 году превысит $1 млрд.

Параллельно вскрылся факт чудовищного мошенничества властей Австралии с квотами на выбросы парниковых газов. Власти обязались создать лесной массив на площади в 42 млн га, что больше площади Японии. Спутниковые снимки показали, что только 20 % территории можно считать полезными для заявленных целей, но это не мешало властям страны продать квоты на 27 млн т заинтересованным компаниям. Фактически они наживались на продаже несуществующих объёмов поглощения углекислого газа, и этот факт ещё предстоит осмыслить.

Добавление выпуклостей на солнечные панели позволит им улавливать на 36–66 % больше света

Эффективность органических солнечных панелей можно повысить за счёт придания неровной текстуры их поверхности. Учёные из Университета Абдуллы Гюля в Турции установили, что добавление множества крошечных куполообразных элементов на поверхность панели может на две трети повысить её эффективность за счёт значительного расширения возможности улавливать солнечный свет под более широким углом.

 Источник изображения: spiedigitallibrary.org

Источник изображения: spiedigitallibrary.org

Обычно солнечные панели имеют плоскую поверхность, что позволяет максимально увеличить площадь, на которую падает свет в любой момент времени. Такая конструкция работает лучше всего, если солнечный свет на неё падает под определённым углом, поэтому в течение дня солнечные панели обычно наклоняют под разным углом (от 15º до 40º). Учёные провели серию экспериментов, в результате которых было установлено, что добавление на поверхность солнечной панели множества крошечных куполообразных элементов из кварца позволяет улавливать больше солнечного света и получать больше энергии.

Турецкие учёные провели комплексное моделирование того, как именно куполообразные вкрапления могут повысить эффективность органических солнечных панелей. Для этого задействовали фотогальванические элементы, изготовленные с использованием органического полимера P3HT:ICBA в качестве активного слоя, расположенного поверх слоя алюминия и подложки, а также защищённого прозрачным слоем из оксида индия-олова (ITO). Такая многослойная структура была сохранена на всей площади солнечной панели.

Исследователи провели анализ конечных элементов (FEA) с помощью 3D-технологий, за счёт чего они смогли разбить элементы сложной системы на отдельные фрагменты для более точного моделирования. По сравнению с плоскими поверхностями, солнечные панели, усеянные куполообразными элементами, оказались эффективнее в плане поглощения света на 36 % и 66 % в зависимости от поляризации света. Эти вкрапления также позволяют свету проникать с более широкого диапазона направлений, чем плоская поверхность, обеспечивая угловое покрытие до 82º. Учёные ещё не создали физические версии таких солнечных батарей, но, если они на деле окажутся такими эффективными, то их работа может оказать существенное влияние на развитие солнечной энергетики.

Впервые в истории спутник передал солнечную энергию из космоса на Землю

Учёные продолжают искать чистые и устойчивые источники энергии. Одним из перспективных направлений в этой деятельности считается разработка технологий, которые позволят улавливать солнечную энергию непосредственно в космосе, а затем передавать её на Землю. Определённых успехов в этом добились учёные из Калифорнийского технологического института (Caltech), которым удалось собрать энергию с помощью орбитального спутника и передать её на Землю.

 Источник изображения: Mmdi/Getty Images

Источник изображения: Mmdi/Getty Images

Речь идёт о миссии Space Solar Power Demonstration (SSPD-1), которая реализуется силами команды учёных Space Solar Power Project (SSPP) из Caltech в сотрудничестве с Indie Semiconductor Inc., Лабораторией реактивного движения (JPL) NASA, Amazon Web Services и стартапом GuRu Wireless, являющимся одним из подразделений Caltech. Совместная деятельность привела к тому, что учёным удалось собрать немного энергии на орбите Земли, а затем передать её на поверхность нашей планеты, что можно считать серьёзным достижением. Подробная информация о проделанной работе была изложена в статье исследователей, которую опубликовали в arXiv.

На Земле люди научились использовать солнечный свет для получения энергии, но даже самые передовые технологии имеют свои недостатки. К примеру, в пасмурный дождливый день мощность солнечной батареи может упасть на 25 %, к тому же они не могут вырабатывать энергию в тёмное время суток. В это же время размещённые на орбите солнечные панели могут непрерывно генерировать энергию, если они ориентированы таким образом, чтобы на них всегда попадал солнечный свет. Учёным остаётся разработать надёжный способ передачи энергии с орбиты на Землю, где она могла бы использоваться для питания предприятий, домов и многого другого.

