Сегодня 01 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → квантовые вычисления
Быстрый переход

Учёные нашли способ поднять точность квантовых вычислений на порядок

Немецкая скрупулёзность сыграла решающую роль в обнаружении ряда проблем со стабильностью сверхпроводящих кубитов. Для этого пришлось заново изучить данные сотен научных работ и исследований. В результате проделанной работы в журнале Nature Physics вышла статья 30 авторов, которая объясняет, как можно минимум на один порядок снизить вероятность появления ошибок в квантовых вычислениях.

 Типичная криогенная структура квантового компьюетра. Источник изображения: Qinu GmbH

Типичная криогенная структура квантового компьютера. Источник изображения: Qinu GmbH

Всё началось в 2019 году, когда два аспиранта из Юлихского исследовательского центра (Forschungszentrum Jülich) и Технологического института Карлсруэ Деннис Уилш (Dennis Willsch) и Деннис Ригер (Dennis Rieger) запутались в данных измерений состояний сверхпроводящих кубитов с использованием туннельных переходов Джозефсона. Эта модель принесла Брайану Джозефсону Нобелевскую премию по физике в 1973 году. Она хорошо представлена математически и широко используется для работы со сверхпроводящими кубитами на основе переходов около 15 лет. Данные измерений выходили за рамки модели, и это заставило учёных искать корень проблем.

Под руководством профессора исследователи подняли данные аналогичных исследований учёных Высшей нормальной школы Парижа, работы с 27-кубитовым квантовым компьютером компании IBM и другие. Как позже выяснилось, похожие отклонения в экспериментальных и теоретических данных обнаружили также исследователи из Кёльнского университета. Обе группы объединили усилия и привлекли ещё учёных, заново проанализировав сотни работ по теме. Результат оказался удивительным. Оказалось, что в стандартной модели описание работы переходов Джозефсона не учитывает ряд важных факторов, и это ведёт к ошибкам вычислений.

 Влияние гармоник на измерения. Источник изображения: Dennis Rieger/ Patrick Winkel, KIT

Влияние гармоник на измерения. Источник изображения: Dennis Rieger/ Patrick Winkel, KIT

Стандартная модель предполагает, что совокупные колебания (мода) в системе переходов Джозефсона имеют вид идеальной синусоиды. На практике мы дошли до такой степени точности измерений, что можем заметить отклонения от идеальной кривой. Всему виной гармоники, самые сильные из которых, как оказалось, влияют на результат измерений. Раньше они никак не учитывались. Коллектив из 30 авторов собрал столько «компромата» на гармоники, что отмахнуться от них больше нельзя. И это хорошо. Уточнённые формулы расчёта состояний сверхпроводящих кубитов могут привести к тому, что квантовые биты станут в 2–7 раз стабильнее, что, как минимум, на порядок снизит вероятность появления ошибок.

«Как непосредственное следствие, мы считаем, что гармоника Джозефсона поможет в разработке более качественных и надёжных квантовых битов за счёт уменьшения ошибок на порядок, что приближает нас на один шаг к мечте о полностью универсальном сверхпроводящем квантовом компьютере», — заключают авторы статьи.

В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений

Канадская компания Nord Quantique на сайте arXiv выложила статью, в которой сообщила о создании альтернативной архитектуры кубита. Ценность разработки в том, что каждый участвующий в вычислениях логический кубит может быть представлен всего одним физическим кубитом. Все возникающие в процессе ошибки исправляются им самим без привлечения других физических кубитов, что открывает путь к массовым квантовым компьютерам.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Компания Nord Quantique является дочерним предприятием факультета квантовой физики Шербрукского университета — одного из ведущих центров квантовых исследований в Канаде. Это предполагает крепкое теоретическое обоснование разработок компании в дополнение к возможности производить оборудование на заводе в Шербруке. Свой «альтернативный» кубит Nord Quantique создала в одном экземпляре. Статья и работа базируются на проверке его работы вне рамок вычислений, которые начнут проводиться ближе к концу текущего года.

 Источник изображения: Nord Quantique

Физическое представление кубита. Источник изображения: Nord Quantique

Интересно, что канадцы фактически перевернули с ног на голову архитектуру, давно используемую в квантовых компьютерах IBM и Google в виде так называемых трансмониевых сверхпроводящих кубитов. Кубиты в компьютерах IBM и Google хранят информацию в сверхпроводящей петле, а управляются микроволновым резонатором, в котором микроволновые фотоны задерживаются на какое-то время. Кубит Nord Quantique, напротив, хранит информацию — квантовые состояния — в микроволновых фотонах, удерживаемых в резонаторах, а сверхпроводящая петля управляет его состоянием.

Хитрость в том, что в резонатор можно запустить избыточное количество фотонов. Чем их больше, тем меньше вероятность появления ошибки. Избыточность — это хорошо проверенный и доказанный способ снизить количество ошибок, что широко применяется в обычных вычислениях.

