Покажите мне человека, который не хотел бы жить если не вечно, то хотя бы достаточно долго – хотя бы лет 150-200, не впадая при этом в старческий маразм. Что, нет таких? Разумеется, нет, за вычетом сумасшедших, фанатиков и склонных к суициду, все люди не прочь продлить свою жизнь или хотя бы провести пенсионные годы без склероза, в здравом уме и памяти.
В одной из наших публикаций мы обязательно коснёмся современных исследований в области обретения бессмертия, благо, не исключено, что такую информацию удастся получить, что называется, "из первых рук". Сегодня же мы рассмотрим один из прикладных, более "приземлённых" аспектов - применение нанороботов в медицине. Или, или, если хотите, в
наномедицине, ибо нынче что ж за сказ без приставки "нано-".
За последний десяток лет следует отметить значительный прогресс в миниатюризации медицинской техники: наряду с углублением теоретических исследований появилось достаточное количество практических разработок нанороботов, способных функционировать в качестве автономных и управляемых на расстоянии сенсоров, источников энергии, сборщиков и передатчиков собранной информации об организме человека.
И всё же наибольший практический эффект от применения нанороботов в медицине может иметь место к тому времени, когда учёные смогут создать сверхминиатюрные устройства размерами в несколько микрон – как их иногда называют, "молекулярные машины", которые смогут свободно перемещаться внутри наших артерий, производя при этом диагностику и даже "ремонт" организма изнутри. Весьма наглядный, хоть и утрированный, пример такого воздействия на организм, могут припомнить зрители мульт-сериала "Футурама" – в серии, где команда Космического Экспрессе путешествует внутри организма Фрая, съевшего на космической заправочной станции несвежий бутерброд вместе с колонией паразитов. Правда, очисткой сосудов от холестериновых бляшек, восстановлением нейронных связей в мозгу и прочей профилактикой в мультфильме занимались микроорганизмы-паразиты, но кто мешает создать подобных "нанопаразитов" – роботов?
Что ж, в каждой шутке есть лишь доля шутки, а на практике создание микроскопических медицинских нанороботов сталкивается с множеством проблем, главной из которых порой оказывается даже не миниатюризация. Среди наиболее серьёзных можно выделить проблемы перемещения нанороботов по организму; вопросы идентификации нанороботами областей организма, за которыми требуется наблюдать или на которые требуется воздействие; наконец, набор действий наноробота в отношении организма, например, локальный впрыск лекарства, механическое воздействие и т.п.
В настоящее время разработка и производство медицинских "роботов-микроорганизмов" находится в зачаточном состоянии, однако учёные не сидят сложа руки и разрабатывают если не самих нанороботов, то хотя бы средства и инструменты, способные помочь им в этом непростом деле. Так, на днях в очередном номере авторитетного журнала
Nanotechnology появилась интересная статья
Nanorobot architecture for medical target identification, по сути, послужившая предлогом для нашей сегодняшней публикации.
Не буду пересказывать полное содержание серьёзной научной 15-страничной статьи, насыщенной формулами и снабженной аннотацией на 129 смежных работ. Суть новости в том, что группа учёных – Адриано Кавальканти (Adriano Cavalcanti), Биджан Ширинзаде (Bijan Shirinzadeh), Роберт Фрейтас (Robert Freitas, Jr.) и Тэг Хогг (Tad Hogg), из исследовательских групп Center for Automation in Nanobiotech и Robotics and Mechatronics Research Laboratory, Department of Mechanical Engineering, Monash University (Мельбурн, Австралия), а также Institute for Molecular Manufacturing и Hewlett-Packard Laboratories (Калифорния, США), представили 3D систему для моделирования и проектирования медицинских нанороботов.
Фактически, учёными впервые была разработана виртуальная реальность, получившая название
NCD (Nanorobot Control Design), которая может применяться для изучения поведения виртуальных нанороботов, их взаимодействия с виртуальными биомолекулами, в виртуальных же артериях. На практике подобные системы 3D моделирования уже применялись - при разработке полупроводниковых наноструктур, при этом, применялись весьма успешно. Хотя, в наше время приставка "нано-" в отношении полупроводников становится явным излишеством – в то время как наиболее ходовыми техпроцессами становятся 65 нм и 45 нм, как-то излишне становится говорить про нанометры, ибо масло масляное получается.
Так вот, виртуальная реальность в виде программного пакета NCD представляет собой систему тестирования трёхмерных прототипов медицинских нанороботов - механотронический симулятор нано-уровня (nanomechatronics), благодаря которому обрабатывается численная информация о физике процесса моделирования нанороботов. Кстати,
механотроника (mechanotronics), или мехатроника (mechatronics) - слово японского происхождения и означает отрасль на стыке механики и электротехники, или, проще говоря, объединение механического устройства с миникомпьютером.
На практике платформа NCD позволяет визуально представить те процессы, которые происходят с нанороботом внутри человеческого тела. Правильная постановка задачи – как известно, половина дела. Благодаря использованию платформы NCD учёные надеются значительно ускорить процесс разработки и практического внедрения медицинских нанороботов. И на этом этапе как раз обнаруживаются все выше перечисленные сложности. К примеру, для медицинского наноробота одной из наиболее сложных задач является маневрирование в непосредственной близости от биомолекулы для идентификации типа этой биомолекулы – всё это в кровяной среде, где перемещается множество самых различных частиц, в самых непредсказуемых направлениях и с различной скоростью.
