Сегодня 03 мая 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → iter
Быстрый переход

В России стартовало серийное производство ответственных компонентов термоядерного реактора ИТЭР

Предприятие Госкорпорации «Росатом» — АО «НИКИЭТ» — изготовило первую серийную партию высокотехнологичных компонентов для международного термоядерного экспериментального реактора (ИТЭР), строящегося на юге Франции. На базе компонентов российского производства будут изготовлены самые теплонагруженные передние стенки бланкета реактора — первой линии защиты реактора и внутрикамерного оборудования от контакта с плазмой.

 Несущая конструкция первой Источник изображения:

Несущая конструкция панелей первой стенки бланкета ИТЭР. Источник изображения: АО «НИКИЭТ»

Россия должна изготовить 40 % передних стенок бланкета — это 179 изделий. Со стороны плазмы они покрыты бериллием, а под его защитой будет железоводный блок охлаждения с невероятной производительностью — до 100 кг теплоносителя в секунду. Передние стенки бланкета изготавливают АО «НИКИЭТ» и АО «НИИЭФА». Каждая такая стенка должна выдерживать нагрузку до 4,7 МВт на м2. Это сменная деталь реактора, которая будет заменяться по мере износа, что продлит эксплуатацию реакторной камеры до 25 лет или дольше вместо 5 лет, если бы эти модули были несъёмными. Заменять блоки бланкета будет роботизированная система.

Основу передней стенки бланкета составляет несущая конструкция панелей первой стенки (НКПС) бланкета. АО «НИКИЭТ» сообщило об изготовлении первых серийных изделий НКПС. Всего до конца года будет изготовлено 20 таких компонентов. На базе НКПС собирается передняя стенка из защитных панелей, тепловых экранов и системы протока теплоносителя. Эти элементы будут испытывать в термоядерном реакторе колоссальные нагрузки по целому ряду воздействий — от радиационных до химических и тепловых, что требует высочайшей точности изготовления и соблюдения чистоты материалов.

«НИКИЭТ обладает значительными компетенциями и является одним из ключевых производителей компонентов для ИТЭР. Серийное производство изделий осуществляется на собственных производственных участках с применением высокотехнологичного оборудования, что гарантирует их высокое качество и соответствие всем установленным международным стандартам. До конца текущего года планируется завершить первый этап производства компонентов для 20 НКПС», — отметил заместитель главного конструктора по ядерно-физическим системам ИТЭР, начальник отдела разработки бланкетов и систем преобразования энергии для термоядерных реакторов АО «НИКИЭТ» Максим Николаевич Свириденко.

 Педняя стенка бланкета, блок охлаждения и модуль бланкета в сборе, а также схема размезщения модулей бланкета в реакторе

Передняя стенка бланкета, блок охлаждения и модуль бланкета в сборе, а также схема размещения модулей бланкета в реакторе

Разработка, изготовление и отправка уникального отечественного оборудования осуществляется в строгом соответствии с графиком сооружения экспериментального термоядерного реактора. Основной вклад Российской Федерации заключается в разработке, изготовлении и поставке 25 систем будущей установки. Но в какие сроки будет получена первая плазма в реакторе, сегодня можно только догадываться. Вместо продолжения сборки реактора его начали разбирать и ремонтировать.

Начался ремонт строящегося термоядерного реактора ИТЭР — демонтирован первый сектор активной зоны

На строящемся термоядерном реакторе ИТЭР на юге Франции начались ремонтные работы. На самом первом этапе сборки активной зоны реактора обнаружились дефекты производства компонентов и дефекты сборки — сектора изготовлены с нарушением габаритов, а система охлаждения пошла трещинами. Ремонт на годы отложит запуск реактора, и новой даты получения первой плазмы пока не названо.

 Извлечение для ремонта сектора вакуумной камеры реактора. Источник изображения: ИТЭР

Извлечение для ремонта сектора вакуумной камеры реактора. Источник изображения: ИТЭР

Активная зона реактора, по которой будет циркулировать 840 м3 плазмы, изготавливается в виде девяти одинаковых клиновидных секторов, каждый из которых весит 440 т и имеет высоту около 14 м. Каждый из секторов последовательно опускается в шахту реактора, и там происходит их сварка. Сварочные работы проводит робот. Первый сектор опустили в шахту в мае 2022 года. После спуска второго сектора выяснилось, что секции не совпадают по краям и робот не может наложить шов.