В работе Nord Quantique показано, что предложенная архитектура кубита снизила вероятность появления ошибки на 14 %. К сожалению, общая точность пока низкая и начинается примерно с 85 %, что значительно ниже, чем в других системах, прошедших многолетнюю разработку. И всё же, в некоторых случаях бозонный кубит, как назвали его в Nord Quantique, показал точность работы на уровне 99 %. Иными словами, перспективы у него есть, если компания начнёт быстро догонять конкурентов.

 Квантовый компьютер на сверхпроводящих кубитах

Квантовый компьютер на сверхпроводящих кубитах

Было бы заманчиво увидеть масштабное применение кубита Nord Quantique. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. Для логического кубита Nord Quantique нужен всего один физический кубит или, по крайней мере, десятки, а не тысячи всех этих петелек, резонаторов, коаксиальных разъёмов и прочей мелочи, которая в масштабе представляет то, что мы видим на современных фотографиях квантовых систем: огромные хромированные люстры.

Учёные создали «неубиваемый» кубит с естественной способностью к исправлению ошибок вычислений

Квантовая неопределённость обещает взвинтить производительность компьютеров и одновременно убивает вычисления своей чувствительностью к малейшим возмущениям среды. Для безошибочных квантовых расчётов необходимо тысячу физических кубитов представить одним-единственным логическим кубитом. Ничем иным как расточительством такое не назовёшь. Это проблема, решить которою пообещали немецкие, чешские и японские учёные.

 Источник изображения: Peter van Loock

Учёные сделали из фотонов «кошку Шрёдингера». Источник изображения: Peter van Loock

Традиционный метод предполагает создание отдельных кубитов — сверхпроводящих, из холодных нейтральных атомов, фотонов или в другом виде — и последующее их запутывание друг с другом. Только запутывание кубитов позволяет запускать на них квантовые алгоритмы и получать результат без ошибок при соблюдении всех необходимых условий. Учёные из университетов Майнца (Германия), Оломоуца (Чехия) и Токио (Япония) предложили элегантное решение, которое реализует три возможности в одном: объединили несколько фотонов в одном коротком световом импульсе с присущей системе врождённой способностью исправлять ошибки.

«Хотя система состоит только из лазерного импульса и, следовательно, очень мала, она может — в принципе — немедленно устранять ошибки. Таким образом, нет необходимости генерировать отдельные фотоны в виде кубитов с помощью многочисленных световых импульсов, а затем заставлять их взаимодействовать как логические кубиты, — заявил профессор Питер ван Лоок (Peter van Loock) из Майнцского университета. — Наш лазерный импульс был преобразован в квантово-оптическое состояние, что даёт нам врожденную способность исправлять ошибки».

Фактически речь идёт о создании импульса из нескольких запутанных фотонов (все они описываются одной волновой функцией). С одной стороны, это всё же пакет элементарных частиц, который можно представить как объединение нескольких физических кубитов в один логический. Но с другой стороны, это достаточно малый объект, если так можно сказать о коротком импульсе, который может рассматриваться как один единственный кубит одновременно физический и логический с функцией коррекции ошибок, что может существенно упростить создание безошибочных универсальных квантовых вычислителей.

Наконец, в отличие от криогенных платформ IBM и Google на сверхпроводящих кубитах, оптические кубиты позволяют работать в условиях комнатной температуры, а это важнейший момент для широкой коммерциализации квантовых платформ.

Создан первый термодинамический компьютер — для вычислений его нагревают, а потом просто дают остыть

Американский стартап Normal Computing представил термодинамический компьютер, который для вычислений использует законы классической физики из раздела термодинамики. Матрица с данными банально нагревается, а потом остывает до термодинамического равновесия в системе. После этого результат естественного «вычисления» коэффициентов просто считывается из регистров. Это происходит быстрее, чем расчёты на классических компьютерах и найдёт применение в ИИ.

 ИИ-генерация «термодинамический компьютер». Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Термодинамический компьютер в представлении ИИ. Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Основателями компании Normal Computing стали бывшие ведущие разработчики по искусственному интеллекту и квантовым платформам из компаний Google Brain и Alphabet X. Они на своём опыте убедились, что настоящего прорыва в ИИ ещё долго не будет как в сфере классических платформ, так и в области квантовых вычислителей. Термодинамический компьютер был разработан ими как промежуточный и переходной вариант от одних к другим.

«Существует множество различных подходов к вычислениям, но одним из наиболее энергоэффективных и быстрых подходов является использование естественных процессов для выполнения вычислений, то есть физики. В частности, хорошо подходят для вычислений связанных со случайностью термодинамические процессы, в случае вероятностных ИИ и генеративных ИИ», — говорится в одном из документов на сайте компании.

 Источник изображений: Normal Computing

Источник изображений: Normal Computing

Компания разработала прототип термодинамического компьютера для вычисления обратной матрицы и доказала его работу. Также она утверждает, что методика работает для других случаев вычислений в области линейной алгебры.

Прототип представляет собой матрицу из повторяющихся групп элементов — генераторов с колебательным емкостным контуром. Компания называет это блоком стохастической обработки (SPU). Каждый из контуров заряжает конденсатор до необходимого значения, а затем плата приходит в термодинамическое равновесие со средой, в которую её помещают, например, остывает в жидкости. После этого происходит считывание значений в элементах матрицы, которые дают искомый результат в процессе простого остывания элементов.

