Сегодня 02 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → вселенная
Быстрый переход

Рядом с Млечным Путём обнаружена одна из старейших звёзд во Вселенной

Астрономы давно мечтают обнаружить самые первые звёзды во Вселенной. Но пока даже обнаружение звёзд второго поколения случается менее одного раза на 100 тыс. звёзд. И всё же, обнаружить звезду второго поколения да ещё в другой галактике — это тоже удача и её только что поймали учёные из Чикагского университета. Эта звезда обнаружена у нас под боком в галактике-спутнике Млечного Пути Большом Магеллановом Облаке и она стала кладезем ценной информации.

 Большое Магелланово Облако, наблюдаемое с помощью телескопа «Спитцер». Источник изображения: NASA/JPL-Caltech/STScI)

Большое Магелланово Облако, наблюдаемое с помощью телескопа «Спитцер». Источник изображения: NASA/JPL-Caltech/STScI)

Как известно, один из показателей возраста звезды — это степень её металличности. Чем меньше в спектре звезды металлов — всего, что тяжелее гелия в таблице Менделеева, тем она старше. Поэтому от спектра первых звёзд учёные ждут линий водорода и гелия (и немного лития) — только того вещества, которое образовалось в процессе Большого взрыва.

Считается, что первые звёзды были сверхбольшими и сверхгорячими, поэтому они просуществовали недолго и вследствие быстрого прогорания не встречаются нам при наблюдении за Вселенной. Но зато в их недрах в процессе термоядерных реакций успели возникнуть первые элементы тяжелее лития вплоть до железа по периодической таблице. Взорвавшись, первые звёзды образовали облака веществ для рождения звёзд второго поколения, в спектре которых мы можем обнаружить характерные металлы в определённых пропорциях. По совокупности таких (предполагаемых) признаков учёные и находят звёзды второго поколения.

Определённое количество звёзд второго поколения уже найдено в нашей галактике. Обнаружить звёзды второго поколения в других галактиках — это означает узнать о раннем распределении химических элементов во Вселенной. Фактически это как провести расследование места преступления по старым и почти стёршимся следам. Но это работает. Открытие в Большом Магеллановом Облаке звезды LMC 119, относящейся ко второму поколению звёзд, позволяет узнать о химическом составе пространства в ранней Вселенной вне нашей галактики.

Анализ химического состава LMC 119 не разочаровал. Эта звезда содержит иной количественный состав веществ, чем звёзды второго поколения в Млечном Пути. Так, звезда LMC 119 содержит заметно меньше углерода и железа, чем аналогичные звёзды нашей галактики. «Это было очень интригующе, и это наводит на мысль, что, возможно, увеличение содержания углерода в самом раннем поколении [звёзд], которое мы видим в Млечном Пути, не было универсальным. Нам придётся провести дальнейшие исследования, но это говорит о том, что существуют различия от области к области», — говорят учёные.

Случаи пожирания планет звёздами встречаются во Вселенной чаще, чем представляли учёные

Группа австралийских учёных опубликовала работу, в которой проведён анализ случаев, когда звёзды пожирают собственные планеты. В подобном учёные подозревают одну из каждой дюжины изученных двойных систем. Всего исследователи изучили 91 систему из звёзд-близнецов и пришли к выводу, что нестабильность орбит планетарных систем распространена во Вселенной сильнее, чем считалось.

 Источник изображения: Casey Reed/NASA

Источник изображения: Casey Reed/NASA

Чтобы гарантированно обнаружить случаи поглощения планет звёздами учёные отобрали пары звёзд-близнецов, которые родились примерно в одно время и в одном объёме пространства. Это означает, что химический состав звёзд должен быть одинаковым, что покажет спектральный анализ каждой из них. Если в составе спектра той или иной звезды будут присутствовать нехарактерные элементы, в частности, настоящие металлы, а не просто всё, что тяжелее гелия, то следует сделать вывод, что звезда закусила планетой из собственной системы.