 Аппарат MAPLE / Источник изображения: Ayling Et Al/ArXiv

Аппарат MAPLE / Источник изображения: Ayling Et Al/ArXiv

Эксперимент учёных стал возможен благодаря устройству Microwave Array for Power-transfer Low-orbit Experiment (MAPLE), с помощью которого и осуществлялась передача энергии из космоса на Землю. Оно выполнено в виде небольшого спутника CubeSat размера 6U и способно принимать солнечную энергию, собранную с помощью фотоэлектрических элементов. Затем MAPLE задействовал выпрямляющие антенные решётки для преобразования солнечной энергии в радиочастотную. После этого синтезировался луч радиочастотной энергии, который и был передан на Землю. Аппаратура для приёма и преобразования сигнала в постоянный ток, а также для слежения за MAPLE располагается на крыше лаборатории Мура в Caltech.

Реализация миссии началась 3 января 2023 года, когда исследовательский аппарат с помощью ракеты-носителя SpaceX Falcon 9 был доставлен на низкую околоземную орбиту. Ровно через два месяца учёные начали экспериментировать с MAPLE и в результате миссия была признана успешной. В дальнейшем исследователи планируют создать созвездие спутников типа SPPD-1, которая сможет передавать на Землю энергию для снабжения 10 тыс. домохозяйств. Однако до этого ещё далеко, поскольку на данный момент MAPLE улавливает в космосе от 175 до 251 мВт за раз, а до наземной станции дошёл только 1 мВт энергии.

Учёные создали ультратонкие кремниевые солнечные панели для авиации, космоса и носимой электроники

Современным кремниевым солнечным панелям не хватает гибкости в буквальном смысле этого слова. Они сравнительно толстые и поэтому тяжёлые, что мешает им попасть в авиацию и шире использоваться в носимой электронике. Для космоса это тоже важно, поскольку вывод на орбиту каждого килограмма стоит приличных денег. Возможно, с этим помогут учёные из Китая и Австралии, которые создали ультратонкие и гибкие панели из привычного кремния.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

На днях государственное китайское издание Science and Technology Daily процитировало профессора Цзянсуского университета науки и технологий (JUST) Ли Янга (Li Yang), который сказал, что солнечные элементы из кристаллического кремния, которые изготавливаются из кремниевых пластин, были и остаются наиболее зрелым и широко используемым решением для выработки электрической энергии, «но они сталкиваются с двумя основными технологическими узкими местами».

Одним из недостатков современных кремниевых фотопанелей является то, что эффективность преобразования энергии кремниевыми элементами большой площади остаётся ограниченной на уровне 26 %; другим препятствием является толщина элемента — обычно от 150 до 180 мкм, что затрудняет их использование в случаях, требующих более гибкого и лёгкого материала для установки на изогнутые крыши, спутники и космические станции.

Возглавляемая профессором Ли группа учёных из JUST, австралийского университета Кёртин и компании LONGi Green Energy Technology опубликовала в журнале Nature статью, в которой сообщила о создании из кристаллического кремния фотопанели толщиной около 50 мкм. Это тоньше, чем лист обычной писчей бумаги формата A4. Эту фотопанель нельзя согнуть пополам как лист бумаги, но можно изогнуть с достаточной степенью кривизны без разрушения.

Что важно, КПД ультратонкой фотопанели превысил 26 %. Учёные создали ещё несколько фотоэлементов толщиной от 55 до 130 мкм, и у всех у них эффективность превысила 26 %.

Профессор Ли сказал, что его группа работает над созданием более гибких и эффективных кристаллических кремниевых солнечных элементов, которые в один прекрасный день смогут стать такими удобными в использовании, как рулон пленки.

Китайские производители солнечных панелей уничтожают европейских конкурентов, но Брюссель не знает, что с этим делать

Как сообщает издание Politico, Европейский союз стоит перед серьёзнейшим выбором: хочет ли он быть «зелёным» или стратегически успешным в перспективе? Ибо одновременно и то и другое у ЕС не выйдет. Европейские производители солнечных панелей открыто говорят, что если власти не предпримут защитных мер, то китайская продукция уничтожит их бизнес за считанные месяцы или даже недели.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Несмотря на то, что Европейскому союзу необходимо избавиться от выбросов углекислого газа, он всё больше зависит от импорта из Китая, который он называет экономическим конкурентом и, что ещё хуже, системным соперником», — пишет издание.