Проведение метрологической экспертизы выявило отклонения в размерах на других секторах. Это означало, что края секций необходимо в одних случаях подпиливать, а в других наращивать. С учётом габаритов каждой секции наращивать и спиливать необходимо будет сотни килограммов металла. Часть секций произведено в ЕС, а часть — в Южной Корее. Проблемы выявлены везде.

Проблему усугубляло то, что на каждый сектор в шахте установлены магниты тороидального поля, тепловые экраны и другое «железо», что увеличивает вес каждого модуля, который опускается в шахту, до 1200 т. Перед инженерами проекта стояла задача извлечь всё это из шахты без разборки, и эта процедура не была предусмотрена планом. Соответственно, не было никакой документации и регламента работ. Первый сектор извлекали четыре дня, и эта операция проведена успешно. Теперь его отвезли в сборочный цех для окончательного демонтажа навесных компонентов и ремонта.

Также предстоит ремонт тепловых экранов. Контроль выявил трещины в трубах охлаждения, которые появились вследствие коррозии после проведения сварочных работ (часть которых проводили сварщики без должной квалификации, как выяснилось). Необходимо в общей сложности заменить свыше 20 км труб охлаждения. Эти работы также невозможно было вести в шахте, и ремонтом будут заниматься после демонтажа экранов.

Совет ИТЭР должен был дать оценку происходящему весной этого года, чтобы установить новую дату получения первой плазмы. Очевидно, что ранее установленный срок — 2025 год, который и так неоднократно переносился, уже не подходит. Но совет уклонился от принятия ответственного решения и пообещал установить новую дату запуска реактора весной следующего года.

Реактор проекта ИТЭР не будет производить электрическую энергию. Это лишь доказательство концепции возможности запустить управляемую термоядерную реакцию с получением избытка энергии. Реактор должен в течение не менее 400 секунд вырабатывать 500 МВт энергии при затратах на запуск 50 МВт (в реальности потребуется ещё до 300 МВт на поддержку работы вспомогательных систем). Реактор ИТЭР утыкан датчиками, как ёжик иголками. В этом его основная задача — дать науке полное представление о возможностях практической реализации термоядерной реакции на уровне полномасштабных термоядерных электростанций.

Сварочные работы на проекте термоядерного реактора ИТЭР проводили сварщики без должной квалификации — часть работ придётся инспектировать заново

На днях французские и европейские СМИ сообщили, что на проекте термоядерного реактора ИТЭР часть сварных работ проводили сварщики с поддельными сертификатами. Выявлено и уволено 13 рабочих, чья квалификация не нашла официального подтверждения. В то же время у руководства ИТЭР к сделанной им работе нет замечаний, хотя в свете вскрывшегося подлога её всё равно придётся инспектировать заново.

 Рубашка контура охлаждения рабочей камеры реактора. Источник изображения: ITER

Рубашка контура охлаждения рабочей камеры реактора, в трубах которой обнаружены трещины. Источник изображения: ITER

Проблема отсутствия специалистов с необходимой квалификацией — это проблема не только ИТЭР (ITER), но также всех работ, связанных с проведением сложных строительно-монтажных операций во Франции и, возможно, в ЕС. Например, на атомных электростанциях EDF во Франции участились случаи ремонта сварных швов, что говорит о наличии скрытых дефектов в изначально проделанных швах. Квалифицированных специалистов становится меньше и вакансии приходится замещать людьми с сомнительными документами и неподтверждённым опытом работы.

С другой стороны, многие рабочие операции по сборке термоядерного реактора и сопутствующего оборудования проводятся впервые, и сертификация может просто не успевать за этим процессом. Часть ответственных работ, кстати, проводится роботами-сварщиками, например, роботизированная установка сваривает сегменты рабочей камеры реактора, по которой будет циркулировать разогретая до 150 млн °C плазма. В этом есть плюс, но и минус тоже. Выяснилось, что все девять сегментов рабочей камеры выполнены с превышением допустимых пределов и робот не может её сварить.

Наконец, хотя все уличённые в подделке сертификатов сварщики были уволены, а с подрядчиком разорвали контракт, работники могут задним числом подтвердить свою квалификацию. Ранее в Гааге уже был прецедент, когда три сварщика получили сертификаты после того, как были уволены с работы, для которой они формально не были квалифицированны.

Заметим, у проекта ИТЭР есть более серьёзные проблемы, чем сварщики без сертификата. Это несоответствие секторов рабочей камеры требуемым размерам, что придётся устранять спилами в одних местах и наращиванием металла в других, а это сотни килограмм металла, а также выявленные трещины в контуре охлаждения (вот тут сварщики без диплома могли натворить дел), что может потребовать заменить экран и десятки километров труб охлаждения. Всё это на годы отодвинет получение первой плазмы на ИТЭР, которую все ждали в 2025 году.