Из 91 пары звёзд в двойных системах 8 % светил показали в спектре присутствие железа, никеля и титана, тогда как большинство звёзд не содержало ничего тяжелее углерода и кислорода. По мнению исследователей, это надёжный признак случая, когда планета поглощена родной звездой.

Отметим, учёные не стали делать выборку из звёздных систем с большим количеством звёзд, в системах которых нестабильность планетарных орбит будет ещё сильнее, в чём можно убедиться при ознакомлении с произведением «Задача трёх тел» китайского писателя Лю Цысиня. Замеченная нестабильность в двойных системах, которая привела к срыву с орбит местных планетарных тел и так, как выяснилось, встречается достаточно часто, чтобы это вызвало беспокойство о жизни во Вселенной.

До этого учёные считали, что орбиты планет могут оставаться нестабильными в первые 100 млн лет образования звёздных систем. Пока всё утрясётся, многое может пойти не так. Однако все наблюдаемые пары звёзд в работе австралийцев были возрастом в несколько миллиардов лет, что исключает влияние на их химический состав событий первых сотен миллионов лет развития планетарных систем. Иными словами, местный апокалипсис произошёл в зрелых системах с полностью сформированными и геологически развитыми планетами.

«Джеймс Уэбб» обнаружил самые первые сливающиеся галактики — в те времена этого не должно было случиться

Международная группа из 27 учёных опубликовала в журнале Nature Astronomy работу, в которой сообщила об открытии самой ранней пары сливающихся галактик. Событие обнаружено на красном смещении Z=9,3127 или через 510 млн лет после Большого взрыва. В те времена и галактику обнаружить — это редкая удача, а увидеть пару сливающихся галактик — это вообще за пределами понимания.

 Источник изображения: ASTRO 3D

Источник изображения: ASTRO 3D

Учёные из Австралии, Таиланда, Италии, США, Японии, Дании и Китая провели скрупулёзную работу, расшифровывая то, что они увидели в ранней Вселенной. Открытие сразу задало загадку. Судя по изображению, это должны были быть молодые звёзды возрастом около 20 млн лет. Спектральный анализ с помощью прибора «Уэбба» NIRSpec показал, что возраст звёзд составляет 120 млн лет плюс-минус 20 млн. Дальнейшее изучение объекта позволило сделать вывод, что ничего удивительного в таком сочетании нет. На изображении предстали две сливающиеся галактики: одна молодая и одна массивная старая.

О событии слияния также говорит тот факт, что на изображении виден приливной хвост. При слиянии галактик выброс вещества и даже отдельных звёзд в виде хвоста или шлейфа — это обычное явление. Необычным это событие делает то, что, по крайней мере, у одной из галактик не было достаточного времени на развитие, как мы себе это представляли до появления «Уэбба». «Джеймс Уэбб» снова преподнёс сюрприз, открыв то, чего по нашим теориям не должно было случиться.

Новые наблюдения свидетельствуют о быстром и эффективном накоплении массы и металлов сразу после Большого взрыва в результате слияний, наглядно демонстрируя, что в ранние времена существовали массивные галактики с несколькими миллиардами звезд. «Хаббл» не позволял этого увидеть, и теоретики были сильны в своих убеждениях. «Уэбб» ломает представления об эволюции звёзд и галактик в ранней Вселенной. Данных для пересмотра базовых теорий всё ещё мало, но база растёт и, похоже, к концу десятилетия у нас будет заметно дополненная и даже местами изменённая теория эволюции Вселенной.

«Джеймс Уэбб» подтвердил скорость расширения Вселенной, определённую «Хабблом» — напряжённость никуда не делась

Последние данные с космического телескопа «Джеймс Уэбб» подтвердили вычисленную на основе наблюдений с помощью телескопа «Хаббл» скорость расширения Вселенной — ранее считалось, что прежние расчёты могли оказаться ошибочными.

