Оригинал материала: https://3dnews.ru/900580

Обзор процессора A10-7800: новый Kaveri — дешевле и экономичнее

Характеристики. Комплектация. Внешний вид

Обычно при выводе на десктопный рынок новых поколений APU компания AMD придерживалась тактики массированных анонсов, когда полные линейки процессоров, начиная со старших и заканчивая младшими моделями, выпускались практически одномоментно. Максимум, что могла себе позволить компания, — небольшой временной разрыв между реальным появлением в магазинах моделей различного класса, но обычно ждать поступления в продажу всего набора процессоров приходилось не более пары месяцев.

С Kaveri же ситуация сложилась совсем иначе. Анонс этого процессорного дизайна произошёл в январе, и тогда были официально представлены только три четырёхъядерные модели: A10-7850K, A10-7700K и A8-7600. Причём в продаже эта троица в полном составе так и не появилась: младшая модель A8-7600 до прилавков тогда не доехала. В результате до самого недавнего времени, когда с момента объявления десктопных Kaveri прошло уже восемь долгих месяцев, реально купить можно было лишь две самые старшие их модификации.

Камнем преткновения стал новый для AMD технологический процесс с 28-нм нормами, который, как выяснилось, не позволил легко и просто наладить массовый выпуск APU со сниженным тепловыделением. Принципиальное отличие проблемного A8-7600 от двух других Kaveri состоит в энергоэффективности: он рассчитан на 65-ваттный, а не на 95-ваттный тепловой пакет, и производить такие APU в достаточных количествах AMD не смогла. Поэтому поставки данной модификации носили очень ограниченный характер, причём получить эти процессоры могли только партнёры компании из числа крупных сборщиков по спецзаказам.

Но прогресс не стоит на месте. Постепенно AMD вместе со своим производственным партнёром, Globalfoundries, смогла разобраться с технологическими проблемами, и это даже дало AMD возможность месяц назад начать выпуск мобильных Kaveri с расчётным тепловыделением на уровне 35 Вт. А теперь, наконец, компания решила навести порядок и в своей десктопной линейке. В результате пару недель тому назад было объявлено о выходе и скорой массовой доступности долгожданных разновидностей Kaveri, дополняющих имеющийся куцый модельный ряд тремя новыми (почти новыми, если точнее) процессорами: A10-7800, A8-7600 и A6-7400K. Новинки сильно различаются между собой по характеристикам и даже имеют различное количество вычислительных ядер и графических вычислительных устройств, но всех их объединяет одно: они энергоэффективны и обладают типичным тепловыделением на уровне 65 или 45 Вт.

Таким образом, линейка гибридных процессоров Kaveri, предназначенных для использования в настольных компьютерах, приобретает полноту и логическую завершённость. Но не только: она становится и гораздо более актуальной для конечных пользователей. Когда мы тестировали старшего представителя семейства Kaveri, A10-7850K, нам он понравился своим быстрым графическим ядром, но при этом расстроил высоким энергопотреблением, слабой вычислительной производительностью и явно завышенной ценой. Новые же процессоры могут частично ликвидировать недостатки флагмана. У них заметно меньше заявленное тепловыделение и ниже стоимость, но при этом отличия от старых моделей по частотам и внутреннему строению графического ядра не слишком значительны. Следовательно, новинки обладают более выгодным сочетанием производительности и цены, а также производительности и энергопотребления: по крайней мере, так всё выглядит на первый взгляд.

Именно поэтому практическое знакомство с новыми Kaveri для настольных компьютеров показалось нам достаточно интересным, и мы взяли на тест у компании AMD старший Socket FM2+ процессор из числа новинок, A10-7800.

#Подробнее о A10-7800

С выпуском гибридных процессоров Kaveri AMD внедрила архитектуру HSA (Heterogeneous System Architecture — «гетерогенная системная архитектура»), которая даёт скалярным ядрам общего назначения и шейдерным кластерам графического ядра равноправный доступ в системную память. С этих пор маркетинговый отдел AMD отказался от отдельного исчисления x86-ядер и оперирует понятием обобщённых ядер, в число которых теперь входят и графические ресурсы — шейдерные кластеры. В соответствии с этой парадигмой A10-7850K представлялся как 12-ядерный APU, a A10-7700K — как 10-ядерный гетерогенный процессор.