С одной стороны, ЕС выделяет миллиарды евро на ускоренное развёртывание солнечных электростанций по всей Европе. Панели для этих задач и объёмов можно купить только в Китае, включая поставки из Синьцзян-Уйгурского автономного района, о котором вне политического контекста даже говорить нельзя, не то что заводить тесные экономические отношения.

Подобная бизнес-модель грозит уничтожить несколько последних европейских предприятий по выпуску солнечных панелей и идёт вразрез с предложениями группы стран во главе с Францией, которые ратуют за реиндустриализацию Европейского союза. Такое противостояние обязательно выльется в длительные торги в правительстве ЕС с непонятным пока результатом. Но то, что это только затянет принятие стратегического решения, каким бы оно ни было, очень и очень вероятно.

 Источник изображений: IEA

Прогнозируемые мощности по выпуску солнечных панелей в 2027 году. Источник изображений: IEA

«Ситуация действительно тревожная, — сказал Йохан Линдаль (Johan Lindahl), генеральный секретарь Европейского совета по производству солнечной энергии (ESMC), представляющий местных производителей. — Мы можем потерять большую часть европейской промышленности в ближайшие пару месяцев, если не будет сильного политического сигнала».

Европейская комиссия начала предварительные обсуждения вариантов оказания помощи производителям, но при этом не взяла на себя никаких конкретных обязательств во время прошедших в минувший понедельник дебатов в Европейском парламенте, которые, как надеялись многие в отрасли, покажут, что блок серьёзно относится к этому вопросу.

Глава финансовых служб Европейской комиссии Мэйрид Макгиннесс (Mairead McGuinness ) во время сессии в Страсбурге заявила европейским законодателям, чтобы они «работали в тесном контакте» и что низкие цены на продукцию «явно являются проблемой для производителей солнечных панелей в ЕС». В то же время она подтвердила, что власти ЕС будут «тесно сотрудничать с промышленностью ЕС, чтобы приложить все усилия на техническом и политическом уровне».

 Затраты на производство солнечных панелей по странам с разбивкой на категори

Затраты на производство солнечных панелей по странам с разбивкой на категории

На сегодняшний день китайские компании контролируют свыше 80 % глобальной цепочки поставок кремниевых солнечных панелей. Для сравнения, ЕС произвёл только 3 % солнечных панелей, установленных в прошлом году. Можно ли в таких условиях что-то предпринять? Это представляется маловероятным.

Что-то изменить может только полная смена курса на развитие соответствующей отрасли в Европе. Необходимо принять, что Китай является экзистенциальной угрозой и шанс есть только в развитии настолько передовых технологий, где Европа ещё имеет преимущества. В конце концов, необходимо осознать существенную угрозу национальной безопасности и действовать соответствующим образом. И всё бы хорошо, но только летом этого года в ЕС выборы, так что чиновники будут заняты совсем другими проблемами.

Установлен рекорд по эффективности солнечных панелей на квантовых точках — до кремния ещё далеко

Учёные из Ульсанского национального института науки и технологий (UNIST) в Южной Корее создали самые эффективные на сегодня солнечные панели на основе квантовых точек. КПД этих солнечных элементов составил 18,1 %. Если сравнивать с кремнием, то это мало, но у последнего за плечами полвека исследований, тогда как квантовые точки начали изучать менее 15 лет назад. Перспективы у новой технологии головокружительные.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Солнечные элементы из кремния взаимодействуют со светом всей поверхностью. Квантовые точки преобразуют свет в поток электронов только там, где они нанесены — точечно, как следует из их названия. Следует помнить, что определение «квантовые» в данном случае относится к количественной величине, а не к качественной. Квантовая точка — это крохотная порция полупроводникового материала, который взаимодействует со светом (с фотонами).

Особенность использования порций — квантов — светочувствительного материала заключается в том, что они могут быть изготовлены разного размера и, следовательно, будут чувствительны каждая к своему спектру. Материал в виде квантовых точек можно наносить на подложку методом струйной печати на рулонах или с помощью разбрызгивания. Это намного проще и дешевле, чем выпускать солнечный элемент из кремния.

Наивысший теоретический КПД у квантовых точек из органических материалов. Также они более безопасны с точки зрения экологии. Но у них есть существенный недостаток — боязнь влажности и нагрева, включая нежелательное длительное нахождение под прямыми солнечными лучами. Учёные из Южной Кореи решали именно эту проблему, попутно пытаясь установить новый рекорд эффективности для солнечных ячеек на квантовых точках.