 Источник изображения: ESA

Источник изображения: ESA

Скорость расширения Вселенной известна как постоянная Хаббла, однако между ней и предсказанным на основе послесвечения Большого взрыва значением наблюдается расхождение, называемое «напряжённостью Хаббла». Тем не менее, «Джеймс Уэбб» подтвердил правильность измерений телескопа «Хаббл».

До запуска «Хаббла» в 1990 году наблюдения с земных телескопов давали огромные погрешности, и в зависимости от них возраст Вселенной оценивался от 10 до 20 миллиардов лет. За 34 года наблюдений посредством «Хаббла» учёные пришли к оценке в 13,8 миллиарда лет с погрешностью в 1 %. Этого удалось добиться уточнением шкалы астрономических расстояний посредством наблюдения за цефеидами.

Однако данные «Хаббла» расходились с другими измерениями, указывающими на то, что сразу после Большого взрыва Вселенная расширялась быстрее. Предполагалось, что в данные с «Хаббла» закралась ошибка или же погрешность измерений. Однако наблюдения посредством телескопа «Джеймс Уэбб» указывают, что ошибки не было. В надежде снять «напряжённость Хаббла», некоторые ученые предположили, что ошибки в измерениях могут расти и становиться заметными по мере того, как мы будем заглядывать все глубже во Вселенную. В итоге с помощью «Уэбба» были проведены дополнительные наблюдения за объектами, которые являются важнейшими космическими маркерами, известными как переменные звезды Цефеиды, которые теперь можно соотнести с данными Хаббла.

«Теперь, когда мы охватили весь диапазон измерений "Хаббла", мы с большой уверенностью можем заключить, что хаббловская напряжённость не вызвана ошибкой измерений», — прокомментировал результаты физик из Университета Джона Хопкинса в Балтиморе, обладатель Нобелевской премии за открытие ускоренного расширения Вселенной из-за загадочного явления, именуемого «тёмной энергией», Адам Рисс (Adam Riess).

«Поскольку мы подтвердили точность измерений, вероятно и весьма захватывающе, что мы попросту чего-то не понимаем в этой Вселенной», — добавил Рисс. В итоге хаббловская напряжённость остаётся для учёных загадкой.

В ранней Вселенной нашли «мёртвую» галактику — в ней внезапно остановилось звездообразование

Наблюдения с помощью телескопа им. Джеймса Уэбба открыли человечеству окно в не известную ранее эпоху младенчества Вселенной. Все предыдущие наблюдения позволили создать определённые модели эволюции звёзд и галактик. Сейчас «Уэбб» разрушает эти представления, о чём лишний раз напоминает новое открытие — телескоп заметил чрезвычайно быстрое затухание звездообразования в галактике, существовавшей всего через 700 млн лет после Большого взрыва.

 Источник изображения: JADES Collaboration

Увеличенное изображение галактики JADES-GS-z7-01-QU. Источник изображения: JADES Collaboration

Наши модели эволюции галактик хорошо описывают процессы звездообразования в них. Тем удивительнее было открыть галактику на рубеже 700 млн лет после Большого взрыва с полностью и, по-видимому, навсегда угасшим звездообразованием. К такому результату могли привести два наиболее вероятных процесса: во-первых, в центре галактики могла образоваться сверхмассивная чёрная дыра, которая своим излучением вынесла бы вещество из галактики-хозяина и, во-вторых, звёзды могли эволюционировать настолько быстро, что израсходовали бы весь запас вещества, после чего процесс замер.

Обычно ожидается, что активность звездообразования в галактиках снижается постепенно. Но в этой галактике на красном смещении z=7,3 образование звезд прекратилось на удивление рано, что делает её редким открытием. Исходя из полученных «Уэббом» данных, эта галактика пережила короткий всплеск звездообразования между 30 и 90 млн лет и прекратила образовывать звёзды за 10–20 млн лет до того момента, как её обнаружил «Уэбб».

