Сегодня 02 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → вселенная
Быстрый переход

«Джеймс Уэбб» подтвердил открытие самой древней галактики — менее чем в 300 млн световых лет от Большого взрыва

На сайте arXiv одновременно появились три статьи, в которых независимые группы учёных пришли к одному выводу: обсерватория «Джеймс Уэбб» подтвердила открытие самой древней галактики в истории наблюдений человечества. Эта галактика активно росла и развивалась менее чем через 300 млн лет после Большого взрыва, что настойчиво подталкивает учёных изменить представление о ранних этапах эволюции Вселенной.

 Источник изображения: NASA

Источник изображения: NASA

С появлением такого мощного инструмента, как космическая обсерватория им. Джеймса Уэбба, земная наука получила возможность заглянуть в эпоху реионизации и глубже, когда пространство было заполнено нейтральным водородом, который как густой туман рассеивал видимый свет звёзд. Считалось, что в те времена рассвета Вселенной было мало галактик и они были бедны на звёзды, ведь после Большого взрыва прошло всего несколько сотен миллионов лет. Звёзды и их скопления просто не успели бы развиться. «Джеймс Уэбб» ошеломил: плотность галактик и их яркость оказались впечатляющими даже в начале эпохи реионизации.

Удалённость и сложность измерений не позволяли сразу понять, какие галактики древние, а какие просто уходят в красный спектр по причине преобладания соответствующего типа звёзд. Разобраться с этим позволяют спектральные приборы «Уэбба». Они более-менее точно определяют красные смещения галактик, что позволяет судить об истинной удалённости этих объектов.

До недавнего времени самой древней подтверждённой галактикой была JADES-GS-z13-0, обнаруженная через 320 млн лет после Большого взрыва. Новой самой древней галактикой стала JADES-GS-z14-0, пойманная в объектив «Уэбба» менее чем через 300 млн лет после Большого взрыва. Масса этой галактики оказалась примерно на уровне 10 % от массы Млечного Пути, а её звёздное население росло со скоростью 25 солнечных масс в год. Обнаружить такой яркий объект и так рано — это ломает устоявшиеся представления об эволюции звёзд и галактик. Слово за вами, теоретики!

Первичные чёрные дыры — плохие кандидаты на роль тёмной материи, объяснили японские учёные

Астрофизики из Исследовательского центра ранней Вселенной (RESCEU) и Института физики и математики Вселенной им. Кавли (Kavli IPMU, WPI) Токийского университета представили новую модель эволюции первичных чёрных дыр. Эти миниатюрные объекты, как считается, могли бы играть роль тёмной материи, став своего рода центрами кристаллизации вещества и инициаторами появления всего в нашей Вселенной — звёзд, галактик и прочего. Японцы в этом усомнились.

 Источник изображения: ESA/ Planck Collaboration

Коротковолновые события ПЧД с сильнейшей амплитудой могли влиять на реликтовое излучение. Источник изображения: ESA

Согласно распространённой в научной среде гипотезе, первичные чёрные дыры возникли на этапе после Большого взрыва в процессе быстрого (инфляционного) расширения Вселенной, когда из объекта меньше атома она расширилась на 25 порядков. В процессе этого Вселенная перестала быть однородной. Сегодня мы наблюдаем следы этой неоднородности в виде реликтового излучения — космического сверхвысокочастотного микроволнового фона. Изучение слабых отклонений в реликтовом излучении может дать подсказку о происходящих 13,8 млрд лет назад процессах на самых ранних его этапах. Именно этим занялись исследователи из Японии.

Учёные применили к наблюдаемым данным хорошо изученную квантовую теорию поля. Эта теория помогает нам разбираться с поведением элементарных частиц, что также хорошо согласуется с измерениями. Перенос квантовой теории поля на космологию показал, что первичные чёрные дыры (ПЧД) должны были оказывать измеряемое влияние на реликтовое излучение. Сами по себе они неспособны влиять на сверхвысокочастотные волны, но в достаточном количестве первичные чёрные дыры должны были бы в отдельных случаях оказать когерентное влияние на микроволновый фон — усилить амплитуду отдельных волн излучения.

Если бы первичных чёрных дыр во Вселенной было много, то отклонений в показаниях реликтового излучения было бы намного больше. Тогда, в частности, первичные чёрные дыры можно было бы рассматривать в качестве кандидатов на роль тёмной материи. Но этого не наблюдается, и квантовая теория поля хорошо объясняет, почему это так. Сейчас учёные ожидают новых данных наблюдений гравитационно-волновых обсерваторий LIGO в США, Virgo в Италии и KAGRA в Японии, которые, в том числе, находятся в разгаре поисков следов первичных чёрных дыр. И у них есть немалые шансы получить подтверждение своей модели.

Так вот как это было! «Джеймс Уэбб» засёк начало рождения галактик в ранней Вселенной

Космический телескоп «Джеймс Уэбб» получил, похоже, одни из самых ценных снимков за время своей работы. С его помощью учёным удалось увидеть, как рождались первые галактики во Вселенной. Это наблюдение в общем случае подтвердило нашу теорию об эволюции звёзд, галактик и самой Вселенной.