Если верить исследователям, они смогли повысить сопротивляемость квантовых точек погодным условиям. Для этого учёные воспользовались перовскитом, который уже зарекомендовал себя в фотовольтаике. Но в этот раз они нанесли на подложку массив из перовскитных квантовых точек, а не создали сплошной слой.

 Фрагмент диаграммы с достижениями в области фотоэлектричсеких ячеек (квантовые точки обозначены ромбом с красной каймой). Источник изображения: NREL

Часть диаграммы с достижениями в сфере фотоэлектрических ячейках. Квантовые точки обозначены ромбом. Источник изображения: NREL

Экспериментальные солнечные панели на квантовых точках из перовскита сохраняли эффективный уровень преобразования света в электрический ток в течение 1200 ч при нормальных условиях и 300 ч при нагреве до 80 °C. Уровень КПД достиг рекордного значения в 18,1 %, что зафиксировали в американской лаборатории NREL (выше на рисунке данные уже с указанием рекорда UNIST — это свежее обновление диаграммы). Предыдущий рекорд в 16,6 % КПД был поставлен фотопанелями на квантовых точках в 2020 году австралийским Квинслендским университетом. Идём к новым вершинам. Когда-нибудь кремний уйдёт в прошлое, а на его место придут, в том числе, солнечные панели на квантовых точках.

Деградация солнечных электростанций в США «соответствует ожиданиям», выяснили учёные

Учёные Национальной лаборатории возобновляемых источников энергии (NREL) в США провели исследования почти на 2500 объектах по выработке электричества от солнечного света. Несмотря на опасения, большинство фотоэлектрических систем за годы работы испытали минимальный ущерб от кратковременных экстремальных погодных условий и показали скромную деградацию, что обещает приблизить переход на возобновляемые источники энергии.

 Контроль качества солнечных панелей. Источник изображения: PVEL

Контроль качества солнечных панелей. Источник изображения: PVEL

Изучению подверглись коммерческие и коммунальные солнечные электростанции по всей территории Соединенных Штатов, развёрнутые в период с 2008 по 2022 год. Были получены данные от 25 тыс. инверторов из 37 штатов. Исследования охватили почти 8 ГВт фотоэлектрических мощностей со средним временем эксплуатации 5 лет. С учётом того, что в 2022 году в США было чуть больше 100 ГВт установленной мощности солнечных электростанций, учёные изучили определённо меньше 10 % от работающих систем. Однако для качественной статистики этого вполне достаточно.

Исследователи выяснили, что в среднем производительность фотопанелей снижается на 0,75 % в год, что соответствует аналогичным значениям, о которых сообщалось в предыдущих исследованиях. Анализ показал, что системы в зонах с более высокой температурой демонстрируют вдвое большую потерю производительности, чем системы в более прохладном климате: на 0,88 % в год и 0,48 % в год соответственно. В целом, в 90 % исследованных систем потери производительности составляли менее 2 % в год.

«Во-первых, это показывает, что наш парк фотоэлектрических систем в целом не выходит из строя катастрофически, а, скорее, деградирует скромными темпами в пределах ожиданий, — сообщили учёные. — Важно, чтобы мы как можно точнее определили этот показатель, потому что это небольшое, но ощутимое число используется почти во всех финансовых соглашениях, которые финансируют солнечные проекты, и обеспечивает важнейшие рекомендации для отрасли».

Краткосрочное воздействие экстремальных погодных условий, таких как наводнения, сильные ветры, град, лесные пожары и молнии, в большинстве исследованных фотоэлектрических систем было минимальным. Средняя продолжительность отключения после экстремального погодного явления составила два–четыре дня, что привело к снижению среднегодовых показателей выработки на 1 %.

В общей сложности в 12 системах из 6400 произошли отключения на две недели и более. Большинство отключений произошло из-за наводнений и дождей, за которыми последовали порывы ветра. В большинстве систем из набора данных произошел только один сбой, связанный с погодой.

Критическими для выживания солнечных электростанций погодные условия возникли бы в случае увеличения градин свыше 25 мм, скорости ветра более 90 км/ч и снежного покрова более 1 м. При таких условиях солнечные панели чаще бы выходили из строя, на что должны обратить внимание производители фотопанелей, если они хотят повысить надёжность своей продукции.

«Мы не считаем, что какой-либо из этих анализов свидетельствует о том, что фотоэлектрические системы ненадежны или особенно уязвимы к экстремальным погодным условиям. Фотоэлектрические системы продемонстрировали, что они могут обеспечивать резервное питание и спасать жизни, когда окружающая инфраструктура повреждена экстремальными погодными явлениями, — сказал исследователь NREL Дирк Джордан. — Тем не менее, есть дальнейшие меры, которые мы можем предпринять для улучшения качества оборудования и особенно передовых методов установки для повышения устойчивости к этим погодным явлениям».