Теория допускает остановку звездообразования и длительный период затишья, но потом оно обычно возобновляется в том или ином виде (звёзды взрываются и из останков образуются новые), чего в данном случае учёные не наблюдают, и это ставит их в тупик.

Астрономы измерили объём воды в протопланетном диске молодой звезды — её там хватит на четыре Земли

Группа астрономов из Миланского университета впервые измерила объём и распределение воды в протопланетном диске у молодой звезды. Измерения проводились миллиметровой антенной решёткой ALMA Южной европейской обсерватории. Работа позволила взглянуть как будто бы на Солнечную систему 4,5 млрд лет назад и понять, как и откуда на Земле могла появиться вода в том объёме, в котором мы её видим вокруг себя.

 Распредление водяного пара в протопланетном диске в данных ALMA. Источник изображения: ALMA/ESO/NAOJ/NRAO/S. Facchini

Распредление водяного пара в протопланетном диске в данных ALMA. Источник изображения: ALMA/ESO/NAOJ/NRAO/S. Facchini

Существует несколько гипотез появления воды на Земле, а значит, и необходимого компонента для зарождения биологической жизни на нашей планете. Вода могла появиться вместе с образованием планетарного тела, её могли занести на Землю астероиды и кометы, либо сработали оба источника. Пристальное изучение молодой звезды HL Тельца на удалении 450 световых лет от нас приоткрывает завесу тайны над происхождением воды на нашей и других планетах во Вселенной.

Изучение относительно холодного протопланетного диска вокруг звезды возрастом около одного миллиарда лет и массой около 2,1 солнечных показало, что в пределах семи астрономических единиц присутствует достаточно много водяного пара, температура которого постепенно снижается по мере удаления от звезды. Расчёты и данные измерений на двух длинах волн показали, что в области протопланетного диска находится воды примерно в 3,7 раз больше, чем во всех земных океанах.

Более того, водяной пар обнаружен также в зазоре между двумя широкими областями протопланетного диска (между кольцами). Такие зазоры обычно образуют зародыши планет, сметающие всё на своём орбитальном пути (или прибирающие к рукам) в процессе формирования будущей планеты.

Проделанная работа однозначно указывает, что вода изначально в избытке присутствует в протопланетном диске. Это не опция, а распространённое явление, что позволяет надеяться, что планет земного типа с появившейся там биологической жизнью во Вселенной всё же больше одной.

NASA построит ультрафиолетовый телескоп UVEX, который будет в 50–100 раз чувствительнее предыдущего

За потрясающими снимками Вселенной всегда стоит работа нескольких телескопов, каждый из которых работает в своём диапазоне электромагнитного излучения. Вся мощь «Уэбба» или «Хаббла» неспособна передать красоту космоса без данных в рентгеновском, радиочастотном и ультрафиолетовом диапазоне. Поднимая уровень оптических и инфракрасных телескопов на уровень вверх, мы не должны забывать о создании более совершенных инструментов для других частот.

 Источник изображения: NASA

Галактика Андромеда в ультрафиолетовом спектре по данным телескопа Swift. Источник изображения: NASA

Как стало известно, NASA официально утвердило создание ультрафиолетового телескопа следующего поколения, который должен быть отправлен в космос на рубеже 30-х годов. Это будет миссия Ultraviolet Explorer (UVEX) для изучения неба в ближнем и дальнем ультрафиолетовом спектре. Предыдущий подобный инструмент — Galaxy Explorer (GALEX) — работал с 2003 по 2013 год. Новый телескоп будет в 50–100 раз чувствительнее приборов GALEX.

Перед новым ультрафиолетовым телескопом будет стоять две задачи. Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны.

При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов.

Ориентировочная стоимость подготовки миссии UVEX без расходов на запуск составит $300 млн. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов.

Первые чёрные дыры родились не из звёзд, подтвердили данные телескопа «Джеймс Уэбб»

Проблема первородства звёзд и чёрных дыр — это своего рода проблема курицы и яйца. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. «Джеймс Уэбб», похоже, готов дать ответ на эту загадку.