 Блок стохастической обработки (SPU)

Блок стохастической обработки (SPU)

«Обещания квантовой технологии не оправдали своей шумихи. Квантовые компьютеры в основном всё еще находятся на академической стадии и пока не принесли коммерческой ценности. Передовые вычисления, а не талант, могут быть ограничивающим фактором того, чтобы выгоды ИИ стали повсеместными. Наша цель — добиться постепенного изменения возможностей и эффективности искусственного интеллекта с помощью нашего нового термодинамического стека», — заявил Патрик Коулз (Patrick Coles), главный научный сотрудник Normal Computing и бывший руководитель отдела квантовых вычислений в Лос-Аламосской национальной лаборатории.

Самый мощный в мире квантовый компьютер на 1200+ кубитов скоро станет доступен в облаке

Канадская компания D-Wave сообщила о завершении калибровки квантового компьютера нового поколения с более чем 1200 кубитами — Advantage 2. Тестовые прогоны показали двукратное увеличение времени когерентности кубитов, что ускоряет расчёты, а также правильность выбранной стратегии по уменьшению ошибок в вычислениях. Вскоре прототип компьютера Advantage 2 будет доступен через облачный сервис компании — это будет самая мощная квантовая платформа в мире.

 1200-кубитовый процессор поколения Advantage 2. Источник изображения: D-Wave

1200-кубитовый процессор поколения Advantage 2. Источник изображения: D-Wave

Следует подчеркнуть, что слова о мощности той или иной квантовой платформы необходимо воспринимать со здоровым скептицизмом. Во-первых, не существует единой метрики, которая позволила бы сравнивать квантовые платформы, работающие на принципиально разной элементной базе: на холодных нейтральных атомах, сверхпроводящих кубитах, фотонах, спинах элементарных частиц, ионных ловушках и так далее. Во-вторых, квантовая платформа D-Wave заточена для решения задач оптимизации, что не делает её универсальной.

Наконец, квантовый компьютер D-Wave удерживает согласованное (когерентное) состояние кубитов особым образом — переводя их в возбуждённое состояние и ожидая, пока они не успокоятся — не перейдут в состояние с минимальной энергией, что станет ответом на запрограммированную задачу (заданный алгоритм). Поэтому есть смысл сравнивать системы D-Wave предыдущих и новых поколений.

Как утверждают в компании, квантовые компьютеры Advantage 2 значительно превосходят компьютеры Advantage. Например, они в 20 раз быстрее решают задачи по исследованию таких необычных магнетиков, как спиновые стёкла. Это важное семейство сложных для классических компьютеров задач оптимизации. Также система Advantage 2 в два раза быстрее выполняла расчёты при моделировании материалов и демонстрировала значительно меньше ошибок. В сфере решения задач для искусственного интеллекта Advantage 2 в 90 % случаях превосходила своего предшественника, например, отлично решая задачи удовлетворения ограничений.

Всё это стало возможным как за счёт новой топологии сверхпроводящих кубитов, что увеличило количество возможных связей с 15 до 20, так и за счёт удвоения времени когерентности, а также благодаря дальнейшему увеличению масштаба платформы и снижению уровня шумов в новых интегральных схемах. Система из 1200+ кубитов будет доступна через облачный сервис Leap компании.

Для коммерческих поставок компания планирует собирать системы из 7000 кубитов. Они должны быть доступны до конца текущего года, но могут задержаться. Прототип Advantage 2 с 500 кубитами был готов полтора года назад. За прошедшее с тех пор время компания смогла изготовить только 1200-кубитовый прототип, что указывает на сильное отставание от ранее анонсированного графика.

Китай предоставил удалённый доступ к мощному квантовому компьютеру — активнее всего его используют учёные из США

С 6 января текущего года созданный в Китае квантовый компьютер Origin Wukong на 72 сверхпроводящих кубитах открыт для удалённого доступа из любой страны мира. Им уже воспользовались исследователи из 61 страны, а больше всего пользователей оказалось из США. При этом американские квантовые платформы закрыты для входа из Китая. Это ничего не меняет, сообщают китайские учёные, для науки не должно быть границ.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

ИИ-генерация «китайский квантовый компьютер», стиль «аниме». Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

В основе свободного доступа к подобным ресурсам лежит простая вещь — квантовые вычисления лежат на такой ранней стадии изучения, что даже специалисты в этой сфере не очень понимают, что с этим делать. Если для науки, то вопросов нет. Но с точки зрения практического применения квантовые компьютеры — это тёмный лес.

Не секрет, что в области разработки и изучения ценности квантовых систем Китай отстаёт от США. Та же компания IBM начала углубляться в эту область в конце 90-х годов прошлого века. У американских разработчиков 20 лет форы, а это дорогого стоит. Сегодня в активе IBM 433-кубитовые сверхпроводимые процессоры Osprey и перспективные 1121-кубитовые Condor. На этом фоне 72-кубитовый компьютер Wukong китайской компании Origin Quantum выглядит бледно. Но стоит принимать во внимание, что Origin Quantum создана в 2017 году и к настоящему дню проделала гигантский для себя путь.