 Источник изображения: NASA

Источник изображения: NASA

«Можно сказать, что это первые "прямые" изображения формирования галактик, которые мы когда-либо видели, — пояснил ведущий автор исследования Каспер Эльм Хайнц (Kasper Elm Heintz), астрофизик Центра космического рассвета (DAWN) в Дании. — В то время как ранее "Джеймс Уэбб" показывал нам ранние галактики на более поздних стадиях эволюции [уже сформированные], здесь мы являемся свидетелями самого их рождения и, следовательно, построения первых звёздных систем во Вселенной».

Телескоп получил изображения трёх галактик примерно через 400–600 млн лет после Большого взрыва. На тот момент галактики представляли собой скопления сгустков тёмной и обычной материи, по-видимому, с чёрной дырой в их центрах. Звёзд в них ещё не было или их было исчезающее мало, и лишь на ранних стадиях эволюции. Обычная материя в те времена — это практически один водород. Именно его движение и поглощение засекли спектральные приборы «Уэбба».

 Как это увидел «Уэбб»

Как это увидел «Уэбб»

На сделанных космической обсерваторией снимках учёные смогли различить движение водорода внутрь и по краям формирующихся галактик. Со временем под действием гравитации плотность газа в отдельных местах формирующихся галактик достигнет такого значения, которое запустит термоядерные реакции и породит первые звёзды. Но это будет потом и, к тому же, всё это мы видели на более поздних стадиях развития Вселенной. Увидеть фактически зачатие первых галактик — это редкая удача и, кстати, исследователи утверждают, что они выбирали цель для работы наобум, не до конца понимая, что же они хотят найти.

Астрономы пока не знают, как распределяется газ между центрами галактик, а также на их окраинах. Будущие наблюдения могут не только помочь решить эту задачу, но и показать, полностью ли газовые облака этих галактик состоят из первичного водорода или уже содержат более тяжёлые элементы.

Такой Вселенную мы ещё не видели: ЕКА поделилась первыми научными снимками с космического телескопа «Евклид»

На днях вышли первые научные работы по раннему циклу наблюдений за небом космической обсерваторией «Евклид» (Euclid). Этот созданный Европейским космическим агентством инструмент представил Вселенную в новом свете — его приборы одновременно улавливают видимый и инфракрасный свет, что позволяет делать «резкие» снимки на большую глубину вплоть до 10 млрд световых лет. Подобная детализация — это ключ к пониманию тёмной материи и тёмной энергии.

 Источник изображений: ЕКА

Туманность Конская Голова в созвездии Ориона. Источник изображений: ЕКА

Строго говоря, все представленные сегодня изображения космических объектов ЕКА уже показывало в прошлом году. Но тогда это был беглый обзор, который сегодня подкреплён прочным научным анализом. И это не только работы по поиску тёмной материи и признаков тёмной энергии. Высокая чувствительность «Евклида» в расширенном диапазоне приёма света, а также более широкий, чем у «Хаббла» и «Уэбба» обзор позволяют новому европейскому космическому инструменту делать множество других открытий. Например, телескоп способен улавливать тусклые объекты — блуждающие планеты и коричневых карликов.

 Галактика NGC 6744 с зонами зарождения звёзд

Галактика NGC 6744 с зонами зарождения звёзд

Но основная задача «Евклида» — это поиск и картирование скоплений тёмной материи во Вселенной, и изучение эволюции её скоплений во времени, что даст подсказку к оценке такого необъяснимого пока явления — как тёмная энергия и ускоренное расширение Вселенной.

Сильное гравитационное линзирование позволит идентифицировать объёмы и массы тёмной материи, а слабое — отследить эволюцию «тёмных сгустков» на протяжении 10 млрд лет эволюции Вселенной. Широкое поле охвата «Евклида» позволит сделать это с максимально возможной сегодня точностью.

 Детализированное изображение области звездообразования Мессье 78

Детализированное изображение области звездообразования Мессье 78

К 2030 году, как ожидается, «Евклид» составит подробную карту распределения тёмной материи по Вселенной и во времени примерно на 30-% участке неба. К этому времени к нему присоединятся широкоугольные космические «супертелескопы» NASA им. Нэнси Грейс Роман и китайский «Сюньтянь». Эти инструменты восполнят пробелы в наблюдениях «Евклида», которые неизбежны для любого прибора. Но это будет уже другая история.

«Джеймс Уэбб» показал Туманность Ориона в деталях невиданной ранее красоты

В рамках отрабатываемой обсерваторией им. Джеймса Уэбба программы PDRs4All («область фотодиссоциации для всех») исследователи получили самые детальные снимки Туманности Ориона. Это ближайшая к нам область звездообразования, иначе называемая звёздными яслями. Каждый элемент причудливой формы из газа и пыли в этой области — это бесценный кладезь знаний о самых первых этапах зарождения звёзд, изучать которые можно десятилетиями.