Новые APU семейства Kaveri также поддерживают HSA, а потому AMD говорит о A10-7800 как о 12-ядерном процессоре, о A8-7600 — как о 10-ядерном, а о A6-7400K — как о шестиядерном. На самом же деле с позиций x86-архитектуры A10-7800 и A8-7600 — это четырёхъядерники, а A6-7400K — двухъядерный процессор. Полные же характеристики всей линейки Kaveri для настольных компьютеров выглядят так:

AMD A10-7850KAMD A10-7800AMD A10-7700KAMD A8-7600AMD A6-7400K
Кодовое имя Kaveri Kaveri Kaveri Kaveri Kaveri
Ядра 4 ядра (2 модуля) 4 ядра (2 модуля) 4 ядра (2 модуля) 4 ядра (2 модуля) 2 ядра (1 модуль)
Микроархитектура Steamroller Steamroller Steamroller Steamroller Steamroller
Процессорный разъём Socket FM2+ Socket FM2+ Socket FM2+ Socket FM2+ Socket FM2+
Разблокированный множитель Есть Нет Есть Нет Есть
Тактовая частота 3,7 ГГц 3,5 ГГц 3,4 ГГц 3,1 ГГц 3,5 ГГц
Частота в турборежиме До 4,0 ГГц До 3,9 ГГц До 3,8 ГГц До 3,8 ГГц До 3,9 ГГц
L2-кеш 2x2 Мбайт 2x2 Мбайт 2x2 Мбайт 2x2 Мбайт 1 Мбайт
Графическое ядро Radeon R7 Radeon R7 Radeon R7 Radeon R7 Radeon R5
Архитектура GPU GCN 1.1 GCN 1.1 GCN 1.1 GCN 1.1 GCN 1.1
Шейдерные процессоры 512 512 384 384 256
Частота GPU 720 МГц 720 МГц 720 МГц 720 МГц 756 МГц
Поддержка DDR3 DDR3-2133 DDR3-2133 DDR3-2133 DDR3-2133 DDR3-1866
TDP 95 Вт 65 Вт 95 Вт 65 Вт 65 Вт
Официальная цена $173 $153 $152 $101 $77

Новый процессор A10-7800, о котором, собственно, и пойдёт речь дальше, на первый взгляд, очень похож на флагмана в линейке Kaveri, A10-7850K. У него такое же количество вычислительных ядер и такое же графическое ядро Radeon R7, а небольшие отличия есть лишь в тактовой частоте, которая на 100-200 МГц ниже. При этом новинка лишена разблокированного множителя, но зато принадлежит к 65-ваттному тепловому пакету. Таким образом, A10-7800 представляется как отличный Socket FM2+ процессор для тех пользователей, которым не нужен разгон. Он медленнее флагмана всего лишь на 5 процентов, но при этом — на 30 процентов экономичнее и на 12 процентов дешевле.

Представленные попутно с A10-7700 процессоры A8-7600 и A6-7400K тоже кажутся достаточно любопытными предложениями. A8-7600 мы уже имели возможность подробно протестировать в январе, а A6-7400K — это разблокированный двухъядерник, играющий в той же нише, что и недавно представленный Intel Pentium G3258. Впрочем, никаких выводов о разгонном потенциале A6-7600K мы пока сделать не можем, но тем не менее в качестве базы для дешёвых компьютеров он будет интересен независимо ни от чего.

Что же касается A10-7800, то по своей цене он сопоставим со старшими процессорами Intel Core i3. И это, пожалуй, — более справедливое позиционирование. Как мы имели возможность убедиться на примере A10-7850K, четырёхъядерные процессоры AMD, построенные на микроархитектуре Steamroller, заметно проигрывают в производительности в общеупотребительных задачах четырёхъядерным Haswell. А вот для интеловских двухъядерников они могут стать очень неплохой альтернативой, поэтому цена A10-7800 выглядит не такой неоправданной, как у старшего Kaveri.