 Источник изображения:

24-кубитовая система Wuyuan. Источник изображения: Origin Quantum

Свой первый квантовый компьютер на сверхпроводящих кубитах Origin Quantum изготовила и отправила неназванному клиенту в 2020 году. Вторая система — Wuyuan, состоящая из 24 кубитов, была поставлена заказчику в 2021 году. Третья и лучшая на сегодняшний день система компании — Wukong, из 72 кубитов, была поставлена в 2022 или в начале 2023 года. Именно она была введена в эксплуатацию и выделена в облачный доступ.

По сообщению источника, по состоянию на 10:00 утра 15 января 2024 года количество удалённых обращений к Origin Wukong превысило 350 000. Среди тех, кто вошел в систему, были пользователи из Болгарии, Сингапура, Японии, России и Канады, но США лидировали в подсчёте, хотя конкретных цифр не было представлено. С момента ввода в эксплуатацию 6 января машина выполнила 33 871 задачу по квантовым вычислениям для пользователей по всему миру. Одновременно она может выполнять до 200 квантовых операций, добавляют разработчики.

Китайцы поступили мудро, разрешив работать с системой абсолютно без ограничений. Самое ценное в этом мире — это идеи.

Российские физики придумали, как создавать треугольные и прямоугольные лазерные импульсы — это улучшит управление квантовыми схемами

Считается, что в обычных световых импульсах напряженность электромагнитного поля меняется со временем по синусоиде. Другие формы поля считались невозможными, пока недавно российские физики не предложили теоретический подход, меняющий правила игры. Открытие позволит формировать световые импульсы треугольной или прямоугольной формы, что привнесёт много нового в работу схем квантовых компьютеров.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Как установили исследователи из Санкт-Петербургского государственного университета и Физико-технического института имени А. Ф. Иоффе РАН (Санкт-Петербург), изменить форму напряжённости электромагнитного поля в оптическом диапазоне можно с помощью неравномерного распределения плотности в среде, через которую пропускают импульсы сверхкороткой длительности в несколько фемтосекунд. Чем больше форм и разновидностей оптических импульсов получится создавать, тем более точным будет управление кубитами, например, в виде атомов и даже электронов.

Авторы работы теоретически смоделировали прохождение двух последовательных сверхкоротких оптических импульсов через газообразный натрий. Первичные импульсы были классической дугообразной формы, соответствующей половине периода обычной электромагнитной волны. По условиям моделирования импульсы проходили в среде путь длиной 5 мкм. Первый из импульсов передавал возбуждение атомам натрия, запуская их колебания, а второй останавливал их. Этот процесс вызывал отклик электромагнитного поля в виде двух пиков и с этим уже можно работать.

Исследователи предложили таким образом изменить плотность среды, чтобы плотность размещения атомов натрия менялась от малой к большой, затем шло плато, после чего плотность снова снижалась. Таким образом изменение плотности напоминало трапецию. После этого модель стала выдавать импульсы света строго прямоугольной формы. Меняя переход плотности среды на участках подъёма и спада с линейной на параболическую, учёные заставляли импульсы принимать треугольную форму.

 Импульсы прямоугольной и треугольной формы. Источник изображения: Ростислав Архипов

Импульсы прямоугольной и треугольной формы. Источник изображения: Ростислав Архипов

«Мы теоретически показали, что, меняя распределение плотности в среде, через которую проходит оптический импульс, можно управлять его формой. Далее предстоит экспериментально проверить наши выводы. В дальнейшем мы планируем исследовать, как оптические импульсы разной формы будут влиять на состояние квантовых систем, которые лежат в основе квантовых компьютеров», — рассказал руководитель проекта, поддержанного грантом РНФ, Ростислав Архипов, кандидат физико-математических наук, ведущий научный сотрудник физического факультета СПбГУ.

Добавим, работа по исследованию была опубликована в журнале Optics Letters.

Японские физики добились квантовой когерентности при комнатной температуре — это упростит квантовые компьютеры

Согласованные квантовые состояния боятся любых помех, что усложняет реализацию квантовых компьютеров. Для снижения шумов их охлаждают до запредельно низких температур, но в идеале квантовые системы должны работать при комнатной температуре, без чего невозможно их массовое применение. Возможно, в этом поможет новая работа японских учёных, которые смогли добиться квантовой когерентности в обычных условиях без криогенного охлаждения.

 Источник изображения: Science Advances

Источник изображения: Science Advances

Физики изучили квантовые свойства таких молекул, как хромофоры. Они могут поглощать электромагнитное излучение определённых длин волн и излучать также в определённом диапазоне. Ранее на базе хромофоров были созданы фотоэлементы для перспективных солнечных панелей, однако в контексте нужд квантовых вычислений или квантовых датчиков они не изучались.

Японские физики поместили молекулы хромофоров в так называемые металл-органические каркасы (MOF). Это микропористый материал, который способен абсорбировать и фактически изолировать друг от друга предельно малые порции вещества. Пары электронов в молекулах хромофоров оказывались в суперпозиции по отношению друг к другу.