 Источник изображений: PDRs4All

Источник изображений: PDRs4All

Мы же начнём с неземной красоты Туманности Ориона. Этот объект виден с Земли невооружённым взглядом, и учёные тысячелетиями пытались разгадать его происхождение и сущность. Расположена туманность в 1500 световых годах от Солнечной системы. В видимом диапазоне многие структуры туманности разглядеть нельзя — мешают плотные скопления пыли и газа. Инфракрасный телескоп «Джеймс Уэбб» стал тем инструментом, который способен заглянуть внутрь нагретых облаков, пыль и газ которых разогревает и разгоняет ультрафиолетовое излучение молодых и горячих звёзд.

Более того, излучение молодых звёзд меняет не только физические формы пыли и газа, оно ещё запускает множество химических процессов в веществе туманности. Собственно, название программы изучения физики и химии областей звездообразования говорит само за себя — она изучат в них процессы фотодиссоциации. И здесь «Уэбб» стал незаменим. Его спектрометры не такие широкоугольные, как оптические и инфракрасные приборы, но способны предоставить в тысячу раз больше информации на каждый кадр, чем приборы, работающие с видимым светом.

В Туманности Ориона учёные обнаружили свыше 600 химических веществ и соединений, которые расскажут о химии областей, где рождаются звёзды. Собрано столько данных, что их будут анализировать не одно десятилетие, говорят участники программы. Материала так много, что по этому наблюдению в журнале Astronomy & Astrophysics одновременно вышло шесть статей. И это только верхушка айсберга!

«Джеймс Уэбб» засёк древнейшее в истории наблюдений столкновение сверхмассивных чёрных дыр, многое объясняющее в эволюции Вселенной

В опубликованной в четверг работе в журнале The Monthly Notices of the Royal Astronomical Society группа астрономов сообщила, что обнаружила древнейшее за всё время наблюдений столкновение сверхмассивных чёрных дыр. Слияние этих колоссальных объектов произошло через 740 млн лет после Большого взрыва. Это стало доказательством, что чёрные дыры с самого начала играли значительную роль в эволюции галактик, и объяснило их стремительный рост в древности.

 Квазар Источник изображения: NASA

Квазар ZS7. Источник изображения: NASA

С появлением невероятного по чувствительности в инфракрасном диапазоне космического телескопа им. Джеймса Уэбба астрономам стали открываться явления в ранней Вселенной, куда предыдущее приборы не могли заглянуть. Это период, когда Вселенная ещё не перешагнула рубеж первого миллиарда существования из нынешних примерно 13,8 млрд лет.

Одной из загадок детства Вселенной стало открытие множества сверхмассивных чёрных дыр до первого миллиарда её развития. Согласно нашим теориям, эти объекты никак не успевали в то время развиться до детектируемых масс от нескольких десятков млн солнечных масс до млрд солнечных масс. На эти процессы должны уходить миллиарды лет, а не сотни миллионов, как показывают данные «Уэбба». Новое наблюдение как раз объясняет, каким образом чёрные дыры могли быстро набирать массу в древности, и это слияния, которых в те времена не должно было бы быть так много, чтобы они оказали влияние на всю последующую эволюцию галактики и самой Вселенной. Похоже, земная наука ошибалась на этот счёт.

«Наши результаты показывают, что слияние является важным путём, по которому чёрные дыры могут быстро расти даже на заре космоса, — сказала в заявлении руководитель исследования и учёный из Кембриджского университета Ханна Юблер (Hannah Übler). — Вместе с другими открытиями «Уэбба» активных массивных чёрных дыр в далёкой Вселенной наши результаты также показывают, что массивные чёрные дыры формировали эволюцию галактик с самого начала».

По факту исследователи засекли признаки активности древнего квазара — активного центра галактики ZS7, в центре которого живёт и быстро питается сверхмассивная чёрная дыра. Спектральной чувствительности «Уэбба» хватило, чтобы увидеть в излучении объекта две составляющие. Обе они оказались сверхмассивными чёрными дырами на грани слияния. Об этом подсказало интенсивное излучение от разогретого газа в аккреционном диске чёрных дыр, а также анализ плотности ионизированного газа.

Масса одного из объектов была определена с достаточной точностью — она составила 50 млн солнечных. Масса второй чёрной дыры оценивается как примерно такая же, но точно учёные сказать не смогли — этому помешало плотное скопление газа на пути излучения.

«Звёздная масса изученной нами системы [галактики ZS7] аналогична массе нашего соседа, Большого Магелланова облака, — поясняют учёные. — Мы можем попытаться представить, как могло бы повлиять на эволюцию сливающихся галактик, если бы в каждой галактике была одна сверхмассивная чёрная дыра, такая же большая, как у нас в Млечном Пути». Тем самым астрономы намекают, что наши модели эволюции галактик явно не учитывают множества аспектов их поведения на заре появления и это надо исследовать.

