Нейтрино являются вторыми по распространённости во Вселенной фундаментальными частицами после фотонов, но они настолько слабо взаимодействуют с веществом, что одно время даже были кандидатами на роль тёмной материи. Всё-таки их можно улавливать и учёные это делают с 1956 года. Однако в коллайдерах нейтрино ещё не получали, пока в 2022 году на БАК не поставили серию экспериментов, уверенно доказавших детектирование нейтрино, полученных искусственным путём.
Любопытно, что установка FASERnu для детектирования нейтрино в ходе экспериментов на БАК собрана из комплектующих, оставшихся от прошлых экспериментов. Детектор поместили в один из боковых служебных коридоров коллайдера, но это не означает, что открытие рукотворных «призрачных частиц» не имеет важного научного значения. До сих пор учёные фиксировали в основном нейтрино низких энергий, тогда как из глубин космоса к нам приходят нейтрино высоких энергий. На БАК были получены как раз высокоэнергичные частицы, что открывает возможность использовать полученные данные для понимания астрофизических процессов.
Отдельно приятно, что значительную часть теоретической работы и обработку данных провели российские физики. В коллаборации FASER эту задачу взял на себя Объединённый институт ядерных исследований (ОИЯИ). В экспериментах по физике нейтрино для регистрации частиц использовалась ядерная фотоэмульсия — чередование вольфрамовых пластин для замедления нейтрино с фоточувствительной эмульсией.
«Группа ОИЯИ участвует в моделировании сигнала, реконструкции и анализе фотоэмульсионных данных, проектировании и создании системы охлаждения с возможностью контроля и стабилизации температуры для FASERnu», — рассказала участник коллаборации FASER от ОИЯИ, научный сотрудник Сектора экспериментальной нейтринной физики Светлана Васина.
В предыдущих экспериментах на БАК были детектированы шесть частиц-кандидатов на роль высокоэнергетических нейтрино. Третий запуск БАК в 2022 году с повышенной яркостью дал настолько много данных, что их статистическая значимость превысила 16 сигм при требуемом уровне достоверности 5 сигм. Иначе говоря, сомнения в детектировании на БАК высокоэнергетических нейтрино при таких условиях стремятся к нулю.
Нейтрино невозможно обнаружить напрямую при сталкивании пучков частиц, но благодаря детектору FASERnu где-то в боковом тоннеле БАК это стало возможным. Тем самым БАК стал инструментом, который полностью воспроизводит весь спектр известных современной физике элементарных частиц, включая бозон Хиггса, ради поиска которого, собственно, Большой адронный коллайдер и строился.