Добавим, руководство ИТЭР ещё в марте само проинформировало надзорную организацию Nuclear Safety Authority (ASN) Франции о проблеме со сварщиками. ASN посоветовала больше так не делать.

Составлен общий план ремонтных работ на термоядерном проекте ИТЭР — надо заменить 23 км труб охлаждения и нарастить сотни кг металла по швам

Уже известно, что выявленные в ходе сборки термоядерного реактора ИТЭР дефекты конструкции отдельных узлов заставят на месяцы или даже годы перенести запуск первой реакции. И хотя детали ремонтных работ и их смету придётся ещё не раз уточнять, картина действий уже ясна и коллектив ИТЭР приступил к её реализации. Реактор будет починен и построен!

 Источник изображений: ИТЭР

Демонтаж труб охлаждения с тепловых экранов (панелей). Источник изображений: ИТЭР

Во-первых, на проекте начали готовить тепловые экраны для замены труб охлаждения. Всего рабочую камеру реактора будет закрывать 27 панелей, а это 23 км труб. Предыдущая технология наварки труб на панели привела к появлению микротрещин. Этому способствовали остатки хлора, которые попадали в крошечные карманы в процессе сварки, что вело к коррозии, а также напряжение металла после сварки, которое разрывало уязвлённый металл труб.

Сейчас специалисты отрывают трубы от панелей и прорабатывают новые технологии сварки. Рассматривался даже вариант крепления труб с помощью хомутов, но он был отброшен как слишком сложный и ненадёжный. Все трубы охлаждения для уже произведённых панелей будут изготовлены и приварены заново, и, скорее всего, будет сделано также несколько новых панелей про запас. Тендер на проведение этих работ будет размещён в начале февраля, чтобы уже в марте нашёлся подрядчик и приступил к ремонтным работам.

С отклонениями в геометрии девяти секторов вакуумной камеры всё будет сложнее. Каждый из секторов собирался из трёх частей. Именно это привело к отклонениям в геометрии секторов после сварки трёх частей в одно изделие. Эти отклонения разные для каждого сектора. Например, чтобы привести к требуемым допускам сектор №6 (уже установленный в шахту реактора), по периметру стыков придётся нарастить примерно 73 кг металла. Для сектора №1(7) потребуется наращивание 100 кг металла, а для наиболее пострадавшего из трёх измеренных секторов сектора №8 — целых 400 кг металла.

 Одна из девяти одинаковых секций ваккумной камеры

Одна из девяти одинаковых секций вакуумной камеры

Для наращивания металла по месту будущих сварных швов каждый сектор придётся освободить от тех же тепловых экранов и другого оборудования, которое будет мешать в процессе проведения работ. Для наращивания секторы разместят на специальных платформах. Сектор №6 при этом придётся извлекать из шахты, что тоже довольно сложная операция, ведь каждый из секторов весит 440 т (высотой с пятиэтажное здание и весом с Airbus A380, как характеризуют эти изделия представители ИТЭР).

Подрядчик для проведения восстановительных работ на секторах рабочей камеры будет выбран до начала лета. Вместе с ИТЭР над этим будет работать государственный французский регулятор в сфере ядерной энергетики. Технология будет опробована на множестве образцов, а после завершения работ все швы проверят в полном объёме методом неразрушающего контроля. Работы предстоят достаточно сложные, но вполне осуществимые.

«Здесь нет никакого скандала, — сказал генеральный директор ИТЭР Пьетро Барабаски. — Такие вещи случаются. Я видел много подобных проблем, и гораздо хуже...»

Запуск термоядерного реактора ИТЭР будет отложен на месяцы и даже годы, сообщил директор проекта

На днях в интервью Agence France-Presse генеральный директор проекта ИТЭР Пьетро Барабаски сообщил, что на фоне выявленных в процессе строительства объекта проблем планируемый запуск термоядерного реактора будет отложен на месяцы и даже годы. Это означает, что 2025 год перестаёт быть датой получения первой плазмы в реакторе, хотя дейтерий-тритиевая реакция всё ещё ожидается в районе 2035 года.