Кстати, с июня этого года «Уэбб» будет регулярно предоставляться для наблюдений сверхмассивных чёрных дыр, так что новых открытий будет не много, а очень много. Впрочем, больше информации о столкновениях чёрных дыр предоставят учёным гравитационно-волновые обсерватории, первые из которых уже работают. Такие обсерватории следующего поколения и, особенно, космического базирования смогут фиксировать столкновения чёрных дыр далеко и обильно. Жаль только, что заработают эти инструменты не раньше середины следующего десятилетия.

«Хаббл» сфотографировал космический невод — линзовидную галактику NGC 4753

Астрономы получили уникальную возможность изучить структуру и происхождение линзовидной галактики NGC 4753 благодаря новому снимку, сделанному космическим телескопом «Хаббл» (Hubble). На фотографии, опубликованной 13 мая, видно яркое центральное ядро галактики и сложные пылевые структуры, напоминающую рыболовную сеть или невод, которые могут быть результатом слияния галактик более миллиарда лет назад.

 Источник изображения: L.Kelsey / NASA, ESA, Hubble

Источник изображения: L.Kelsey / NASA, ESA, Hubble

Галактика NGC 4753 была впервые открыта астрономом Уильямом Гершелем (William Herschel) в 1784 году. Она находится примерно в 60 млн световых лет от Земли в группе галактик Дева II (Virgo II Cloud), которая включает около 100 галактик и их скоплений.

Линзовидные галактики являются переходной формой между спиральными и эллиптическими галактиками: они имеют эллиптическую форму, но их спиральные рукава плохо выражены. Согласно заявлению Европейского космического агентства (ESA), галактика NGC 4753 позволяет астрономам исследовать различные теории образования линзовидных галактик благодаря низкой плотности её среды и сложной структуре.

Считается, что NGC 4753 является результатом слияния крупной галактики и её карликового компаньона около 1,3 млрд лет назад. Когда галактики сближались, мощные гравитационные силы более крупной галактики, вероятно, притягивали звёзды, газ и пыль её меньшего соседа, что привело к формированию искажённой эллиптической формы и характерных пылевых полос, наблюдаемых сегодня. Среди пылевых отростков галактики, звёзд и яркого белого ядра скрыта тёмная материя, которая, как считается, составляет большую часть массы галактики, сосредоточенной в её слегка сплющенном сферическом ореоле.

Наблюдения за NGC 4753 также указывают на то, что галактика была местом возникновения сверхновой типа Ia — мощного взрыва звезды, который происходит в двойных системах, где одна из звёзд является белым карликом, исчерпавшим своё ядерное топливо.

«Эти типы сверхновых чрезвычайно важны, поскольку все они вызваны взрывами белых карликов, у которых есть звёзды-компаньоны, и всегда достигают пика яркости — в 5 млрд раз ярче нашего Солнца. Зная истинную яркость таких событий и сравнивая её с видимой яркостью, астрономы получают уникальную возможность измерять расстояния во Вселенной», — отметили представители ESA.

Таким образом, наблюдения за галактикой NGC 4753 открывают перед учёными новые горизонты для изучения эволюции галактик и природы тёмной материи. Слияние галактик и связанные с этим процессы играют ключевую роль в формировании сложных структур, которые мы наблюдаем сегодня. Будущие исследования и наблюдения позволят углубить наше понимание этих явлений и ответить на ещё множество вопросов, связанных с развитием Вселенной.

Недалеко от Земли нашли одни из самых старых звёзд во Вселенной — прямо в Млечном Пути

Исследователи и студенты Массачусетского технологического института обнаружили в гало Млечного Пути три звезды, образовавшиеся примерно 12–13 миллиардов лет назад, то есть вскоре после Большого взрыва. По словам исследователей, эти самые «пожилые» из когда-либо открытых звёзд «являются частью нашего космического генеалогического древа». Их изучение может дать астрономам новые знания о развитии Вселенной и нашей галактики сразу после Большого взрыва.

 Источник изображения: Denis Degioanni / unsplash.com

Источник изображения: Denis Degioanni / unsplash.com

Профессор физики Массачусетского технологического института Анна Фребель (Anna Frebel) посвятила свою карьеру сбору и обработке данных с телескопа Магеллан-Клей обсерватории Лас-Кампанас в чилийской пустыне Атакама. В конце 2022 года она открыла новый учебный курс «наблюдательной звёздной археологии», где студенты получают навыки, необходимые для исследования происхождения древнейших космических объектов.

Исследователей заинтересовали звёзды, спектр которых указывал на низкие количества стронция и бария. Считается, что сразу после Большого взрыва содержание этих элементов в звёздной пыли было крайне мало, поэтому такой спектр звёзд свидетельствует, что они могли образоваться в самой ранней Вселенной. После длительного изучения материалов были выбраны три звезды с чрезвычайно низким содержанием стронция, бария и железа, впервые обнаруженные в 2013 и 2014 годах.