В целом исследование показало, что при переходе к возобновляемой энергетике на солнечные панели можно положиться. Однако хотелось бы обратить внимание на такой факт, как ускоренная деградация солнечных панелей после 10 лет эксплуатации, что не отражено в работе учёных из США, но фиксируется исследователями в других странах.

В Австралии построят многоэтажку с окнами из «солнечного» стекла — оно генерирует электроэнергию и не только

Новые технологии умного остекления пока не стали массовым явлением в современной архитектуре. Пожалуй, больше всего новостей приходит из Австралии, где даже зимой много солнца. Умное остекление оконных проёмов позволит экономить на охлаждении и отоплении зданий, а также оно способно вырабатывать электрическую энергию, совершенно не поглощая видимого света.

 Источник изображения: Hayball Architects

Источник изображения: Hayball Architects

Как сообщает австралийская ClearVue Technologies, архитектурное бюро Hayball Architects выбрало умные окна компании для остекления шестиэтажного здания, которое будет построено для одного из крупнейших австралийских профсоюзов CFMEU. По некоторым оценкам, пропускающие обычный свет умные окна помогут снизить энергопотребление здания на отопление и охлаждение до 70 %.

По всей площади стёкол в стеклопакете BIPV нанесено некое нанопокрытие, которое переотражает инфракрасные и ультрафиолетовые лучи в солнечном спектре в сторону кромки окон, где размещены солнечные панели, чувствительные к этим диапазонам. Видимый свет проникает в помещение и создаёт там обычное комфортное для людей освещение.

Благодаря своей структуре умные стёкла остаются чуть холоднее по отношению к окружающему воздуху, чем обычное стекло (на 3,5 °C днём). Это позволяет меньше тратить на кондиционирование воздуха в помещении, не говоря о том, что окна сами вырабатывают электричество.

 Источник изображения: ClearVue Technologies

Умные стёкла BIPV размещены в левом проёме. Источник изображения: ClearVue Technologies

Здание для профсоюза будет строиться в Мельбурне. Производством стекла, по-видимому, будет заниматься местная компания Melbourne Safety Glass. Стоимость проекта составит 12 млн австралийских долларов ($8 млн). Начинание может стать хорошей рекламой умному остеклению. Эта и подобные технологии давно рвутся в жизнь.

Япония попытается разрушить китайскую монополию на солнечные панели с помощью перовскита

Япония и весь мир проиграли Китаю на рынке кремниевых солнечных панелей. По данным Международного энергетического агентства, китайские компании контролируют более 80 % в мировой цепочке поставок кремниевых солнечных панелей и ещё больше в сфере выпуска поликристаллического кремния для таких панелей. Переломить ситуацию можно только с помощью новых решений, которыми должны стать тонкоплёночные перовскитные солнечные панели.

 Источник изображения: George Nishiyama/The Wall Street Journal

Источник изображения: George Nishiyama/The Wall Street Journal

«Мы выиграли в технологии, но проиграли в бизнесе», — заявил Хироо Иноуэ (Hiroo Inoue), генеральный директор Японского агентства природных ресурсов и энергетики, добавив, что японские фирмы постигла аналогичная участь в производстве жидкокристаллических дисплеев и полупроводников. Но в Японии продолжают считать, что инженерный и научный персонал в стране всё ещё качественно опережает китайский.

Массовое производство тонкоплёночных перовскитных солнечных панелей может стать тем рычагом, который опрокинет доминирование Китая на рынке солнечных элементов. По крайней мере, власти Японии не жалеют средств, чтобы подтолкнуть отечественные компании к массовому производству перовскитных элементов. На эти цели, например, с недавних пор выделено свыше $400 млн и этим власти не ограничатся. В США также выделяются бюджетные средства на разработку перовскитных фотоэлементов.

Перовскитные фотоэлементы начали своё восхождение менее десяти лет назад. К сегодняшнему дню массовые кремниевые солнечные элементы имеют КПД не выше 22 %. Опытные перовскитные элементы, которые готовят к массовому производству, готовы стартовать с КПД от 25 %. К этому следует добавить намного менее энергоёмкое производство панелей с перовскитом, которое не требует обжига, как кремниевые пластины. Также перовскит может наноситься из жидкой фазы на плёнки, что позволит покрыть фотопанелями едва ли не любую поверхность. На ощупь они как фотоплёнка, только намного шире, говорят разработчики. Толщина перовскитного слоя составляет всего 1 мкм. Кремний раз в 20 толще и тяжелее. Это прошлый век, считают в Японии.