 Источник изображения: The Astrophysical Journal Letters

Источник изображения: The Astrophysical Journal Letters

На днях в журнале The Astrophysical Journal Letters была опубликована работа, в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.

Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД.

Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем.

«Мы утверждаем, что от чёрных дыр отлетают газовые струи облаков, превращая их в звёзды и значительно ускоряя скорость звездообразования, — говорят авторы работы. — Мы не можем точно разглядеть эти сильные ветры или струи далеко-далеко, но мы знаем, что они должны присутствовать, потому что мы видим много чёрных дыр на ранних стадиях развития Вселенной».

Когда-то Земля могла быть плоской, показало моделирование

Считается, что планеты формируются в протопланетных дисках в виде сферических тел, постепенно набирая массу из окружающего ядро вещества. Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы.

 ИИ-генерация «плоская Земля», стиль «аниме». Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Плоская Земля» в представлении ИИ. Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Как полагают учёные из Университета Центрального Ланкашира (UCLan), эволюция планет на ранних стадиях развития изучена недостаточно хорошо. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую.

Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им. Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере.

«Мы долгое время изучали формирование планет, но никогда раньше нам не приходило в голову проверить форму планет по мере их формирования в ходе моделирования, — сказал один из соавтор исследования Димитрис Стамателлос (Dimitris Stamatellos). — Мы всегда предполагали, что они сферические».

 Моделирование про топланеты, формирующейся методом нестабильного диска. Вид спереди (слева) и сбоку (справа). Источник изображения: UCLan

Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan

Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли.

Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters.

Сверхмассивная чёрная дыра средней активности неожиданно начала испускать сверхбыстрый ветер

В показаниях космического рентгеновского телескопа ESA XMM-Newton учёные обнаружили странные данные, которые не соответствовали всем предыдущим наблюдениям. Сверхмассивная чёрная дыра (СЧД) в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко.

 Художетсвенное представление чёрной дыры в центре галактики, испускающей ветер из заряженных частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

В редких случаях чрезвычайной активности сверхмассивная чёрная дыра в центре галактики испускает настолько сильный ветер — выброшенные электромагнитными полями частицы вещества из аккреционного диска, что он буквально выдувает межзвёздные газ и пыль за пределы галактики. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина.

Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода.

Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Однако регистрируемое рентгеновским телескопом ESA XMM-Newton излучение от Mrk 817 было более чем умеренным. Контрольная проверка с помощью другой рентгеновской установки — NuSTAR NASA — подтвердило верность полученных данных. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным.

Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга.

«Очень редко можно наблюдать сверхбыстрые ветры, и еще реже обнаруживать ветры, энергии которых достаточно, чтобы изменить характер галактики-хозяина. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters.

Приливное разрушение звёзд чёрными дырами случается повсеместно, выяснили учёные

Практически все сто с небольшим известных науке случаев приливного разрушения звёзд чёрными дырами зафиксированы в галактиках с недавно закончившимися процессами звездообразования. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример, как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно.

 Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру.

Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта. Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах.

Астрономы из Массачусетского технологического института предложили искать события приливного разрушения звёзд чёрными дырами в инфракрасном диапазоне. Официальное сообщение о первом открытии такого события в инфракрасном спектре поступило в апреле 2023 года. Метод был признан рабочим и взят на вооружение. И это привело к лавине открытий.

 Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Поиск данных в наблюдениях инфракрасного телескопа NASA NEOWISE и последующий анализ кандидатов с помощью данных ряда наземных телескопов позволил обнаружить 18 ранее неизвестных событий приливного разрушения звёзд чёрными дырами. Шесть из них были позже отброшены, поскольку были связаны с активностью чёрных дыр в центрах галактик. Однако 12 событий были идентифицированы с высокой достоверностью, и все они были открыты впервые.