Исследование орбитальных схем этих звёзд показало, что всё «звёздное трио» движется в направлении, противоположном остальным звёздам в гало Млечного Пути. Ретроградное движение часто является признаком того, что небесный объект не является родным для своего окружения. Такая модель движения в сочетании с характерным химическим составом привела исследователей к уверенности, что эти древние звёзды когда-то были частью ранних карликовых галактик, которые были поглощены нашей галактикой по мере роста Млечного Пути.

Космическим объектам этого класса присвоено название «малые аккреционные звёздные системы» (Small Accreted Stellar System, SASS). В статье, опубликованной во вторник в «Ежемесячных уведомлениях Королевского астрономического общества», Фребель и её коллеги высказывают предположение, что в Млечном Пути может быть скрыта ещё 61 звезда SASS. «Эти старые звезды определённо должны быть там, учитывая то, что мы знаем о формировании галактик, — уверена Фребель. — Они являются частью нашего космического генеалогического древа. И теперь у нас есть новый способ их найти».

Камера для поиска тёмной энергии запечатлела «Руку Бога» из молекулярного водорода

Установленная на телескопе им. Виктора Бланко камера для поиска тёмной энергии получила новое изображение интереснейшего объекта — разорванной кометарной глобулы CG4, также известной как «Рука Бога». На снимке подсвеченная кроваво-красным ореолом призрачная рука тянется к спиральной галактике. Но никакой мистики в этом нет: камера чувствительна к излучению молекулярного водорода, разогретого излучением близких звёзд, а он светится красным.

 Источник изображения: CTIO/NOIRLab/DOE/NSF/AURA

Источник изображения: CTIO/NOIRLab/DOE/NSF/AURA

Кометарные глобулы впервые были обнаружены в 1976 году. Они имеют слабое свечение, поэтому плохо различимы на снимках. Также для образования подобных структур должен быть соблюдён ряд условий, поэтому повсеместно они не встречаются. Образования отдалённо напоминают кометы с ядром и хвостом, но к кометам они не имеют никакого отношения. Это плотные газопылевые облака, выбросившие хвосты под воздействием давления излучения звёзд или в процессе взрыва сверхновых. Впрочем, природа образования кометарных глобул продолжает оставаться предметом научных споров.

Свет молодых и горячих звёзд в шарообразных облаках вызывает свечение молекулярного водорода, который на снимках в ближнем инфракрасном диапазоне выглядит красным, придавая облакам и хвостам глобул мистический облик. В глобулах достаточно пыли и газа для зарождения новых звёзд, что придаст им новые черты и, в итоге, развеет в пространстве.

Большинство кометарных глобул обнаружено в туманности Гамма, в центре которой может находиться пульсар (нейтронная звезда), оставшийся после взрыва сверхновой. Вероятно, этот взрыв породил глобулы, которых в области туманности насчитывается свыше 30 штук. Но «Рука Бога» — это самый впечатляющий из подобных объектов. Его ядро имеет диаметр 1,5 световых лет, а хвост простирается на 8 световых лет. К тому же, разрыв глобулы действительно напоминает руку, тянущуюся к далёкой галактике. И это действительно красиво.

«Джеймс Уэбб» запечатлел невиданные детали туманности Конская Голова

Туманность Конская Голова — это не только один из самых фотогеничных объектов во Вселенной, но также источник ценных данных о физических и химических процессах в межзвёздных средах газа и пыли. Одна из групп астрономов использовала телескоп «Джеймс Уэбб» для изучения структур этого объекта и впервые получила изображения пограничных областей туманности в беспрецедентных деталях.

 Источник изображений: NASA

Источник изображений: NASA

Туманность Конская Голова расположена на удалении 1500 световых лет от Земли. Это достаточно плотный сгусток пыли и газа, возникший в результате коллапса облака в этой области пространства. Это облако подсвечено ультрафиолетовым светом от расположенной недалеко молодой и горячей звезды, свет которой также меняет химический состав газа и рассеивает его и пыль. В конечном итоге туманность тоже со временем исчезнет под давлением излучения звёзд, но для Конской Головы это случится примерно через 5 млн лет.

С помощью инфракрасных приборов «Уэбба» учёные впервые получили изображение «гривы» Конской Головы — пограничной области пространства длиной 0,8 световых лет. Исследователей интересовал вопрос поведения пыли и газа в области рассеивания, где эти процессы видны наиболее отчётливо.

 Сравнение изображения туманности Конская Голова, полученное разными телескопами

Сравнение изображений туманности Конская Голова, полученных разными телескопами

Благодаря новым наблюдениям удалось лучше представить объёмную картину распределения пыли и газа туманности в области рассеивания и увидеть, как вещество тонкими струйками уносится в пустое пространство. Позже будут проанализированы спектральные данные, полученные с помощью «Уэбба». Ультрафиолет в процессе фотодиссоциации меняет химический и физический состав газопылевой среды туманности, а это ключ к пониманию эволюции вещества во Вселенной. Такие знания на дороге не валяются, и «Уэбб» стал незаменимым инструментом на пути к их получению.