 Внешняя сторона вакуумной камеры активной зоны реактора с тепловым экраном. Источник изображений: ITER

Внешняя сторона вакуумной камеры активной зоны реактора с тепловым экраном. Источник изображений: ITER

Как мы сообщали ещё в ноябре, представители ИТЭР озвучили две серьёзные проблемы, выявленные на объекте. Во-первых, сектора вакуумной камеры, в которой будет циркулировать раскалённая до более 150 млн °C плазма, оказались с отклонениями по размерам, что делает невозможным качественную сварку корпуса камеры. Таких секторов девять: пять из них создаются в ЕС, а четыре в Южной Корее. Все сектора изготовлены или работы близки к завершению, что исключает возможность внести в проект нужные изменения.

Камера в сборе представляет собой объект с внешним диаметром 19,4 м высотой 11,4 м и весом 5200 т. Сектора по одному опускаются в шахту реактора и по очереди привариваются друг к другу. Сварочные работы осуществляет робот и поэтому отклонение в геометрии поставило автоматику в тупик. Как это исправлять пока непонятно.

Вторая проблема — это коррозия и последовавшие за этим трещины в трубках теплового экрана камеры. Предполагается, что экраны придётся изготавливать заново. Более того, замену экранов в шахте произвести, скорее всего, не удастся, и уже опущенные в шахту секции камеры придётся поднимать наверх для ремонта.

 Выявленная рентгеновской установкой трещина в трубопроводе системы охлаждения

Выявленная рентгеновской установкой трещина в трубопроводе системы охлаждения

Все эти работы на месяцы и даже годы отодвинут первый рабочий запуск реактора. Ранее глава ИТЭР не был столь категоричен в выводах. Также эти проблемы снова увеличат бюджет проекта, который и так вырос в четыре раза по отношению к первоначальной сумме 5 млрд евро. На чём-то придётся экономить. Предложения по этому вопросу будут готовы после детального анализа ситуации, что произойдёт ближе к концу текущего года.

Российские участники проекта ИТЭР настроены не так пессимистично. В интервью агентству РИА Новости директор Частного учреждения «ИТЭР-Центр» (Госкорпорация «Росатом») Анатолий Красильников сказал, что программу научных исследований можно будет уплотнить, и даже если первый запуск реактора состоится позже 2025 года, главная цель проекта — запуск дейтерий-тритиевой реакции — всё ещё ожидается в планируемые ранее сроки, а это середина 30-х годов.

«Это нормально для столь крупного и уникального объекта. Технические трудности возникали и раньше, — указывает он. — Причина возможного переноса, о котором говорит гендиректор ИТЭР, прежде всего не в критических дефектах конструкции, а в том, что ученые хотят расширить научную программу. Значит, подготовка к испытательному запуску займет больше времени. Фактически первой плазмой будет не то, что под этим подразумевали».

В любом случае, решение будет принимать Совет ИТЭР. Ближайшее заседание ожидается весной. Россия продолжает принимать участие в проекте и в этом плане санкции её не затрагивают.

Запуск термоядерного реактора ИТЭР в 2025 году стал маловероятен — система охлаждения пошла трещинами

На днях на заседании Совета ИТЭР были озвучены опасения о серьёзных задержках по проекту термоядерного реактора ИТЭР. В ходе сборки активной зоны термоядерного реактора выявлены трещины на трубопроводах системы охлаждения. На корпусе вакуумной камеры в составе теплового экрана около 23 км труб, от надёжности которых зависит работа всего реактора. Устранить неисправность на месте нельзя. Масштаб проблем уточняется.

 Источник изображений: ITER

Внешняя сторона вакуумной камеры активной зоны реактора. Источник изображений: ITER

В яме реактора собрано четыре из девяти секций вакуумной камеры активной зоны, по которой должна циркулировать нагретая до более чем 150 млн °C плазма. Четыре секции должна была изготовить Южная Корея (Hyundai Heavy Industries) и пять ЕС. В принципе работы по изготовлению секций практически завершены. Первую секцию опустили в шахту в мае этого года, затем вторую, третью и четвёртую, которые последовательно сваривали друг с другом, включая совмещение системы трубопроводов для охлаждения.

Признаки дефектов в системе трубопроводов были обнаружены ещё в ноябре 2021 года, когда гелиевые испытания выявили утечку на элементе теплового экрана вакуумного сосуда (сектора), поставленного на площадку в 2020 году. Экспертиза установила, что причиной дефекта стало напряжение металла, «вызванное изгибом и сваркой труб с панелями теплового экрана, усугублённое медленной химической реакцией из-за наличия остатков хлора в некоторых небольших областях вблизи сварных швов труб».