Более того, все 12 новых событий приливного разрушения звёзд, зафиксированных в данных инфракрасных наблюдений, выявлены там, где раньше их не находили — в сильно запылённых галактиках. Похоже, раньше мы просто не могли уловить такие явления, поскольку пыль блокирует оптический и рентгеновский диапазоны. В инфракрасном же диапазоне никто до этого не искал подобные явления.

 Источник изображения: The Astrophysical Journal, 2024

Галактики с кандидатами в события приливного разрушения звёзд в исследовании. Источник изображения: The Astrophysical Journal, 2024

По всему получается, что приливные разрушения звёзд могут происходить фактически в галактиках любых типов и на любых стадиях их развития. Во-первых, это позволяет забыть о проблеме несоответствия количества этих событий в теории и в процессе наблюдения (их наблюдалось меньше, чем предсказано, чему теперь нашли объяснение). Во-вторых, теперь у учёных появится больше данных для всестороннего изучения физики приливного разрушения звёзд, что обогатит науку новыми знаниями о процессах во Вселенной.

«Джеймс Уэбб» запечатлел тайны рождения звёзд, как это было на заре Вселенной

В соседней с нами галактике Большое Магелланово Облако есть места, где звездообразование идёт с колоссальной скоростью, которая могла повсеместно наблюдаться вскоре после рождения Вселенной. Учёные получили возможность наблюдать фактически повторение древнего явления буквально вблизи нашего галактического дома — Млечного Пути. Но без космической обсерватории «Джеймс Уэбб» такое было бы невозможно. Только она может видеть сквозь облака пыли и газа.

 Источник изображения: NASA

Туманность N79. Лучи — это артефакты от главного зеркала телескопа. (нажмите, чтобы увеличить). Источник изображения: NASA

Астрономы направили зеркало «Уэбба» на массивный звездообразующий комплекс N79 в галактике Большое Магелланово Облако. Благодаря наблюдению с помощью четырёх фильтров в среднем инфракрасном диапазоне с отбором длин волн 7,7 мкм (на изображении выделены синим цветом), 10 мкм (голубым), 15 мкм (жёлтым) и 21 мкм (красным) удалось получить снимок значительной глубины. «Уэбб» смог различить тонкие структуры за плотным слоем облаков из пыли и газа, которые предстали прозрачными или полупрозрачными в инфракрасном диапазоне.

В нашей галактике подобных масштабных образований нет, да и химический состав межзвёздного вещества совсем другой. Поэтому звездообразование совершенно скудное и не дающее полноты данных для изучения эволюции звёзд. Комплексы звездообразования подобные показанному на изображении N79 имеют совершенно другой химический состав, который почти идентичен тому, каким обладали такие области примерно через один млрд лет после Большого взрыва. «Уэбб» может заглянуть в те времена, но подробности на таком расстоянии разглядеть он не поможет. Другое дело туманность N79. До неё всего-то около 160 тыс. световых лет.

В богатой ионизированным межзвездным атомарным водородом туманности N79 так много протозвёзд, протозвёздных и протопланетных дисков, звёзд на ранней стадии эволюции разной степени зрелости, что мы можем изучать эволюцию звёзд как под микроскопом для массы сред, состояний и условий. Потом учёные сравнят полученные в N79 данные и данные из ранней Вселенной. Это поможет нам лучше понять процессы при её зарождении и лучше понять всё, что происходит во Вселенной.

Подтвердилось открытие самой древней чёрной дыры во Вселенной — она не укладывается в наши представления о природе

Работа с докладом об открытии самой древней чёрной дыры во Вселенной прошла рецензирование и была опубликована в журнале Nature. Благодаря космической обсерватории им. Джеймса Уэбба в далёкой и древней галактике GN-z11 удалось обнаружить центральную чёрную дыру рекордной для тех времён массы. Остаётся гадать, как и почему это произошло и, похоже, для этого придётся изменить ряд космологических теорий.