Микроволновое зондирование показало, что спины электронов остаются в когерентном состоянии около 100 нс. Дальнейшая настройка систем обещает ещё больше увеличить время квантовой когерентности в представленной платформе, что можно считать прорывом, поскольку всё это получено при обычной комнатной температуре, что очень дёшево и намного доступнее, чем современные квантовые криогенные платформы.

Сверхохлаждённые кубиты могут оставаться в согласованном (когерентном) состоянии квантовой неопределённости вплоть до нескольких миллисекунд. В этом они выгодно отличаются от предложенной японцами схемы. Однако цена вопроса и стоимость эксплуатации криогенных систем также кратно снижает практическую ценность квантовых расчётов и симуляций.

Остаётся надеяться, что японские физики смогут довести свою разработку до уровня квантовых вычислителей или квантовых датчиков. Пока же это только демонстрация возможностей, с которой ещё работать и работать, о чём они сообщили в статье в журнале Science Advances.

Хоронить RSA-шифрование с помощью квантовых компьютеров ещё рано, выяснили российские учёные

Примерно год назад группа китайских учёных опубликовала статью, в которой сообщила о скорой смерти широко используемого метода RSA-шифрования с открытым ключом. На небольшом квантовом компьютере они показали, что взломать RSA можно с использованием меньшего числа кубитов, чем длина ключа. В этом таилась колоссальная угроза безопасности критически важным данным, что нужно было изучить. Всё оказалось не так просто.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Анализом работы китайских коллег занялась группа учёных Университета МИСИС, РКЦ и «Сбера». Считается, что большинство используемых в настоящее время криптосистем с открытым ключом защищены от атак через обычные компьютеры, но могут быть уязвимы для квантовых платформ. Поскольку компания IBM уже представила 433-кубитовый квантовый процессор Osprey, то ключ RSA-2048 теоретически может быть взломан в любой момент. В работе китайских специалистов доказывалось, что для этого хватит 372 кубитов, а не 20 млн, как считалось ранее.

Китайские исследователи использовали 10-кубитную платформу для разложения на простые множители (факторизацию) 48-битового ключа.

«Основываясь на классическом методе факторизации Шнорра, авторы используют квантовое ускорение для решения задачи поиска короткого вектора в решётке (SVP, shortest vector problem) небольшой размерности — что позволило им сделать сенсационное заявление о том, что для факторизации, т.е. разложения большого числа на множители, требуется меньше кубитов, чем его длина, а также квантовые схемы меньшей глубины, чем считалось ранее», — поясняют в пресс-релизе представители НИТУ МИСИС.

Российские исследователи пришли к выводу, что алгоритм коллег нерабочий из-за «подводных камней» в классической части и сложности реализации квантовой.

«Метод Шнорра не имеет точной оценки сложности. Основная трудность заключается не в решении одной кратчайшей векторной задачи, а в правильном подборе и решении множества таких задач. Из этого следует, что этот способ, вероятно, не подходит для чисел RSA таких размеров, которые используются в современной криптографии», — сказал Алексей Федоров, директор Института физики и квантовой инженерии НИТУ МИСИС, руководитель научной группы «Квантовые информационные технологии» РКЦ.

Предложенный китайскими учёными метод даёт только приближённое решение задачи, которое можно легко получить для небольших чисел и маленьких решёток, но практически невозможно для реальных длинных ключей, что российские учёные подробно объяснили в статье в журнале IEEE Access (ссылка на arxiv.org).

В то же время российские учёные рекомендуют не расслабляться, а готовиться к постквантовой криптографии. Появляются новые платформы и новые алгоритмы, и в один не очень прекрасный день окажется, что надёжные ещё вчера RSA-ключи вдруг перестали защищать ваши данные.

Первое поколение квантовых компьютеров Пентагона построят на кубитах из нейтральных атомов

На днях Агентство перспективных исследований Минобороны США (DARPA) подвело итоги первой фазы программы ONISQ, которая должна была выбрать основу для первого поколения квантовых компьютеров для нужд военных. Наиболее перспективным направлением признаны кубиты из ридберговских нейтральных атомов, в прикладном изучении которых преуспели учёные из Гарвардского университета под руководством выпускника МФТИ профессора Михаила Лукина.

 Источник изображения: DARPA

Источник изображения: DARPA

Программа ONISQ или Optimization with Noisy Intermediate-Scale Quantum, что на русский язык можно перевести как оптимизация с зашумлёнными квантовыми системами среднего масштаба, стартовала в мае 2020 года. Среди прочих систем рассматривались другие варианты кубитов, включая хорошо изученные сверхпроводящие кубиты и кубиты из заряженных атомов (ионов).

«Ридберговские кубиты обладают полезной характеристикой в виде однородности по своим свойствам — это означает, что каждый кубит неотличим от следующего по своему поведению, — сказал доктор Мукунд Венгалатторе (Mukund Vengalattore), руководитель программы ONISQ Отдела оборонных наук DARPA. — Это не относится к другим платформам, таким как сверхпроводящие кубиты, где каждый кубит уникален и, следовательно, не взаимозаменяем».