Были из этого сделаны выводы или нет, но в процессе сварки четвёртого сектора трещины в трубах системы охлаждения стали видны невооружённым глазом. Согласно выводам экспертов, исправить дефект в шахте реактора нельзя. Сегменты необходимо разбирать, поднимать из шахты и ремонтировать наверху либо заказывать новые изделия полностью. Обнаруженные дефекты самым серьёзным образом повлияют как на график работ, так и на стоимость проекта.

 Выявленная рентгеновской установка трещина в трубопрводе системы охлаждения

Выявленная рентгеновской установкой трещина в трубопроводе системы охлаждения

Генеральный директор ИТЭР Пьетро Барабаски сказал: «Если и есть что-то хорошее в этой ситуации, так это то, что она происходит в тот момент, когда мы можем её исправить. Опыт, который мы приобретаем в работе с первыми в своем роде компонентами ИТЭР, пригодятся другим, когда они будут запускать свои собственные термоядерные проекты. Природа и миссия ИТЭР, как уникальной и амбициозной исследовательской инфраструктуры, таковы, что в процессе строительства ему придётся пройти через целый ряд проблем и неудач. Поэтому наша задача и долг — своевременно информировать об этом научное сообщество, чтобы оно приняло меры предосторожности при работе с однотипными сборками».

Цель ИТЭР — работать на мощности 500 МВт в течение как минимум 400 секунд непрерывно с 50 МВт потребляемой мощности для нагрева плазмы. По всей видимости, в процессе эксплуатации может потребоваться дополнительно 300 МВт электроэнергии. Электричество в ИТЭР вырабатываться не будет. Согласно последним планам после ряда переносов первая плазма должна была быть получена в 2025 году. Судя по всему, эти сроки будут пересмотрены в сторону серьёзного увеличения. Ожидается, что новые планы проведения работ будут объявлены весной 2023 года, когда новый директор ИТЭР, назначенный в сентябре этого года, полностью войдёт в курс на новой должности.

Итальянцы строят свой термоядерный реактор — «мини-ИТЭР», который поможет превратить энергию синтеза в электричество

В новостной ленте международного проекта термоядерного реактора ITER (ИТЭР) сообщается, что строительную площадку реактора во Франции посетила делегация итальянского проекта DTT. Итальянский «диверторный» реактор создаётся как самостоятельный проект, хотя он заметно меньше ИТЭР и похож на него далеко не во всём. Тем не менее, итальянский проект будет готовить почву для преемника ИТЭР — первой европейской термоядерной электростанции DEMO.

 Рендер реактора DTT (нажмите для увеличения)

Рендер реактора DTT (нажмите для увеличения)

После ряда совместных докладов стороны договорились разработать рамочное соглашение о будущих общих исследованиях. Реактор ИТЭР, как известно, не будет вырабатывать электричество из энергии термоядерного синтеза. Он лишь должен на практике доказать возможность вырабатывать в 10 раз больше мощности, чем затрачено на запуск самоподдерживающейся термоядерной реакции. В то же время в конструкции ИТЭР предусмотрены такие узлы, как диверторы — это приёмники энергии плазмы, которые должны передавать её в те или иные установки для генерации электричества.

Итальянский реактор DTT (диверторный токамак) строится по схеме, напоминающей ИТЭР — такая же вакуумная камера и такое же количество тороидальных и полоидальных сверхпроводящих катушек, но он заметно меньше. Основная зона рабочей камеры DTT всего 2,2 м, тогда как у ИТЭР она диаметром 6,2 м. И всё же соотношение вырабатываемой мощности к радиусу получаемой плазмы у обоих токамаков лежит в одном диапазоне, что позволяет адаптировать находки на DTT к испытаниям в составе ИТЭР, а значит — использовать в основе будущей европейской термоядерной электростанции.

Что же это за находки? Итальянский «мини-ИТЭР» будет служить полигоном для испытания разного рода диверторов и систем управления плазмой при съёме энергии (чтобы процесс не пошёл вразнос). Первый дивертор будет аналогичен тому, который уже создаётся для ИТЭР — это вольфрамовые модули, охлаждаемые водой. В будущем на DTT будут испытывать более экзотические решения, включая блоки с жидким металлом.

Реакторы DTT и ITER начнут работать в сходные сроки. Сегодня обе команды находятся на раннем сроке согласования будущих научных работ, однако в будущем они смогут многое почерпнуть друг у друга.