Одними из первых массовый выпуск фотопанелей из перовскита в Японии намерена начать компания Sekisui Chemical. Она будет выпускать перовскитные панели рулонами шириной 30 см. Строительство фабрики уже началось. Начало производства ожидается в 2025 году. Такие панели можно будет использовать также в помещении, собирая энергию от света везде, где только можно. Обычным солнечным панелям из кремния такое даже не снилось. Для гибких панелей есть столько места, что эта ниша будет ещё не скоро заполнена.

Важным моментом производства перовскитных панелей станет независимость от поставок сырья из Китая. Для Японии и других передовых стран это одно из самых больных мест. «Посмотрите, что Китай делает с полупроводниками. Это издевательство, — говорит учёный Цутомо Миясака, один из ведущих специалистов страны по перовскитам, имея в виду ограничения Пекина на экспорт редкоземельных элементов галлия и германия, используемых в чипах. — Компоненты из перовскитовых элементов могут быть изготовлены внутри страны».

В частности, для выпуска перовскитных фотоячеек требуется много йода. Япония является одним из крупнейших в мире поставщиком этого элемента. Треть йода на мировом рынке японского производства. Больше йода поставляет только Чили. Япония может не бояться зависимости от Китая в случае массового выпуска перовскитных ячеек.

Почти всё хорошо. Но значительным минусом перовскитных фотоэлементов остаётся их высокая чувствительность к влаге из окружающего воздуха. Это быстро приводит в негодность потенциально хорошие панели. Их нужно защищать от этого и японские учёные создали перспективный герметик, который не даёт панелям превратиться в слизь. Панели Sekisui Chemical смогут работать целых 10 лет и оставаться эффективными всё это время. Хвалёное долголетие кремниевых солнечных панелей, кстати, оказалось далеко от заявленных 25 лет. Они тоже начинают быстро деградировать после 10 лет эксплуатации.

Премьер-министр Японии Фумио Кисида пообещал сделать технологию производства перовскитных фотопанелей коммерчески жизнеспособной в течение двух лет. Япония импортирует около 90 % энергии и энергоносителей с тех пор, как закрыла большинство своих атомных станций после катастрофы на АЭС «Фукусима» в 2011 году. Цель Кисиды амбициозна, но японские инженеры и чиновники настроены оптимистично, ссылаясь на последние технологические достижения.

«Чем сложнее это [технология производства] будет, тем труднее китайцам будет скопировать её», — сказал Миясака, профессор Университета Тоин в Йокогаме и бывший сотрудник лаборатории компании Fujifilm в области солнечных технологий.

Солнечные электростанции поразила эпидемия треснувших стёкол — объяснения ей пока не нашли

Управляющие крупными солнечными электростанциями по всему миру бьют тревогу. Появилось множество сообщений о случаях повреждения фотопанелей без видимых причин. Анализ ситуации по горячим следам показал, что в этом могут быть виноваты изменившиеся технологии производства панелей, что не в полной мере было учтено во время тестирования готовой продукции на производстве.

 Источник изображения: PVEL

Источник изображения: PVEL

«Мы видели сообщения о разбитых без видимых причин стёклах [на панелях], поступающие из Бразилии, Чили, Австралии, США и других стран, — сказал Тристан Эрион-Лорико (Tristan Erion-Lorico), вице-президент по продажам и маркетингу лаборатории тестирования солнечного оборудования PVEL. — Это не зависело от региона, типа системы и производителя. Вот почему это так беспокоит».

Точной статистики повреждений панелей на проектах нет. По данным PVEL, речь идёт о сотнях МВт установленных мощностей. Некоторые случаи детально расследовались и даже были найдены объяснения повреждениям, в частности, доказан факт повреждения стеклянного покрытия слишком мощными роботизированными газонокосилками, которые швыряли камни в панели, но в большинстве случаев причины так и не были выявлены.

Отдельно операторы электростанций подчёркивают, что повреждённые фотопанели не подвергались воздействиям сильного ветра, дождя или града. Просто во время очередной инспекции вдруг обнаруживались новые трещины в стеклянном покрытии панелей, которых не было во время проведения предыдущих проверок.