Охлаждённые нейтральные атомы легко выстраиваются в массивы и могут произвольно программировать квантовые цепи или алгоритмы с помощью оптического пинцета (высокоплотного лазерного пучка), который перемещает кубиты в нужные позиции перед запуском вычислений. Относительная простота и надёжность работы с нейтральными атомами была доказана командой Лукина в свежей работе, где они показали безошибочную работу квантовой системы из 48 логических кубитов на системе из 280 физических кубитов.

Для создания цепи из 48 логических кубитов на сверхпроводящих кубитах потребовалось бы до 5000 физических кубитов, что сегодня представляется проблематичным даже с учётом недавнего анонса процессора IBM Condor с 1121 кубитом.

Команда Лукина обошлась более простой квантовой системой и все 48 логических кубитов, как сообщается, были запутаны, что и предопределило выбор DARPA. Правда, из анонса непонятно, какое отношение коллектив агентства имеет к проделанной учёными работе.

«Если бы кто-нибудь предсказал три года назад, когда началась программа ONISQ, что нейтральные атомы Ридберга [возбужденный атом с одним или несколькими электронами, имеющими очень высокое главное квантовое число] могут функционировать как логические кубиты, никто бы в это не поверил, — сказал доктор Гвидо Цуккарелло (Guido Zuccarello), технический консультант DARPA. — Для DARPA это возможность сделать ставку на потенциал этих менее изученных кубитов наряду с более хорошо изученными ионами и сверхпроводящими схемами. Как исследовательская программа, ONISQ предоставила учёным свободу действий для изучения уникальных и новых приложений, выходящих за рамки простой оптимизации. В результате команда под руководством учёных из Гарварда смогла использовать гораздо больший потенциал этих ридберговских кубитов и превратить их в логические кубиты, что является весьма значительным открытием».

Американские учёные расширили границы безошибочной работы квантовых компьютеров

Центральной задачей для создания практически ценных квантовых вычислений является подавление ошибок. Сегодня цена этого подавления представляется запредельной. На каждый логический кубит, включённый в алгоритм, необходимо использовать до 1000 физических кубитов. На днях группа учёных из США показала, что накладные расходы можно значительно снизить, что обещает широкие перспективы для квантовых вычислений.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Коллектив из Гарварда под руководством бывшего выпускника МФТИ профессора Михаила Лукина — одного из ведущих в мире учёных по квантовым системам — показал работу безошибочных квантовых алгоритмов на 48 логических кубитах на массиве из 280 физических кубитов. Используя управление на логическом уровне и зонированную архитектуру в реконфигурируемых массивах нейтральных атомов, система показала сочетаемость в себе высокой надёжности двухкубитных вентилей, произвольную подключаемость, а также полностью программируемые вращения с одним кубитом.

Созданный в лаборатории Гарварда квантовый компьютер группы Лукина использует дефекты в кристаллических структурах. Это могут быть искусственные алмазы, куда помещаются сверхохлаждённые атомы рубидия. Программирование таких систем осуществляется с помощью лазерных пинцетов. Сначала атомы заселяют в дефекты случайным образом, а затем «программируют» массив, перемещая атомы в те дефекты, которые включены в схему для запуска алгоритма (симуляции).

 схема получения двумерных матриц из нейтральных атомов, (b)-(d) получение структур с разным расположение возбужденных атомовИсточник изображения:

Схема получения двумерных матриц из нейтральных атомов, и формирование структур с разным расположение возбужденных атомов. Источник изображения: Nature

На серии алгоритмов разной сложности группа Лукина показала, что сверхизбыточное использование физических кубитов для каждого логического кубита, в общем-то, не нужно. Чтобы вычисления проходили с удовлетворительной точностью, может хватить до 7 физических кубитов на один логический, о чём они рассказали в работе, опубликованной 6 декабря в журнале Nature.

Эти результаты намекают на появление квантовых вычислений с исправлением ошибок скорее раньше, чем позже. Это приведёт к открытию приложений и подтолкнёт к сдвигу в решении как проблем, так и возможностей в сфере квантовых расчётов.

В США придумали, как сделать квантовый интернет более доступным

Сеть национальных лабораторий в США работает над созданием квантового интернета, который позволил бы не только обмениваться данными по абсолютно безопасному каналу, но также открыл путь к распределённым квантовым вычислениям. Для этого придётся создать точки ретрансляции состояния кубитов, а это пока очень дорогое мероприятие, ведь каждая из них должна поддерживать температуру около абсолютного нуля. Удешевить инфраструктуру обещает новая технология.

 Источник изображения: University of Chicago

Источник изображения: University of Chicago

Исследователи из Чикагского университета, Аргоннской национальной лаборатории и Кембриджского университета утверждают, что им удалось найти прорывное решение: они буквально растягивают алмаз, изменяя его молекулярную решетку. Растяжение крайне незначительное, но этого оказалось достаточно, чтобы улучшенная структура обзавелась очень и очень многообещающими свойствами.