 Галактика GN-z11 в представлнии художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 в представлении художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 была обнаружена ещё в наблюдениях орбитального телескопа «Хаббл» в 2016 году. Этот объект находится от нас на удалении 13,4 млрд световых лет, то есть существовал во времена, отстоящие от Большого взрыва всего на 440 млн лет. Запуск инфракрасной обсерватории «Джеймс Уэбб» обещал множество открытий в ранней Вселенной, ведь свет из тех времён настолько растягивается в процессе движения фотонов через бездну времени и пространства, что банально уходит из видимого диапазона в инфракрасный.

Спектральный анализ света от GN-z11 показал присутствие в нём сверхразогретых ионов углерода и неона. Это указывало на признаки аккреции — обычного разогрева вещества перед падением на чёрную дыру. Эмиссия в линиях спектра была настолько интенсивной, что чёрная дыра своим излучением буквально затмевала галактику-хозяина. И немудрено, хотя галактика GN-z11 была в 100 раз меньше Млечного Пути, чёрная дыра в её центре потянула на 1,6 млн солнечных масс, тогда как чёрная дыра в центре нашей галактики имеет 4 млн солнечных масс.

Теперь, когда учёные убедились в существовании чёрной дыры подобной невообразимой для тех времён массы, придётся переписывать модели и космологические теории эволюции этих объектов и самой Вселенной. Похоже, «Уэбб» на этом не остановится, что позволит собрать достаточно материала для создания новых моделей появления и роста чёрных дыр и описания процессов в ранней Вселенной.

 Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Например, если опираться на современные теории, чёрная дыра в центре GN-z11 должна была питаться веществом в пять раз быстрее, чем мы считали. В противном случае она не набрала бы детектируемую массу к 440 млн лет после Большого взрыва. Также она должна была зародиться не в результате коллапса гигантской звезды, а непосредственно из коллапса межзвёздного газа, возникшего после рождения Вселенной. Будем ожидать, что собранного «Уэббом» материала хватит для составления новых космологических гипотез, которые затем превратятся в стройные теории.

Учёные нашли останки звезды «Барбенгеймер» — она нарушила известные законы физики при взрыве

Группа астрономов из Чикагского университета обнаружила в нашей галактике следы сверхновой, взорвавшейся с нарушением известных законов физики. Это была древняя звезда, родившаяся на заре времён. По всем правилам она должна была закончить жизнь чёрной дырой, но вместо этого её разметало взрывом сверхновой по Вселенной.

 Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Взрыв звезды Barbenheimer в представлении художника. Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Учёные назвали неизвестную звезду «Барбенгеймер» (Barbenheimer), увековечив тем самым популярный мем. Как невозможно сочетать рассказанные в фильмах «Барби» и «Оппенгеймер» истории, так и звезда Barbenheimer состоит из сплошных невозможных состояний.

Следует подчеркнуть, что Barbenheimer взорвалась достаточно давно. О её существовании и последствиях жизни на завершающем этапе учёные узнали по косвенным наблюдениям и благодаря моделированию. Так опытные сыщики узнают об особенностях преступления по оставленным на месте происшествия уликам. Останки Barbenheimer были обнаружены в спектре звезды J0931 + 0038. Это красный гигант сравнительно небольшой массы, который обнаружился в гало нашей галактики (не в плоскости Млечного Пути, а гораздо выше).

Химический состав J0931 + 0038 оказался настолько странным, что учёным пришлось моделировать условия её образования. Наиболее вероятной оказалась ситуация, когда звезда J0931 + 0038 образовалась из облака межзвёздного газа с неожиданным составом химических элементов. Расчёты показали, что прародительницей J0931 + 0038 должна была быть гигантская древняя звезда с массой от 50 до 80 солнечных масс. Парадокс в том, что звёзды подобной массы коллапсируют в чёрные дыры, а не разлетаются облаком синтезированных в их недрах веществ по окрестностям.