Ранний анализ случаев растрескивания защитных стёкол фотопанелей показал, что во многих случаях прослеживается некоторая закономерность. Все они относятся к фотопанелям с двумя защитными стёклами — по одному на каждую сторону солнечного модуля. Ранее фотопанели закрывались только одним 3,2-мм защитным калёным стеклом с верхней стороны модуля, тогда как задняя часть модуля зашивалась пластиковой основой. Около 10 лет назад компании наладили выпуск фотопанелей с защитными стёклами с обеих сторон модуля, что должно было повысить их устойчивость к внешней среде и нагрузкам. Однако ради снижения массы модулей толщину защитных калёных стёкол пришлось уменьшить до 2 мм, что в конечном итоге увеличило вероятность их повреждения.

Нюанс в том, что панели с двумя стёклами проходят тестирование на соответствие отраслевым стандартам, но, конечно, не каждая из выпущенных панелей. Более того, стандарт разрешает смену поставщика защитного стекла без дополнительной сертификации. Для стекла толщиной 3,2 мм это не имело особого значения, но в случае более тонкого стекла, похоже, следовало быть разборчивее в выборе материалов.

Также специалисты отмечают, что технология закалки стекла даёт разное качество в зависимости от его толщины и присадок. Например, стекло должно быть относительно толстое, чтобы прогрев внутренней части был на заданном уровне. Для толстого стекла эти условия выдержать проще, чем для тонкого. В конечном итоге это вопрос затрат на изготовление. Если есть возможность сэкономить, то ею пользуются.

Наконец, снижение толщины стекла позволило облегчить каркас модулей, что увеличило нагрузку непосредственно на стекло. Это же касается используемых методов крепления (зажимов) фотопанелей к системам подстройки угла падения освещения и просто к стационарным стойкам. Производители панелей, со своей стороны, учитывают эти моменты (но не все), и выдают рекомендации по способам крепления и допустимым нагрузкам, но единой методики и стандарта нет. Поэтому в отрасли зреет необходимость пересмотра ряда стандартов, например, для тестирования панелей производителями и проведения новой сертификации.

В США проблему взялась решить Национальная лаборатория возобновляемой энергетики (NREL). Исследователи начали изучать случаи повреждений фотопанелей с анализа стёкол, их структуры, качества, химического состава и физических свойств. Задействовано специальное оборудование и прорабатываются научные методики, что обещает помочь с выработкой новых стандартов для проверки качества фотопанелей и их способности выдерживать механические нагрузки.

«Продукты меняются всё быстрее, и события опережать труднее, — сказала Ингрид Репинс, старший научный сотрудник группы надёжности фотоэлектрических систем NREL. — Эти треснувшие стёкла застали нас врасплох, хотя, я думаю, мы в какой-то степени знали, что в методиках тестирования были слабые места и пробелы. Теперь мы попытаемся понять первопричину и разработать тесты, чтобы подобное больше не повторилось. На данный момент у нас есть исследования, и у нас есть вопросы, но пока нет ответов».

Японская HW Electro представила минивэн Puzzle на солнечных батареях

Японская компания HW Electro анонсировала миниатюрный фургон Puzzle, который, помимо скромных размеров, отличается тем, что работает от солнечной энергии. Разработчик планирует в дальнейшем запустить серийное производство новых минивэнов и вывести их на рынок США.

 Источник изображений: HW Electro

Источник изображений: HW Electro

Прямоугольный электрический фургон Puzzle является продолжением серии электромобилей HW Electro Elemo, представители которой спроектированы с учётом возможности оказания помощи во время стихийных бедствий. Минивэн длиной 3,4 метра удивительно мал по сравнению со стандартными фургонами. В салоне установлены два пассажирских сиденья, за которыми имеется пространство для размещения груза, что делает Puzzle хорошим вариантом для небольших компаний, занимающихся производством какой-либо продукции.

Угловатые очертания кузова в сочетании с серебристой окраской придают Puzzle футуристический облик, который дополняется кольцеобразными фарами. Поскольку новинка рассчитана на оказание помощи в чрезвычайных условиях, она оснащена внешними электрическими розетками, которые можно задействовать для питания каких-либо приборов, портами USB, а также аварийным комплектом, в состав которого входят аптечка и лом.

Инженеры HW Electro оснастили Puzzle электроприводом, но детальные характеристики в ходе анонса раскрыты не были. Самая интересная особенность новинки заключается в наличии трёх фотоэлектрических панелей, интегрированных в крышу кузова. Они позволят восполнять энергию во время движения для увеличения запаса хода. Каким образом хранится собранная с помощью солнечных батарей энергия, неизвестно. Также непонятно, имеется ли возможность зарядки блока аккумуляторных батарей от зарядных станций, что может оказаться актуальным в пасмурную погоду.