Как известно, чтобы передать квантовую запутанность для сверхпроводящих кубитов необходимо защитить их от всех возможных помех. Для этого ретранслятор кроме всего прочего должен быть охлаждён до температуры менее одного кельвина. С кубитами на фотонах всё намного проще — там такие запредельно низкие температуры не нужны, что позволяет, например, уже пользоваться сетями с квантовой криптографией в России и в Китае.

Передача квантовых состояний и квантовой запутанности для сверхпроводящих кубитов заставит строить ретрансляторы намного чаще — через 5 или 10 км, что сделает квантовый интернет на этой основе довольно дорогим мероприятием как при развёртывании, так и при эксплуатации.

Изобретение американских учёных обещает увеличить температуру ретрансляторов до 4 К (-269 °C). Незначительное, на первый взгляд, повышение на порядки упростит создание холодильных установок и их обслуживание, заявляют разработчики.

Как создать растянутый алмаз? Достаточно просто. На горячее стекло наносится тончайшая алмазная плёнка. После остывания стекло и алмаз сжимаются, но степень сжатия стекла меньше и оно будет создавать в алмазной плёнке усилие на молекулярное растяжение. Это усилие очень небольшое, но его оказывается достаточно, чтобы структура проявляла улучшенные квантовые свойства. Это проявляется не только в увеличении времени когерентности, но также в возможности управлять кубитами с помощью радиочастот. Кубиты на основе растянутых алмазов становятся менее восприимчивы к помехам и поддаются более простому управлению, что в итоге сделает эксплуатацию квантовых сетей дешевле и доступнее.

В Японии заработал первый практический квантовый компьютер IBM — это мощнейшая 127-кубитная система Quantum Eagle

Компания IBM сообщила, что на базе Токийского университета начал работать мощнейший в регионе квантовый компьютер — 127-кубитовая платформа IBM Quantum Eagle. Передача компьютера осуществлена в апреле этого года. От японских партнёров компания IBM рассчитывает получить идеи практического использования нового класса вычислительных устройств. Они обещают невообразимую мощь в обработке данных, но как это выглядит на практике, никто не знает.

 Источник изображения: IBM

Источник изображения: IBM

Ранее IBM уже передавала японским учёным квантовые системы. Так, в 2021 году на площадке Kawasaki Токийского университета была развёрнута 27-кубитовая система IBM Q System One. Новый компьютер несёт процессор IBM Eagle со 127 кубитами и обещает многократно ускорить выполнение расчётов.

Классический подход предполагает, что для начала практического применения квантовых компьютеров нужны будут системы с десятками и сотнями тысяч физических кубитов. Согласно обоснованиям специалистов Google, например, для исправления ошибок в одном логическом кубите необходимо 1000 физических кубитов. Тем самым безошибочный квантовый компьютер на 1000 кубитов потребует 1 млн физических кубитов для коррекции ошибок. Это означает, что практическую ценность Google рассчитывает увидеть в системах с тысячами и десятками тысяч кубитов. В IBM заявляют, что это не так.

В опубликованной этим летом работе специалисты IBM доказывают, что практическая ценность квантовых систем начинается со 100 кубитов. Нетрудно догадаться, что платформа IBM Eagle со 127 кубитами заявлена как первая практическая, о чём также сейчас заявили японские партнёры компании. Это тем более важно, что современные обычные суперкомпьютеры не способны эмулировать более 50 кубитов при работе с квантовыми алгоритмами.

Развёрнутая в Японии платформа IBM Quantum Eagle будет использоваться местным консорциумом Quantum Innovation Initiative (QII), в который вошло около двух десятков учебных заведений страны и компаний. Квантовую систему будут обучать искать новые материалы, лекарства, научат работать с финансами, физикой, химией и социологией. Для IBM это сулит впечатляющей отдачей в области, куда ещё никто серьёзно не проникал. Затраты на это огромны, но благотворительности в этом нет. Пионеры получат всё.

Alibaba закрыла лабораторию квантовых вычислений

Китайский технологический гигант Alibaba Group Holding закрыл исследовательскую лабораторию, которая занималась квантовыми вычислениями, пишет ресурс Bloomberg. Оборудование лаборатории будет передано Чжэцзянскому университету в Ханчжоу, где базируется компания, сообщил её представитель. Часть персонала лаборатории, насчитывавшего 30 человек, получит работу в университете.

Как отметил Bloomberg, Alibaba сейчас находится в процессе масштабной реструктуризации под руководством Джозефа Цая (Joseph Tsai) и Эдди Ву (Eddie Wu), которые возглавили компанию в сентябре после ухода Даниэля Чжана (Daniel Zhang). Оба топ-менеджера являются доверенными лицами соучредителя Alibaba Джека Ма (Jack Ma).

В этом месяце было объявлено об отказе Alibaba от планов по выделению облачного подразделения в отдельное предприятие с последующим листингом. Также на прошлой неделе компания предприняла первые шаги по его обновлению — были назначены три новых руководителя, которые возглавят основные бизнес-направления Alibaba Cloud. Двое из них подчиняются непосредственно гендиректору Ву.