Однако есть один нюанс: процессоры Kaveri конкурируют не только с процессорами Intel, но и со своими предшественниками — гибридными процессорами Richland, продолжающими оставаться на рынке. Конечно, Kaveri — это более актуальный продукт, производимый с применением самого современного для AMD 28-нм техпроцесса. Вычислительные ядра в этих процессорах имеют более совершенную микроархитектуру Steamroller, а графика построена на той же архитектуре GCN 1.1, что и современные флагманские графические карты. Однако всё это не делает Kaveri однозначно лучше Richland. Дело в том что с внедрением в гетерогенные процессоры нового дизайна, AMD несколько пересмотрела свой подход к их проектированию. Во-первых, введённый в использование 28-нм технологический процесс стал оптимизироваться не для покорения высоких тактовых частот, а для более плотного размещения транзисторов и снижения тепловыделения. Во-вторых, хотя эта производственная технология и позволила заметно увеличить сложность полупроводникового кристалла, основной приоритет в освоении открывшегося потенциала сильно сдвинулся в сторону графической составляющей. Ей в Kaveri отдано примерно 47 процентов всего транзисторного бюджета.

В результате A10-7800, который по всем формальным признакам должен быть заменой для старого 65-ваттного четырёхъядерника A10-6700, полноценной его альтернативой всё же не является. A10-6700 имеет существенно более высокие тактовые частоты: базовую — 3,7 ГГц и максимальную — 4,3 ГГц. Конечно, можно надеяться на то, что более низкие частоты A10-7800 будут компенсироваться преимуществами микроархитектуры Steamroller, которая предполагает появление индивидуального декодера инструкций в каждом вычислительном ядре. Однако, как показывает практика, все сделанные в новой микроархитектуре изменения в большинстве случаев увеличивают число обрабатываемых за такт инструкций лишь на единицы процентов и не перекрывают отставание в тактовой частоте в полной мере.

Поэтому в вычислительной производительности в общеупотребительных приложениях A10-7800, скорее всего, будет проигрывать своему предшественнику рода Richland. Зато графическое ядро новинки, вне всяких сомнений, намного мощнее. Количество шейдеров во встроенном GPU процессора A10-7800 выше в полтора раза и доведено до 512 штук, плюс используется более эффективная архитектура GCN, пришедшая на смену VLIW4.

Есть у A10-7800, как и других 65-ваттных процессоров линейки Kaveri, и ещё одна интересная особенность — конфигурируемый TDP. Это значит, что любой из 65-ваттных APU имеет два рабочих режима. Один — стандартный, а второй — с повышенной энергоэффективностью. Во втором режиме, который может быть включён через BIOS материнской платы для любого процессора с 65-ваттным тепловым пакетом, его TDP ограничивается ещё более серьёзной границей 45 Вт. В таком режиме рабочие частоты процессора, естественно, дополнительно снижаются, однако AMD обещает, что реальный средневзвешенный уровень производительности страдает не сильно. Например, для A10-7800 приводится такая оценка: в 45-ваттном режиме быстродействие падает всего лишь на 6-7 процентов относительно 65-ваттного, но энергопотребление снижается почти на треть.

Иными словами, в то время, как Intel предлагает целую россыпь энергоэффективных CPU с различными значениями расчётного тепловыделения, AMD решила идти иным путём и предлагает процессоры, уровень экономичности которых может быть установлен самим пользователем. Это — очень хороший вариант для энтузиастов, собирающих на базе APU компании AMD компактные и тихие системы вроде HTPC, однако не слишком удобный для поставщиков компьютеров, которые в описании своих систем будут вынуждены указывать не только наименование процессора, но и их частоты, которые теперь могут разниться в зависимости от целевого TDP.

Вот, например, как работает A10-7800. В 65-ваттном режиме под высокой многопоточной вычислительной нагрузкой его типичная частота устанавливается на отметке 3,6 ГГц. Это — на 100 МГц выше номинальной частоты, которая заявлена в спецификациях.

При небольшой однопоточной нагрузке процессор, как и обещано производителем, способен разгоняться до 3,9 ГГц.

Если же для этого же процессора снизить целевое TDP до 45 Вт, то типичная рабочая частота при многопоточной нагрузке будет составлять лишь 3,0 ГГц.