Китайский телескоп «Зонд Эйнштейна» прислал первые пробные снимки —они впечатлили ученых деталями и находками

На 7-м семинаре консорциума Einstein Probe consortium в Пекине были представлены первые снимки неба в рентгеновском диапазоне, сделанные китайским рентгеновским телескопом «Зонд Эйнштейна» (Einstein Probe). Также на борту обсерватории установлен европейский прибор, который имеет особую ценность. Все снимки пока калибровочные. Научная работа обсерватории начнётся в середине июня. Но даже сейчас аппарат поражает своими возможностями.

 Млечный Путь в рентгеновском свете (изображение в рентгене наложено на оптичекое). Источник изображения:

Млечный Путь в рентгеновском свете (с наложением на оптическое). Источник изображения: Einstein Probe consortium

Обсерватория «Зонд Эйнштейна» была запущена в космос 9 января 2024 года с космодрома Сичан на юго-западе Китая с помощью ракеты «Чанчжэн 2C». Обсерватория расположилась на орбите Земли на высоте около 600 км. Научная работа рассчитана на три года наблюдений. За своё участие в проекте европейские учёные получат около 10 % рабочего времени обсерватории.

Основной поток данных будет генерировать широкоугольный китайский рентгеновский телескоп WXT (Wide-field X-ray telescope). Его поле зрения составляет 1345 квадратных градусов, что позволяет ему одним кадром захватывать площадь неба, равную 10 тыс. дискам полной Луны. Телескоп делает полный снимок неба каждые 5 часов, что позволит учёным обнаруживать массу переходных событий, которые раньше ускользали от них. Это джеты нейтронных звёзд, падение вещества на чёрные дыры, взрывы сверхновых и другие яркие в рентгеновском излучении события.

Европейский телескоп FXT (Follow-up X-ray Telescope) — это узконаправленный прибор с очень высокой чувствительностью в рентгеновском диапазоне. Если WXT найдёт что-то особенно интересное, FXT сможет рассмотреть это с превосходным разрешением. Также оба телескопа помогут в поиске объектов и событий, обнаруженных в других диапазонах, например, гравитационно-волновыми обсерваториями, гамма-телескопами и даже оптическими и инфракрасными телескопами.

Даже калибровочные снимки поразили учёных своей детализацией и возможностями. В процессе настройки бортовых систем и приборов обсерватория «Зонд Эйнштейна» обнаружила 19 февраля 2024 года первый переходный процесс и, позже, ещё 14 временных источников рентгеновского излучения, а также 127 вспышек звёзд. Можно только представить, какой поток ранее недоступной информации пойдёт с началом работы обсерватории через полтора месяца!

 Остаток сверхновой Корма А

Остаток сверхновой Корма А в рентгеновском диапазоне

По масштабу это станет чем-то близким к началу работы «Уэбба», хотя, конечно, новые рентгеновские обсерватории запустили NASA и JAXA в добавок к уже летающим. Но такого масштабного проекта как «Зонд Эйнштейна» пока нет ни у кого. Используя опыт этой обсерватории, ЕКА планирует в будущем запустить собственную космическую рентгеновскую обсерваторию NewAthena. Однако пока этот проект не вышел из стадии обсуждения. В будущем NewAthena станет крупнейшей рентгеновской обсерваторией в истории.

 Принцип работы рентгеновской оптики «глаз омара», из-за этого источики на снимках выглядят как «+»

Принцип работы рентгеновской оптики «глаз омара», из-за этого источники на снимках выглядят как «+»

Добавим, китайский телескоп Wide-field X-ray собирает рентгеновское излучении оптикой типа «глаз омара». Это трубчатые конструкции, которые за счёт отражения от внутренних стенок позволяют усиливать рентгеновский свет. Подробнее об этой оптике мы рассказывали раньше, например, здесь.

Телескоп «Хаббл» отметил 34-ю годовщину работы красочным изображением туманности Гантель

За 34 года на орбите телескоп «Хаббл» собрал данные о таком множестве событий, объектов и явлений во Вселенной, объёма которых от него не ожидали даже создатели. Проект стал самым продуктивным среди всех миссий NASA. Этому помогло то, что телескоп создавался как платформа, доступная для ремонта и модернизации. С 2011 года «Хаббл» лишился такой возможности, но задела оказалось достаточно, чтобы он мог проработать до конца текущего десятилетия.

 Планетарная туманность Гантель (M). Источник изображения: NASA

Планетарная туманность Гантель (M76). Источник изображения: NASA

Годовщину работы «Хаббла» астрономы NASA отметили красочным изображением планетарной туманности Гантель, которая находится от нас на расстоянии 3400 световых лет в созвездии Персея. Туманность возникла после того, как звезда после выгорания топлива сбросила внешнюю оболочку и та со скоростью свыше 3 млн км/ч начала разлетаться по космосу. Но форма туманности оказалась необычна для такого явления. Она приняла форму перетянутого посередине шара или гантели, за что и получила такое название.