Также не стоит забывать, что речь идёт о перемещениях в достаточно вязкой артериальной среде, где нанороботы постоянно "натыкаются" на белки и самые непредсказуемые частицы, перемещаемые общим током крови. Наконец, главное: представьте себе, что речь идёт не о какой-то магистральной трубе диаметром 2 метра, обсчёт турбулентностей в которой тоже, по большому счёту, непростая задачка; тут же разговор о "трубках" диаметром порядка 40 мкм! Словом, моделирование поведения наноробота в такой среде – ещё та задачка.
Практическая демонстрация программного пакета NCD в режиме реального времени позволяет, к примеру, моделировать поведение наноробота, перед которым поставлена задача поиска белков в динамичной виртуальной среде с последующей идентификацией и переноса этих белков к специфическому "пункту выдачи лекарства". Что интересно отметить, даже на этом этапе разработки учёные имеют возможность задать несколько стратегий "поведения" наноробота и изучить каждую из них на предмет лучшей эффективности. Так, для выполнения задачи нанороботы могут использовать совершенно разные комплекты химических и температурных датчиков, а также разные траектории движения.
Для демонстрации возможностей системы учёные моделировали несколько различных начальных условий тестирования, где нанороботы задействовали несколько различных способов идентификации белков в кровяных сосудах с изменяющимся по ходу эксперимента диаметром. Виртуальные эксперименты уже подтвердили такие прогнозы, как, например, лучшие результаты работы нанороботов при поиске цели в более узких сосудах; высокую степень эффективности поисков при использовании химических и термических биосенсоров в сочетании с хаотической (блуждающей) моделью передвижения.
По словам учёных, наряду с процессами поиска и идентификации, система виртуального моделирования позволяет успешно использовать ряд интерактивных инструментов для разработки нанороботов – таких как методики контроля и управления нанороботом, общая концепция производства, дизайн силового привода (двигателя) и многое другое. Поскольку для разных элементов человеческого организма требуется разработка соответствующих специфических нанороботов, учёным приходится эмулировать самые разные процессы. В настоящее время с помощью системы NCD проведены виртуальные исследования нанороботов для лапароскопической хирургии (предоперационные исследования брюшинной полости оптическими приборами), сахарной болезни (диабета), раковых заболеваний, аневризма мозга, кардиологии, биозащиты от боевых отравляющих веществ и систем доставки лекарственных форм непосредственно к участку их активного действия. На данном этапе исследований также изучаются побочные эффекты, возникающие при применении химиотерапии для лечения болезни Альцгеймера.
По словам участников проекта, успеха в разработке столь сложной виртуальной системы для моделирования поведения биологических нанороботов удалось добиться лишь благодаря взаимодействию специалистов в самых разных областях наук и технологий. Наряду с химиками, электронщиками, программистами, физиками, механиками, специалистами по фотонике и разработке новых материалов, к работе были привлечены лучшие фармацевты и медики. На следующих этапах также предполагается привлечение к работам специалистов по геномике (genomics) – отрасли молекулярной генетики, изучающей геномы.
Что касается наиболее ответственного момента таких предприятий – коммерциализации и последующего извлечения прибыли из системы трёхмерного моделирования поведения медицинских биороботов, на этот счёт учёные совершенно спокойны и уверены в успехе. Благо, заказчиков среди медицинских и фармацевтических предприятий будет хоть отбавляй, а про военных и говорить не приходится.
Что ж, на словах всё это звучит замечательно. Но! Виртуализация – виртуализацией, а когда же, собственно, на свет появятся эти самые нанороботы, которых пока что только "виртуализируют"? И есть ли хоть какая-то практическая отдача от таких исследований в настоящее время, а не на дальнюю перспективу?
Учёные говорят, что ждать осталось не так уж долго. К примеру, ряд компонентов для нанороботов будущего реализован на практике уже сейчас. Это биосенсоры, это варианты нанодвигателей, антенн, и всё это уже применяются в ряде специфических наноустройств.
Следующим шагом как раз должна стать интеграция всех этих разрозненных компонентов в единое целое с названием "медицинский наноробот". Начало массового производства "интегрированных наноэлектронных молекулярных машин" – то есть, медицинских нанороботов, по мнению разработчиков системы NCD, наступит
до 2015 года. Столь длительный период понадобится не столько на собственно разработку технологии производства, сколько на тестирование совместимости и безопасности таких устройств – всё же, как-никак, запускать их придётся не куда-нибудь, а непосредственно в тело человека.
Лично мне трудно представить столь сложную ситуацию в своей жизни, когда я позволю запустить в свой организм каких-то биоэлектронных микроскопических букашек. Бррр… Им же может понравится внутри, и однажды они откажутся выбираться наружу. И вообще, сидишь так себе в кресле, читаешь книжку, а внутри тебя шарахаются сотни и тысячи микроскопических жучков – даже если они делают доброе дело, вычищая холестерин из сосудов, всё равно жуть, а тем более если вытворяют там себе втихомолку что-нибудь недоброе. Что? Говорите, жить захочешь - никуда не денешься? Может быть, может быть...
В любом случае, люди будущего будут совсем не похожи на нас – и мобильники у них будут совсем неведомые, и одёжка диковинная, а с такими темпами развития биотехнологий, может быть, и вовсе будут непохожи на людей. Счастья им, конечно, и долгих лет жизни, но я пока уж как-нибудь по-старинке, аспиринчиком да валидольчиком…
Такие дела.
Ссылки на первоисточники. Места в Интернете, где о медицинских нанороботах можно почитать подробнее.