Россия отправила во Францию первые гиротроны для термоядерного реактора ИТЭР

Во вторник с предприятия «ГИКОМ» в Нижнем Новгороде на площадку строящегося во Франции термоядерного реактора ИТЭР (ITER) отправлены первые гиротронные комплексы. В четверг будет отправлена ещё одна машина. В поставке четыре гиротрона с сопутствующим оборудованием. Всего Россия изготовит 8 гиротронов из 24 необходимых для работы реактора. Остальные гиротроны поставят Европа, Япония и Индия.

 Источник изображения: Проектный центр ИТЭР

Источник изображения: Проектный центр ИТЭР

Гиротроны нужны для вспомогательного разогрева плазмы в реакторе. Кроме того, гиротроны способны разогревать плазму локально, что позволяет подавлять её неустойчивость и даже задавать конфигурацию. Тем самым изначально вспомогательная роль гиротронов стала одной из ведущих для решения задачи управляемости термоядерными реакторами. Сам по себе гиротрон — это условно нечто среднее между микроволновкой и оптическим лазером. Устройство излучает микроволны длиной 1–2 мм в пучке, который ведёт себя как оптический луч.

Получить заказ на треть гиротронов для ИТЭР Россия смогла благодаря самому лучшему предложению в мире. КПД российских гиротронов достигает 55 %, тогда как зарубежные аналоги не дотягивают по этому параметру до 50 %. В этом российские производители конкурируют с японской Toshiba и европейской Thales. Кроме самих гиротронов необходимо сложнейшее оборудование для его работы, куда входит оборудование для водяного охлаждения, криокулеры, системы формирования СВЧ-пучка и другие высокотехнологичные решения.

В целом в августе этого года Россия осуществила 25-ю поставку оборудования на площадку ИТЭР. Российские предприятия изготавливают для ИТЭР электротехническое оборудование, сверхпроводящие магниты и элементы реакторной зоны.

Опытный реактор ИТЭР будет представлять собой демонстратор возможности вырабатывать энергию с коэффициентом 1:10. При поддержке горения плазмы энергией 50 МВт выделяемая от термоядерной реакции энергия должна составлять 500 МВт. Длительность реакции должна быть не менее 400 с. Преобразования тепловой энергии в электрическую на реакторе не будет. Для этого будет предложен отдельный проект электростанции DEMO. Различные трудности при реализации проекта сдвинули сроки запуска ИТЭР с 2018 на 2025 год, а пандемия COVID-19 отодвинула запуск ещё на какое-то время, о чём нам точно сообщат весной следующего года.

Россия доставила во Францию электротехническое оборудование для термоядерного реактора ИТЭР

Сообщается, что на строительную площадку Международного термоядерного экспериментального реактора (ИТЭР) на юге Франции в 14 трейлерах доставлена 25-я партия электротехнического оборудования из России. Поставленное оборудование считается сложнейшим среди всего материального вклада российских учёных в проект ИТЭР. Без него буквально «невозможно будет получить первую плазму в реакторе».

 Источник изображения: «Росатом»

Источник изображения: «Росатом»

Доставленное оборудование стало второй в этом году партией российских изделий для ИТЭР. Первая партия была отправлена во Францию в мае в 8 трейлерах. Поставленное оборудование произведено в Санкт-Петербурге с участием АО «НИИЭФА» (входит в Госкорпорацию «Росатом»). Это «коммутационное оборудование, шины и энергопоглощающие резисторы для электроснабжения и защиты сверхпроводящей магнитной системы реактора ИТЭР».

Монтаж системы энергоснабжения термоядерного реактора ведётся в непрерывном режиме, что также требует регулярных поставок компонентов для проведения работ, с чем российские производители успешно справляются. В то же время напомним, что пандемия COVID-19 оказала влияние на работу ряда подрядчиков по проекту и сроки получения первой плазмы, скорее всего, будут перенесены с 2025 года на более позднюю дату. Детальное решение об этом будет принято в будущем году.

Первоначально первая плазма должна была быть получена в 2018 году. Затягивания сроков строительства заставило Совет ИТЭР перенести это событие на 2025 год. Новую дату будет утверждать новый директор ИТЭР, выборы которого состоятся в сентябре.

Термоядерный реактор ИТЭР не предназначен для вырабатывания электричества. Запуск реактора должен доказать возможность поддержания термоядерной реакции с коэффициентом мощности 1:10 на поддержание плазмы: при 50 МВт на нагрев плазмы реактор должен будет отдавать 500 МВт в течение как минимум 400 секунд непрерывно. По всей видимости, в процессе эксплуатации может потребоваться дополнительно 300 МВт электроэнергии.