При этом авторазгон при небольшой нагрузке на вычислительные ресурсы будет ограничиваться частотой порядка 3,5-3,6 ГГц.

Максимальная частота графического ядра при этом столь явному изменению не подвержена. Как в 65-ваттном, так и в 45-ваттном режиме она остаётся равной заявленным в спецификациях 720 МГц.

Однако при выборе для A10-7800 45-ваттного теплового пакета эта частота также окажется непостоянной и будет снижаться в зависимости от того, решением каких задач занят графический процессор. Так, обычная игровая 3D-нагрузка может приводить к её уменьшению до 654 МГц или в некоторых случаях даже до 554 МГц в зависимости от сложности ложащейся на GPU работы. Такие «проседания» носят не эпизодический, а систематический характер, но если для A10-7800 выбрать стандартный TDP 65 Вт, то скорость графики, в отличие от вычислительных ядер, будет оставаться постоянной: GPU всегда будет работать на паспортных 720 МГц.

Самое же неприятное во всех неочевидных алгоритмах изменения частот Kaveri — это то, как вычислительные ядра этого процессора реагируют на активацию встроенного графического ядра. Простое включение 3D-режимов немедленно приводит к тому, что реальная частота A10-7800 независимо ни от чего падает до 2,5 ГГц. Это — не троттлинг, не реакция на повышение температуры, а жёстко зафиксированное правило: любая нагрузка на встроенный GPU заставляет процессор существенно снижать частоту своей CPU-части и деактивировать все технологии авторазгона. Такое падение частоты наверняка станет очень неприятным сюрпризом для геймеров, которые получат гораздо более низкую вычислительную мощность, чем та, о которой говорится в официальных характеристиках.

Таким образом, приводимые AMD в спецификациях частоты для Kaveri не совсем правдивы и не раскрывают всех особенностей их функционирования. В реальности скорость работы может изменяться в гораздо более широких пределах. Очень обидно, но касается это лишь нижней границы частоты. Например, у рассматриваемого в этом обзоре A10-7800 минимальная рабочая частота вычислительных ядер составляет совсем не обещанные 3,5 ГГц, а всего лишь 2,5 ГГц. При этом максимальная частота в турборежиме в характеристиках указана верно — 3,9 ГГц.

Тестирование. Выводы

#Описание тестовых систем и методики тестирования

Учитывая, что главный герой этого обзора, процессор A10-7800, относится к числу энергоэффективных решений, обладающих продвинутой интегрированной графической подсистемой, все тесты мы проводили без использования дискретной видеокарты. Именно для использования в таком виде и приобретаются большинством покупателей процессоры в исполнении Socket FM2+: их встроенный GPU достаточно хорош для того, чтобы они могли выступать основой универсальной системы начального уровня.

В качестве соперников для A10-7800 нами были взяты предшествующие представители семейства Kaveri, A10-7700K и A10-7850K, пара чётырёхъядерных процессоров семейства Richland, а также процессоры Intel Core i3 поколения Haswell. Среди двухъядерников Intel для сравнения с A10-7800 мы выбрали i3-4370, близкий к A10-7800 по цене, и Core i3-4160, который стоит на 25 процентов дешевле.

В итоге список задействованных в тестировании аппаратных компонентов выглядел следующим образом:

  • Процессоры:
    • AMD A10-7850K (Kaveri, 4 ядра, 3,7-4,0 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • AMD A10-7800 (Kaveri, 4 ядра, 3,5-3,9 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • AMD A10-7700K (Kaveri, 4 ядра, 3,4-3,8 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • AMD A10-6800K (Richland, 4 ядра, 4,1-4,4 ГГц, 2x2 Мбайт L2, Radeon HD 8670D);
    • AMD A10-6700 (Richland, 4 ядра, 3,7-4,3 ГГц, 2x2 Мбайт L2, Radeon HD 8670D);
    • Intel Core i3-4370 (Haswell, 2 ядра + HT, 3,8 ГГц, 2x256 Кбайт L2, 4 Мбайт L3, HD Graphics 4600);
    • Intel Core i3-4160 (Haswell, 2 ядра + HT, 3,6 ГГц, 2x256 Кбайт L2, 3 Мбайт L3, HD Graphics 4400).
  • Процессорный кулер: Noctua NH-D15.
  • Материнские платы:
    • ASUS A88X-Pro (Socket FM2+, AMD A88X);
    • ASUS Z97-Pro (LGA1150, Intel Z97).
  • Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill [TridentX] F3-2133C9D-16GTX).
  • Дисковая подсистема: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
  • Блок питания: Seasonic Platinum SS-760XP2 (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Enterprise x64 с использованием следующего комплекта драйверов:

  • AMD Catalyst Software Suite 14.4;
  • AMD Chipset Drivers 14.4;
  • Intel Chipset Device Software 10.0.14;
  • Intel Management Engine Driver 10.0.0.1204;
  • Intel Rapid Storage Technology 13.1.0.1058;
  • Intel HD Graphics Driver 15.36.64.3652.

Описание использовавшихся для измерения производительности инструментов:

Бенчмарки:

  • Futuremark PCMark 8 Professional Edition 2.0.228 — тестирование в сценариях Home (обычное домашнее использование PC), Creative (использование PC для развлечений и для работы с мультимедийным контентом) и Work (использование PC для типичной офисной работы). Используется conventional-режим бенчмарка, без OpenCL-ускорения.
  • Futuremark 3DMark Professional Edition 1.3.708 — тестирование в сценах Sky Driver, Cloud Gate и Fire Strike.
  • Rightware BasemarkCL 1.1 — специализированный синтетический бенчмарк OpenCL для измерения вычислительной производительности интегрированных графических адаптеров. В тесте используются алгоритмы обработки видео и изображений, физические симуляции и фрактальные алгоритмы.

Приложения:

  • Adobe Photoshop CC — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
  • Autodesk 3ds max 2015 — тестирование скорости финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Space_Flyby из тестового пакета SPEC.
  • Internet Explorer 11 — тестирование производительности при работе интернет-приложений, построенных с использованием современных технологий. Применяется специализированный тест WebXPRT 2013, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.
  • Luxmark 2.0 — основанный на движке рендеринга LuxRender бенчмарк OpenCL, в котором вычислительные способности графических процессоров используются для реалистичного рендеринга методом трассировки лучей. При тестировании используется включающая 488 тыс. треугольников сцена Sala и одновременный обсчёт результата на вычислительных и графическом ядрах.
  • WinRAR 5.1 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
  • x264 r2431 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный 1080p@50FPS AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • X265 1.2+507 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл.

Игры:

  • Battlefield 4 — версия 111433 с поддержкой x86-64. Разрешение 1920х1080, качество графики — низкое, сглаживание — отключено.
  • GRID Autosport, версия от 30.07.2014 с поддержкой AVX. Разрешение 1920х1080, качество графики — высокое, сглаживание — отключено.
  • Metro: Last Light, версия 1.0.0.15. Разрешение 1920х1080, DirectX 11, качество графики — низкое, сглаживание — отключено.
  • Thief, версия 1.5 build 4158.5. Разрешение 1280x720, качество графики — низкое, сглаживание — отключено.
  • World of Tanks, версия 0.9.2. Разрешение 1920х1080, качество графики — низкое, сглаживание — отключено.

#Производительность в комплексных тестах

Мы уже тестировали процессоры семейства Kaveri, поэтому были готовы к таким результатам. То, что с точки зрения вычислительной производительности они медленнее своих предшественников, Richland, никаким сюрпризом для нас не является. Новый A10-7800 ничего здесь исправить не может, ведь его тактовая частота ниже, чем у A10-7850K. В результате новинка проигрывает не только A10-6800K, но и A10-6700 во всех сценариях, кроме Creative. При обработке же мультимедийного наполнения A10-7800 в 65-ваттном режиме всё же слегка быстрее A10-6700, что, очевидно, обуславливается явной многопоточностью такой нагрузки, для которой наличие отдельного декодера на каждое из ядер Kaveri оказывается очень кстати.