Предполагается, что завершившая свой век звезда могла иметь партнёра по системе. Уничтожение партнёра или его влияние на динамику сброса оболочки может объяснить ту странную форму останков звезды, которую наблюдал «Хаббл». Внутри «гантели» телескоп определил сгустки пыли и газа протяжённостью от 17 до 56 млрд км. Масса каждого из таких сгустков примерно равна массе трёх наших планет вместе взятых, что в итоге может помочь восстановить момент до сброса звездой своей оболочки.

В последние годы «Хаббл» несколько раз останавливали для дистанционной диагностики возникающих неполадок. Пока действовала программа «Спейс Шаттл» его ремонтировали и улучшали, а также поднимали повыше на орбите, чтобы он не вошёл в атмосферу. Телескоп вращается на высоте примерно 500 км над поверхностью планеты. Через несколько лет его нужно будет либо поднимать ещё раз, либо контролируемо сводить с орбиты. В любом случае для этого нужны средства, которых пока нет. По неподтверждённой информации, NASA попросило компанию SpaceX разработать систему корректировки орбиты для «Хаббла», но подробностей на этот счёт нет.

Открыта вторая по близости к Земле чёрная дыра, и она оказалась рекордно большой

Удивительно, но в относительной близости к Земле скрывалась необычно большая чёрная дыра звёздной массы. Открытие сделано на основе данных европейского астрометрического спутника «Гайя» (Gaia). В двойной системе вместе со звездой-гигантом обнаружена чёрная дыра массой 33 солнечных масс. Это самый крупный такого рода объект, обнаруженный в Млечном Пути и это вторая по близости к Земле чёрная дыра в нашей галактике.

 Художественное представление системы Источник изображений: ESA

Художественное представление системы Gaia BH3. Источник изображений: ESA

Ранее в каталоге «Гайи» внимание астрономов привлекла гигантская звезда Gaia DR3 4318465066420528000 (Gaia BH3). Звезда находится на удалении 2000 световых лет от Солнечной системы в созвездии Орла. Наблюдение за звездой с помощью эшелле-спектрографа UVES на наземном телескопе VLT Южной европейской обсерватории в Чили показало, что у звезды есть невидимый партнёр, параметры которого оказались достаточно необычными, что позволило прийти к выводу, что это чёрная дыра с рекордной звёздной массой.

Расчёты показывают, что звезда и чёрная дыра совершают один оборот по орбите за 11,6 года. Спектральный анализ показал, что звезда бедна металлами и, следовательно, чёрная дыра также образовалась из звезды-гиганта с низкой металличностью. Это первое такое открытие. Именно звёзды с низкой металличностью потенциально способны образовывать рекордно массивные чёрные дыры после своей смерти, так как они в процессе жизни не так активно «разбазаривают» вещество, как звёзды с высоким содержанием металлов.

До обнаружения чёрной дыры в системе Gaia BH3 самой массивной чёрной дырой звёздной массы считался объект Лебедь Х-1 массой 21 солнечная на удалении около 7000 световых лет от нас. Самая близкая к нам чёрная дыра солнечной массы расположена в 1500 световых годах — это чёрная дыра Gaia BH1 с массой в 10 солнечных. Также была найдена ещё одна чёрная дыра подобной массы — Gaia BH2, которая расположена на удалении 3800 световых лет от Солнечной системы. Новое открытие затмевает предыдущие находки и делает его крайне интересным.

«Джеймс Уэбб» помог установить происхождение сильнейшего в истории наблюдений гамма-всплеска

В один миг 9 октября 2022 года космические и наземные гамма-телескопы ослепли все как один. Это стало моментом регистрации сильнейшего в истории наблюдений гамма-всплеска, который получил индекс GRB 221009A и официальное прозвище BOAT (английская аббревиатура от «ярчайший за всё время»). Событие оказалось настолько ярким, что на месяцы затмило послесвечение, по которому можно было определить его источник. Но теперь эта тайна раскрыта.

 Источник изображения: IHEP

Источник изображения: IHEP

Группа американских астрономов из Северо-Западного университета (Чикаго) в сегодняшнем номере журнала Nature Astronomy опубликовала статью, в которой сообщила о происхождении всплеска BOAT и о процессах, его сопровождавших, что также стало открытием. Учёные смогли приступить к поискам источника только полгода спустя после регистрации всплеска. До этого высокоэнергичные фотоны гамма-излучения буквально слепили все направленные на потенциальный объект излучения датчики.

Следует сказать, что учёные не сильно удивились, когда обнаружили на месте «преступления» останки сверхновой. Взрывы сверхновых — это один из вероятных источников гамма-всплесков. Интересно здесь то, что взорвалась, в общем-то, рядовая сверхновая, а не нечто рекордное по своему масштабу, как можно было бы ожидать. Другое дело, что гамма-излучение, возникшее в результате взрыва, оказалось очень сильно сфокусированным. Именно эта концентрация, да ещё направленная в сторону Земли, привела к столь яркому эффекту. Такое может происходить не чаще одного раза в 10 тыс. лет, считают учёные.