Строительство ИТЭР на юге Франции началось в 2010 году. Проект включает сотрудничество 35 стран, 6 из которых вносят равные доли в половину стоимости проекта, а вторую половину вносит ЕС.

Запуск термоядерного реактора ИТЭР снова отложат — пандемия сорвала сроки строительства

Руководство международного проекта ИТЭР долго держалось после начала пандемии COVID-19. Закрытие заводов подрядчиков срывало все сроки выполнения работ, но решение по новому графику пока не принималось. Его будет принимать новый директор проекта, выборы которого ожидаются в сентябре. Пока ясно одно — первая плазма в реакторе будет получена позже, чем планировалось.

 Источник изображения: ИТЭР

Источник изображения: ИТЭР

Как гласит опубликованное ИТЭР сообщение: «Несколько заводов, производящих компоненты ИТЭР, закрылись — некоторые на месяцы — и когда они возобновили работу, в некоторых случаях это были не те работники или специалисты». Как считают в ИТЭР, «мы в целом придерживались графика, чтобы получить первую плазму в 2025 году, и задержки можно было компенсировать». Однако COVID-19 ясно показал, что все графики работ оказались просрочены.

Более того, в мае умер генеральный директор ИТЭР — Бернара Биго (Bernard Bigot), видный специалист и энтузиаст своего дела, на котором держалось многое в ИТЭР. Найти адекватную замену будет непросто, но в сентябре проект получит нового руководителя. В ИТЭР хотят, чтобы новый график работ был однозначно связан с новым главой, поэтому ему дадут войти в курс дела и освоиться на новом месте. Тем самым новый график работ едва ли будет представлен раньше апреля следующего года, когда состоится очередной совет проекта.

Согласно предыдущим планам, первая плазма на реакторе ИТЭР должна была быть получена в 2025 году (до этого в планах был 2018 год). Термоядерный реактор ИТЭР не будет вырабатывать электрическую энергию. В его задачи входит доказать осуществимость концепции — способность масштабного реактора поддерживать реакцию синтеза мощностью 500 МВт не менее 400 секунд непрерывно при потреблении 50 МВт на нагрев плазмы (дополнительно может потребоваться до 300 МВт энергии на сопутствующие расходы).

Половину средств на проект даёт ЕС. Остальное предоставляют шесть стран-участниц: Китай, Индия, Япония, Южная Корея, Россия и США. Также все участники осуществляют материальный вклад в виде изготовления компонентов реактора. Контролирует процесс французское Агентство по ядерной безопасности (ASN). В мае этого года на проекте приступили к монтажу активной зоны в шахте реактора (см. фото ниже), в которой будет удерживаться плазма. Работы не останавливаются, но от прежнего графика отстают всё сильнее и сильнее.

 Источник изображения: ИТЭР

Источник изображения: ИТЭР

Также следует учесть, о чём ИТЭР пока не говорит, мир начал сотрясать сильнейший за последние десятилетия геополитический кризис и связанные с ним явления, включая энергетический кризис в Европе. Эти события, как и пандемия, явно не приблизят запуск термоядерного реактора. С другой стороны, любой кризис — это приглашение к смелым действиям. Хочется надеяться, что падение не будет глубоким, а взлёт не заставит себя ждать.

Россия выполнила первую в 2022 году отправку оборудования для термоядерного реактора ИТЭР

Россия как одна из равноправных участниц в международном проекте термоядерного реактора ИТЭР продолжает изготавливать необходимое для реализации проекта оборудование. На днях завершена отправка очередной партии российского электротехнического оборудования для термоядерного реактора — все восемь трейлеров благополучно пересекли российскую границу.

 Источник изображения: Проектный центр ИТЭР

Источник изображения: Проектный центр ИТЭР

Ценный груз отправлен с территории АО «НИИЭФА» в городе Санкт-Петербург (входит в Госкорпорацию «Росатом»). Подобных отправок будет ещё несколько в этом году, включая доставку во Францию огромной катушки полоидального поля, изготовленной на Средне-Невском судостроительном заводе (СНСЗ).

В осуществлённую сейчас поставку — 24-ю по счёту — вошли шинопроводы, которые подводят питание к сверхпроводниковым катушкам магнитной системы ИТЭР, коммутационные аппараты и компоненты системы мониторинга состояния шинопроводов.

«Поставка и ввод в эксплуатацию систем электропитания жизненно необходимы для получения первой плазмы на строящемся во Франции реакторе. В связи с этим, оборудование должно поставляться регулярно для обеспечения монтажных работ в непрерывном режиме и в соответствии с графиком, задержка с его поставкой способна вызвать срыв сроков ввода реактора в эксплуатацию», — отметил заместитель директора российского Агентства ИТЭР Леонид Химченко.