Впрочем, ни о каком заметном приросте быстродействия у нового поколения APU компании AMD речь, конечно, не идёт даже в этом случае. И в результате его представители продолжают оставаться медленнее альтернативных процессоров Intel. Несмотря на то, что A10-7800 имеет не такую большую стоимость, как A10-7850K, позволяя нам сопоставлять его не с четырёхъядерниками, а с двухъядерниками Core i3, конкурирующие CPU всё равно выглядят явно лучше. Например, преимущество Core i3-4370 перед A10-7800 составляет от 15 до 30 процентов. Более того, A10-7800 проигрывает и гораздо более дешёвому Core i3-4160.

Перевод же A10-7800 в 45-ваттный режим приводит к дополнительному уменьшению производительности в рамках 5-7 процентов.

#Производительность в приложениях

Используемый нами комплексный тест PCMark 8 выдал очень точную оценку, в реальных ресурсоёмких приложениях мы видим такую же картину: A10-7800 не столь производителен, как того хотелось бы. Он почти всегда проигрывает двухъядерным представителям семейства Haswell, относящимся к классу Core i3, которые стоят столько же или даже дешевле. Причём особенно сильно отставание проявляется в приложениях, требующих высокой удельной производительности от отдельных ядер. В случае же явно многопоточной нагрузки разрыв между A10 и Core i3 сокращается, а в отдельных случаях, например при рендеринге в 3ds max, A10-7800 даже опережает Core i3-4370.

При этом нельзя сказать, что A10-7800 работает однозначно быстрее, чем A10-6700. Вышедший год назад гибридный процессор поколения Richland на фоне новинки не выглядит устаревшим решением, он сравним с ней по производительности. Да, в многопоточных приложениях A10-7800 всё же немного быстрее, но в остальных ситуациях картина диаметрально противоположная.

Зато A10-7800 может быть сильнее, чем его предшественник, ограничен по тепловыделению. Конечно, при выборе для него 45-ваттного теплового пакета производительность дополнительно снижается на величину до 15 процентов, но такое свойство новинки может позволить её применение там, где представить Socket FM2+ процессор ранее было попросту невозможно.

Достаточно блеклое выступление A10-7800 в классических задачах не стоит воспринимать как катастрофу. Напомним, AMD создавала свои Kaveri, вкладывая в них совершенно иную философию. В этих процессорах очень серьёзный акцент сделан на производительность графического ядра, а вычислительные ядра играют в них вторичную роль. Поэтому для получения полной картины нужно принимать во внимание и скорость работы таких процессоров в задачах, использующих мощности GPU. К ним и перейдём.

#Производительность в играх

Популярный тест игровой графики 3DMark явно указывает на то, что мощность графического ядра у A10-7800 очень высока. Этот энергоэффективный процессор по своим результатам почти не проигрывает флагманскому Kaveri и значительно превосходит конкурирующие предложения компании Intel. Но прежде чем делать какие-то выводы, давайте взглянем на ситуацию в реальных играх.

Хорошая новость состоит в том, что по производительности в играх A10-7800 очень близок к флагманскому Kaveri, A10-7850K. Это объясняется одинаковой структурой графического ускорителя класса Radeon R7, который встроен в тот и другой процессор. В обоих случаях GPU содержит по 8 вычислительных кластеров, то есть располагает массивом из 512 шейдеров. Частота, на которой функционирует графический движок, тоже одинакова. Таким образом, A10-7800 можно смело включать в число десктопных гибридных процессоров, обладающих самой быстродействующей на сегодняшний день встроенной графикой. Преимущество A10-7800 в игровой производительности перед Core i3-4370 с графическим ядром Intel HD Graphics 4600 достигает полуторакратного размера. Если же сравнивать A10-7800 с предшественником A10-6700 семейства Richland, то тут превосходство новинки доходит до 30 процентов.

К сожалению, столь же впечатляющим результатом A10-7800 не может похвастать в том случае, если он работает в своём самом энергоэффективном 45-ваттном режиме. Как мы указывали в описательной части обзора, установка жёстких рамок теплового пакета ограничивает частоту GPU, поэтому игровое быстродействие A10-7800 снижается на величину порядка 10 процентов, что уравнивает этот процессор с A10-7700K и A10-6800K, у которых в полтора раза меньше шейдеров.