HW Electro не уточнила, сколько будет стоить минивэн Puzzle в свободной продаже. Вероятно, это будет сделано ближе к началу первых поставок. Согласно имеющимся данным, компания планирует начать продажи Puzzle на рынке США в 2025 году.

Во Франции начали ставить на крыши зданий гибридные солнечно-ветровые генераторы

Французская компания Segula Technologies установила на крышу коммерческого здания в муниципалитете Анже-ан-Сантер десять гибридных солнечно-ветряных генераторов, которые круглый год будут обеспечивать подачу и распределение энергии в сооружении. Одна такая установка включает ветряной генератор мощностью 1500 Вт и два солнечных модуля мощностью 800 Вт каждый, а также индивидуальные аккумуляторы и систему распределения, что делает её умной.

 Источник изображения: Wind my Roof

Шуточное представление гибридного солнечно-ветрового генератора. Источник изображения: Wind my Roof

Гибридные генераторы спроектировала и изготовила компания Wind my Roof. Согласно расчётам, каждая установка будет способна за один год работы выработать до 2000 кВт·ч энергии от ветра, и до 800 кВт·ч энергии от солнца. На крыше один гибридный генератор занимает площадь 4 м2. Его размеры составляют 2,1 × 1,6 × 2 м.

Генераторы надёжны и способны выдерживать скорость ветра до 50 м/с. При этом они работают якобы бесшумно, в чём ещё надо убедиться. Ведь шум от ветрогенераторов — это одна из причин запрета их эксплуатации в жилой застройке. Кстати, они не рассчитаны на сильное похолодание и выдерживают снижение температуры только до -15 °C.

Если верить компании Wind my Roof, до работы в Анже-ан-Сантер она установила восемь установок на крыше здания в Руане (Нормандия). Позже во Франции она реализует ещё четыре проекта, что произойдёт до конца текущего года. Компания также работает над установкой «ветряных коробок» в Бельгии, Люксембурге и Германии.


window-new
Soft
Hard
Тренды 🔥
Bethesda готовит «несколько очень хороших обновлений» для Starfield, а Fallout 5 не в приоритете 37 мин.
Apple откроет сторонним приложениям доступ к NFC 2 ч.
В Dota 2 стартовало сюжетное событие «Павшая корона» с уникальными наградами, новыми «арканами» и комиксом 2 ч.
Связанные одной шиной: «Лаб СП» и «Фактор-ТС» представили отечественную интеграционную платформу Integration Gears 2 ч.
Paradox отказала Prison Architect 2 в досрочном освобождении — релиз отложили ещё на четыре месяца 4 ч.
Спустя 17 лет после релиза Team Fortress 2 получила поддержку 64 бит — выросла производительность и даже боты пропали 5 ч.
Kingdom Come: Deliverance 2 переведут на русский, но есть нюанс 6 ч.
Netflix резко нарастила аудиторию и прибыль, запретив совместное использование аккаунтов 6 ч.
Российские студенты победили в чемпионате мира по программированию ICPC 6 ч.
Мошенники стали угонять Telegram-аккаунты через сайты с изображениями 6 ч.
Гиперщит с ИИ: Cisco представила систему безопасности Hypershield 46 мин.
Highpoint представила карту расширения на восемь SSD: до 64 Тбайт со скоростью до 56 Гбайт/с 2 ч.
Китайские экспериментальные лунные навигационные спутники прислали фотографии обратной стороны Луны 2 ч.
Налоговая служба Швеции закрыла 18 дата-центров за незаконный майнинг криптовалют 3 ч.
LG выпустила флагманский саундбар S95TR за $1500 с поддержкой Dolby Atmos и настройкой с помощью ИИ 5 ч.
Seagate заявила, что жёсткие диски с HAMR уже не уступают по надёжности традиционным HDD 5 ч.
Corsair представила обновлённые доступные проводные гарнитуры HS35 v2 для геймеров 6 ч.
Tesla отзовёт все проданные электромобили Cybertruck для замены залипающей педали газа 7 ч.
Galax выпустила полностью белую низкопрофильную GeForce RTX 4060 с крошечным заводским разгоном 9 ч.
Razer представила игровые контроллеры Kishi Ultra и Kishi V2 для смартфонов, планшетов и ПК 9 ч.