Если бы «Барбенгеймер» существовала, практически всё синтезированное в ней вещество должно было сжаться до возникновения чёрной дыры. Однако она стала настоящей сверхновой, сбросив оболочку, ставшей со временем колыбелью для рождения звезды J0931 + 0038. Отдельные факты наблюдаемого явления учёные ещё могут как-то объяснить, но всё вместе представляет загадку, которую ещё предстоит отгадать.

Астрономы случайно нашли галактику, в которой нет ни одной звезды

Группа астрофизиков из Национальной радиоастрономической обсерватории Грин-Бэнк случайно обнаружила нечто необычное — спиральную галактику, в которой не обнаружилось ни одной звезды. Это может быть первым открытием первичной галактики во Вселенной — облака газа, неизменного с начала времён нашей Вселенной.

 Источник изображения: STScI/NSF/GBO/P.Vosteen

Красным обозначена удаляющаяся от нас область газа, синим — двигающаяся к нам. Источник изображения: STScI/NSF/GBO/P.Vosteen

Никто специально не собирался смотреть на тот участок неба, куда случайно был направлен радиотелескоп Грин-Бэнк. Планировалось совместное наблюдение совсем другого участка неба в паре с французским радиотелескопом Nançay. Обе группы работали по программе наблюдения галактик низкой поверхностной яркости (LSB galaxy, low-surface-brightness galaxy). Это обычно карликовые галактики с редкими звёздами. Такие объекты на 95 % состоят из тёмной материи и межзвёздного газа в них намного больше, чем видимых звёзд. Тем самым радиотелескоп был готов улавливать данные о межзвёздном газе в наблюдаемой точке, но произошло это как выстрел наугад.

Полученные данные ошеломили учёных. Они увидели объект, получивший индекс J0613+52, размерами и формами напоминающий классическую спиральную галактику как наш Млечный Путь или другие. Однако в нём не было обнаружено ни одной звезды. Облако газа вело себя как галактика и вращалось вокруг своего центра, что показало измерение доплеровского смещения. Одна его область двигалась в нашу сторону, другая — двигалась прочь от нас.

Объект вёл себя так, как если бы из Млечного Пути вдруг пропали все звёзды. Возможно, плотность газа в галактике J0613+52 оказалась недостаточной для запуска процессов звездообразования, а внешних провоцирующих этот процесс событий не произошло. Учёные не исключают, что они просто не увидели звёзд в J0613+52, но оставляют за собой право надеяться, что это может быть первое открытие в нашей части Вселенной первичной галактики, такой, какой она была 13,8 млрд лет назад.

Дальнейшее наблюдение за J0613+52 может быть сопряжено с трудностями, поскольку она видна только в радиоволновом диапазоне. Но это же заставляет задуматься о поиске похожих объектов на других участках неба с помощью радиотелескопов. Учёные нашли нечто потенциально удивительное и теперь не упустят возможности разузнать о нём больше.


window-new
Soft
Hard
Тренды 🔥
Привет из 2014-го: Asus выпустила обновлённую GeForce GT 710 EVO с 2 Гбайт GDDR5 9 ч.
Apple выбрала процессоры М2 Ultra и М4 для серверов, на которых будут работать ИИ-функции iPhone 13 ч.
Выставка Computex 2024 откроется 4 июня, но презентации AMD, Intel и Nvidia пройдут раньше 14 ч.
iPhone 5s официально устарел, а iPod touch 6 стал винтажным 14 ч.
Vivo оккупировала значительную часть майского рейтинга производительности AnTuTu 15 ч.
Игровой монитор Xiaomi G Pro 27i на панели Mini LED с 1152 зонами затенения выйдет на мировой рынок 15 ч.
Starlink хочет открыть для пользователей спутниковую сотовую связь уже осенью 17 ч.
Новые спутники Starlink могут уничтожить радиоастрономию на Земле, предупреждают учёные 19 ч.
Корейский профсоюз Samsung объявил забастовку, но на производство и поставки памяти это не повлияет 19 ч.
Последний «дружественный» поставщик VSAT-оборудования Gilat Satellite Networks приостановил работу в РФ 20 ч.