Изготовление и поставка всей системы «Коммутационная аппаратура, шинопроводы и энергопоглощающие резисторы для электропитания и защиты сверхпроводящей магнитной системы реактора ИТЭР» — самой дорогостоящей и одной из самых сложных в проекте — входит в сферу ответственности России. Договор на изготовление комплекса заключён в 2011 году между Частным учреждением Госкорпорации Росатом «Проектный центр ИТЭР» — российским Агентством ИТЭР — и Международной организацией ИТЭР.

Первая плазма в реакторе должна быть получена ориентировочно в 2025 году. Реактор ИТЭР не предназначен для выработки электричества, для этого будет создан новый объект. В задачи ИТЭР входит доказать возможность вырабатывать в 10 раз больше энергии (500 МВт) по сравнению с затраченной на образование плазмы (50 МВт).

На площадке термоядерного реактора ИТЭР приступили к монтажу активной зоны реактора

На прошедшей неделе в деле постройки термоядерного реактора ИТЭР пройден важный этап. В шахту реактора спущена первая из девяти секций вакуумной камеры — активной зоны реактора, в которой будет удерживаться разогретая до 150 млн °C плазма. Все секции надо аккуратно опустить в шахту и сварить в единую конструкцию.

 Источник изображения: ITER Organisation

Источник изображения: ITER Organisation

Для переноса секций в шахту реактора создан уникальный, не имеющий аналогов кран. Его разрабатывали инженеры из Южной Кореи, где также изготовили четыре из девяти секций вакуумной камеры. Пять остальных секций изготовлены в Европе. Высота каждой секции достигает 14 м, а вес — 440 т. Чтобы удержать секцию в требуемом положении и ничего не повредить на ней, а каждая секция изнутри и снаружи покрыта тепловыми щитами, несёт по паре D-образных сверхпроводящих магнитов тороидального поля и другие элементы конструкции общим весом 1200 т, создана специальная оснастка, которая сама весит 860 т и имеет высоту 22 м.

В настоящий момент первая секция (шестая по счёту в схеме реактора) висит над опорой в шахте реактора на высоте полуметра. Инженеры проводят последние проверки перед тем, как опустить её на своё постоянное место.

Вакуумная камера реактора ИТЭР имеет внутренний объём 1400 м3, в котором плазма будет занимать 840 м3. Это в десять раз больше, чем в каком-либо другом токамаке, созданном на Земле до сих пор. Вес вакуумной камеры без обвязки будет достигать 5200 т, а с обвязкой, часть которой изготавливают в России, вес камеры достигнет 8500 т.

ИТЭР не будет включен в энергосистему, поскольку пока что стоит задача доказать, что термоядерный реактор может выдавать в 10 раз больше энергии, чем будет затрачено на нагрев плазмы. В идеальном случае реактор должен будет вырабатывать 500 МВт при затратах на разогрев плазмы 50 МВт (дополнительно 300 МВт может потребоваться для работы сопутствующих систем реактора). Первый запуск плазмы запланирован на 2025 год, а эксперименты по синтезу дейтерия и трития начнутся в 2035 году.


window-new
Soft
Hard
Тренды 🔥
Хакеры украли почти все данные пользователей сервиса цифровой подписи Dropbox Sign 4 ч.
«Буду слишком занят этим, чтобы с нетерпением ждать TES VI»: видео о прогрессе разработки фанатского ремейка Morrowind на движке Skyrim воодушевило игроков 5 ч.
С новым патчем Starfield стала работать на ПК «заметно лучше», но лишь в некоторых ситуациях 6 ч.
«Базис» купила конкурента и планирует занять не менее половины российского рынка виртуализации 6 ч.
«Будто всю школьную программу по литературе прочитал»: Indika вышла на ПК и получила первые отзывы в Steam 7 ч.
Apple освободила разработчиков бесплатных приложений от уплаты €0,5 за каждую первую установку 7 ч.
Космическая стратегия Sins of a Solar Empire II выйдет в Steam после полутора лет пребывания в EGS 8 ч.
На 20-летие российской стратегии «Периметр» в Steam выйдет переиздание со «множеством улучшений» — трейлер «Периметр: Legate Edition» 8 ч.
TikTok вновь стал доступен в России, но ненадолго 8 ч.
Winamp возродится в качестве стримингового сервиса 1 июля — обещана и новая версия классического плеера 8 ч.