Учёные считают, что предельная фокусировка гамма-лучей произошла по причине высокой скорости вращения звезды перед взрывом. В теории такие процессы могут вести к образованию наиболее тяжёлых металлов во Вселенной. Считается, что в звёздах в обычных условиях не могут быть синтезированы вещества тяжелее железа. Но в ряде экстремальных процессов, например, подогреваемые интенсивным гамма-всплеском, могут появиться и более тяжёлые элементы, включая золото и платину.

Обратив свой взор к месту рождения события BOAT, учёные начали поиск золота и платины. Помог им в этом спектрометр космического телескопа «Джеймс Уэбб». Ни золота, ни платины в результате обнаружить на месте взрыва сверхновой не удалось. Это позволяет отодвинуть в сторону теорию о GBR-канале, как катализаторе синтеза тяжёлых элементов. В то же время это лишь повод обнаружить больше похожих событий и набрать достаточно данных либо для полного опровержения такой возможности, либо для создания списка исключений. В любом случае, изучение события BOAT дало целый спектр данных, чтобы учёным было чем занять свои головы в поиске ответов на загадки Вселенной.

Наблюдения за миллионами галактик и квазаров поставили под сомнение модель ускоренного расширения Вселенной

В 2021 году стартовал проект DESI (Dark Energy Spectroscopic Instrument), который за 5 лет работы должен будет собрать данные о 40 млн квазаров на расстоянии до 11 млрд световых лет. Сегодня опубликованы данные первого года наблюдений, и они оказались интригующими. Это ещё не доказательство открытия, а только намёк на то, что основную на сегодня космологическую модель эволюции Вселенной, возможно, потребуется в корне изменить.

 Источник изображения: Claire Lamman/DESI

Трёхмерная карта участка Вселенной. Источник изображения: Claire Lamman/DESI

Около 30 лет назад окрепла гипотеза, что Вселенная расширяется с ускорением, чему не могут помешать ни гравитация, ни тёмная материя. Возникла идея тёмной энергии, которая заставляет вещество разлетаться с ускорением. Согласно модели Лямбда-CDM, влияние тёмной энергии на вещество постоянно в течение всей её истории, что, в сухом остатке, приведёт Вселенную к тепловой смерти.

Проект DESI кроме решения других задач также преследовал цель повысить точность измерения влияния тёмной энергии на вещество во Вселенной. Делает он это разными способами. На расстояние до 11 млрд световых лет изучаются спектры квазаров, а относительно близко расположенные галактики картографируются с помощью анализа спектров сверхновых и переменных звёзд. Первый год наблюдения принёс данные о 5,7 млн квазарах и галактиках, расстояния до которых и их спектры измерены с точностью менее 1 %, что раньше было недостижимо.

«Ни один спектроскопический эксперимент раньше не располагал таким количеством данных, и мы продолжаем собирать информацию о более чем миллионе галактик каждый месяц, — сказала Натали Паланк-Делабруй (Nathalie Palanque-Delabrouille), сопредседатель эксперимента. — Удивительно, что, имея данные всего за первый год, мы уже можем измерить историю расширения нашей Вселенной на семи различных отрезках космического времени, каждый с точностью от 1 до 3 %».

Эксперимент DESI фактически позволяет строить трёхмерную карту Вселенной. Это особенно ценно для ранней Вселенной, о которой мы знаем исчезающее мало, но которую можем изучать новыми инструментами и подкреплять модели своими наблюдениями. Так, анализ распределения галактик и квазаров в те ранние времена, когда эти объекты разлетались «на гребне волны» так называемых барионных акустических осцилляций — волн или пузырей распространения плотности «первичной» плазмы, позволяет с новой точностью измерить влияние тёмной энергии на этот процесс.

Согласно данным DESI за первый год наблюдений, скорость разлёта вещества в ранней Вселенной и в окружающей нас Вселенной отличаются. Достоверность данных пока ниже открытия — на уровне трёх значений сигма при необходимых пяти значений и выше. Однако это намёк, что влияние тёмной энергии на вещество со временем может начать ослабевать. Если это так, то, по крайней мере, Вселенной не будет грозить тепловая смерть, ведь её расширение в таком случае замедлится или даже остановится до начала фатальных и необратимых последствий. В любом случае, придётся искать место для новой физики в наших моделях.

«Это, безусловно, больше, чем любопытство, — сказала доктор Паланке-Делабруй в интервью New York Times. — Я бы назвала это намеком. Да, это еще не доказательство, но это интересно». Осталось дождаться 2026 года, когда проект DESI завершит сбор данных и подождать ещё несколько лет, пока их обработают.


window-new
Soft
Hard
Тренды 🔥