Оригинал материала: https://3dnews.ru/1134069

Intel показала путь к посткремниевым чипам: 2D-транзисторы, совместимые с массовым производством

2D-транзисторы на основе 2D-материалов демонстрируются в академических и лабораторных условиях более десяти лет, но ни одна из этих демонстраций не была совместима с крупносерийным производством. Они основывались на специализированных исследовательских инструментах и ​​хрупких технологических этапах. Но на этой неделе Intel Foundry и Imec продемонстрировали готовую к 300-миллиметровому производству технологию производства 2D-полевых транзисторов (2DFET).

Современные передовые техпроцессы — такие как Intel 18A, Samsung SF3E, TSMC N2 — основаны на транзисторах с затвором, окружающим затвор со всех сторон (Gate-All-Around, GAA). В настоящее время все ведущие производители микросхем разрабатывают комплементарные полевые транзисторы (Complementary Field-Effect Transistor, CFET) с возможностью их вертикального размещения с целью повышения плотности за пределы возможностей GAA.

CFET считаются следующим шагом после транзисторов с затвором, охватывающим всю поверхность кристалла, и ожидается, что они появятся в течение следующего десятилетия. Однако Intel и другие производители микросхем утверждают, что дальнейшее масштабирование в конечном итоге приведёт к пределу физических возможностей кремниевых каналов, где электростатический контроль и подвижность носителей ухудшаются из-за чрезвычайно малых размеров. Для решения этой проблемы отрасль все чаще оценивает двумерные материалы, которые могут формировать каналы толщиной всего в несколько атомов, сохраняя при этом надёжный контроль тока.

Intel и Imec представили на IDM доклад, в котором подробно описывается их работа над семейством дихалькогенидов переходных металлов (TMD) — перспективных материалов для производства чипов, представляющих собой атомарно тонкие кристаллы. В продемонстрированных структурах сульфид вольфрама (WS2) и сульфид молибдена (MoS2) использовались для создания транзисторов n-типа, а селенид вольфрама (WSe2) служил материалом для каналов p-типа. Эти соединения изучаются уже много лет, но подогнать их под существующие технологические процессы производства чипов на 300-мм пластинах не получалось. Основная сложность заключалась в том, что хрупкие каналы легко повредить. А также разработчикам мешало то, что предлагаемые прежде решения невозможно надежно воплотить в условиях современного массового производства.

Основной инновацией, представленной Intel и Imec, является схема интеграции контактов и затворных стеков, совместимая с производством. Intel вырастила высококачественные 2D-кристаллы и покрыла их многослойным стеком из оксидов алюминия (Al2O3), гафния (HfO2) и кремния (SiO2). Затем с помощью тщательно контролируемого селективного травления, концептуально схожего с одним из этапов традиционного изготовления чипов, получилось сформировать верхние контакты. Таким образом удалось обеспечить целостность лежащих в основе 2D-каналов, которые очень чувствительны к загрязнению и физическим повреждениям.

Ключевым нововведением, представленным Intel и imec, является совместимая с производством на 300-мм пластинах схема интеграции контактов и затворной структуры. Этот подход решает одну из самых сложных задач в разработке 2D-транзисторов: формирование масштабируемых контактов с низким сопротивлением с использованием процессов, совместимых с производственным оборудованием. Наряду с контактами, Intel и imec также продемонстрировали возможность изготовления модулей затворной структуры.

 Источник изображения: Imec

Источник изображения: Imec

Важность этой совместной работы Intel и imec заключается не в немедленном внедрении в производство, поскольку 2D-транзисторы на основе 2D-материалов относятся к долгосрочной перспективе, возможно, ко второй половине 2030-х или даже к 2040-м годам. Ценность исследования скорее в снижении рисков при разработке и последующем производстве микросхем, которые будут использовать 2D-материалы.

Проверяя технологию в условиях реального производства, Intel Foundry позволяет клиентам и внутренним группам разработчиков оценивать её возможности, используя реалистичные, масштабируемые технологические предположения, а не идеализированные лабораторные условия. Этот подход призван ускорить тестирование устройств, компактное моделирование и ранние исследования в области проектирования.

Для Intel Foundry это исследование имеет особую важность. Во-первых, Intel Foundry продолжает проводить долгосрочные исследования технологий, которые понадобятся через годы, если не десятилетия, а это значит, что у компании будут решения для полупроводниковой промышленности в 2030-х или 2040-х годах, и, следовательно, она останется надёжным партнёром. Во‑вторых, Intel подчёркивает, что даже на этапе исследований новые концепции транзисторов должны разрабатываться с учётом технологичности производства, что под силу немногим компаниям.



Оригинал материала: https://3dnews.ru/1134069