Неожиданное решение отказаться от выделения облачного бизнеса, которое компания объяснила неопределённостью из-за санкций США, породило слухи о возможности других изменений в планах Alibaba по реструктуризации. Как известно, в результате реструктуризации на базе Alibaba должны появиться шесть бизнес-групп.

Академия ДАМО (Damo Academy), которую Ма открыл в 2017 году, должна была стать «самым успешным» подразделением Alibaba, ответственным за научные исследования и внедрение передовых технологий в таких сегментах, как метавселенная, роботизация и разработка полупроводников. За последние несколько кварталов Alibaba уволила более 30 000 сотрудников, стремясь оптимизировать расходы на фоне сложной ситуации на ИТ-рынке в связи с санкциями Вашингтона.

Американская Atom Computing анонсировала первый в мире квантовый компьютер с 1000+ кубитами

Компания Atom Computing, одна из трёх выигравших конкурс на участие в квантовых исследованиях агентства DARPA, сообщила о готовности выпустить в 2024 году первый в отрасли квантовый компьютер с более чем 1000 кубитов. По словам компании, впервые будет преодолён ключевой рубеж, после которого универсальные квантовые компьютеры начнут изменять реальность в сфере супервычислений.

 Источник изображения: Atom Computing

Источник изображения: Atom Computing

В то же время сфера квантовых компьютеров настолько молода, что всё ещё не существует общепризнанных тестов и правил определения их производительности. Квантовая платформа Atom Computing опирается на нейтральные атомы, которые, как и ловушки ионов, используют световые (лазерные) импульсы для оперирования кубитами. Будущая платформа будет использовать массив из 1225 нейтральных атомов, превращённых в 1180 кубитов. Стартап уже тестирует такую конфигурацию.

По большому счёту нам должно быть всё равно, на какой основе организованы кубиты Atom Computing. Главное, что бы они могли запутываться друг с другом, их можно было бы объединять в логические элементы и обеспечивать коррекцию ошибок. Разработчик утверждает, что его платформа отвечает гейтовой (вентильной) модели квантовых систем — она позволяет запускать соответствующие квантовые алгоритмы, а также демонстрирует время когерентности до 40 секунд, что на несколько порядков больше, чем в случае низкотемпературных кубитов, свойственных системам IBM или Google.

Также система Atom Computing продемонстрировала возможность измерения квантового состояния отдельных кубитов в процессе вычислений и обнаружения определенных типов ошибок без нарушения работы других кубитов, а также способность исправлять квантовые ошибки в реальном времени.

Более того, разработчик утверждает о простом масштабировании платформы, что быстро приведёт к появлению универсального безотказного квантового компьютера. Коммерчески доступные системы на 1000+ кубитах появятся в следующем году. Чтобы их можно было сопрягать с классическими компьютерами, компания обещает сотрудничать с NVIDIA, которая создала подобный «адаптер» в виде решения DGX Quantum. Но это уже другая история.


window-new
Soft
Hard
Тренды 🔥
В Telegram добавили сообщения с анимированными эффектами, глобальные хештеги и другие нововведения 24 мин.
Anthropic позволит создавать персональных помощников на базе ИИ-чат-бота Claude 2 ч.
ElevenLabs запустила ИИ-генератор звуковых эффектов по текстовому описанию 3 ч.
Новая статья: Songs of Conquest — песнь величия. Рецензия 14 ч.
В ранний доступ Steam ворвался олдскульный шутер Selaco на движке классических Doom — с перестрелками и умными врагами в духе F.E.A.R. 16 ч.
Warhorse официально подтвердила перевод на русский язык в Kingdom Come: Deliverance 2 18 ч.
Perplexity AI превратит поисковую выдачу в веб-страницу, которой удобно делиться с другими 18 ч.
Google добавила редактирование RCS-сообщений и другие полезные функции в Android 19 ч.
Эндгейм подкрался незаметно: авторы перспективного «дьяблоида» Wolcen: Lords of Mayhem решили забросить разработку всего через четыре года после релиза 19 ч.
Глава Take-Two Interactive уклонился от ответа, выйдет ли GTA VI на ПК 20 ч.
Корейский профсоюз Samsung объявил забастовку, но на производство и поставки памяти это не повлияет 2 ч.
Последний «дружественный» поставщик VSAT-оборудования Gilat Satellite Networks приостановил работу в РФ 3 ч.
Samsung проиграла Huawei и больше не первая по продажам складных смартфонов в мире 3 ч.
Минцифры предлагает выдавать льготные кредиты для строительства ЦОД 3 ч.
Госархив РФ построит в Калужской области дата-центр за 1 млрд руб., оснастив его российскими серверами и СХД Depo 3 ч.
В метеорите с Марса учёные разглядели образ древней Земли 3 ч.
Blackview выпустила защищённый смартфон Oscal Pilot 2 с двумя экранами и мини-ПК MP100 с мощной начинкой 4 ч.
Робот-пылесос Dreame D9 Max и вертикальный беспроводной пылесос R20 обеспечат качественную и быструю уборку 5 ч.
Samsung будет выпускать для AMD передовые 3-нм чипы с GAA-транзисторами 5 ч.
Российский хоккеист Александр Овечкин стал лицом смартфонов Infinix 6 ч.