Однако это — не самый страшный недостаток A10-7800. Прежде чем начать говорить о A10-7800 как о процессоре, который может стать отличной основой для игровой системы начального уровня, следует принять во внимание один очень неприятный момент. При игровой нагрузке частота вычислительных ядер этого процессора принудительно снижается до 2,5 ГГц. Из-за того, что удельная производительность отдельных x86-ядер и так является слабым местом микроархитектуры Steamroller, это влечёт за собой падение производительности в процессорозависимых играх, не умеющих эффективно распараллеливать нагрузку по четырём ядрам. World of Tanks — яркий пример такой игры. Хотя, казалось бы, этот многопользовательский танковый симулятор — весьма подходящая игра для систем, построенных на APU, в ней A10-7800 заметно проигрывает и предшественникам серии Richland, и конкурирующим Haswell.

#Производительность OpenCL

Отдельное внимание мы уделили и тестам гетерогенной производительности, когда счётная нагрузка с использованием программного интерфейса OpenCL переносится на графическое ядро. AMD активно сотрудничает с разработчиками программного обеспечения, призывая их внедрять поддержку вычислений на графическом ядре в свои продукты. Благо процессоры Kaveri, и в особенности их старшие модификации, обладают GPU c гигантским вычислительным потенциалом. Однако пока распространение гетерогенных алгоритмов происходит не слишком активно. Число реально существующих приложений, которые могут исполняться на всех двенадцати обобщённых ядрах A10-7800 с заметным приростом производительности, остаётся ограниченным. Отчасти это происходит из-за небольшого числа высокопараллельных алгоритмов в реальном мире, отчасти из-за сложности необходимой оптимизации.

Как бы то ни было, в этом разделе мы прибегли к использованию синтетического теста BasemarkCL, который оценивает вычислительную скорость GPU при обработке видео и изображений, симуляции физического взаимодействия большого числа частиц и во фрактальных алгоритмах.

На самом деле, здесь A10-7800 выглядит очень впечатляюще. Производительность не сдерживается ни пропускной способностью памяти, ни низкой частотой x86-ядер, в результате чего этот гибридный процессор превосходит Core i3-4370 на 64 процента.

Второй тест — рендеринг методом трассировки лучей в LuxRender. Он интересен тем, что тут одновременно задействуются и вычислительные, и графические ядра.

В таких условиях A10-7800 уже не может похвастать недосягаемой скоростью. Его суммарная производительность примерно соответствует уровню Core i3-4370.

#Энергопотребление

Выпуская A10-7800, компания AMD наделила его тепловым пакетом 65 Вт, в то время как предшествующие Kaveri имели расчётный уровень тепловыделения 95 Вт. Поэтому от новинки ожидается повышенная энергоэффективность, которая должна позволить её установку в компактные и тихие системы. Давайте посмотрим, как же обстоит дело на практике.

На следующих ниже диаграммах приводится полное потребление систем (без монитора), использующих встроенную процессорную графику, измеренное на выходе из розетки, в которую подключен блок питания тестовой платформы. В суммарный показатель автоматически включается и КПД самого блока питания, однако, поскольку используемая нами модель БП, Seasonic Platinum SS-760XP2, имеет сертификат 80 Plus Platinum, его влияние должно быть минимально. Все имеющиеся в процессорах энергосберегающие технологии активированы. Нагрузка на процессорные ядра создаётся 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX, а графические ядра нагружаются утилитой Furmark 1.13.0.

Потребление современных процессоров в состоянии простоя близко к нулю, так что показатели, приведённые на графике выше, касаются скорее платформ в целом, нежели исследуемых APU. Поэтому не удивительно, что, вне зависимости от того, какой процессор установлен в платформе Socket FM2+, потребление получается примерно одинаковым. Система же на базе Haswell потребляет меньше — сказываются энергосберегающие технологии, которыми располагают современные наборы логики Intel.

При максимальной нагрузке на вычислительные ядра система на базе A10-7800 потребляет примерно на 15 Вт меньше, чем аналогичная конфигурация с процессором A10-7850K. Откровенно говоря, мы надеялись увидеть более разительное отличие. Но его можно наблюдать, только если ограничить тепловой пакет A10-7800 45-ваттной величиной. В этом случае рассматриваемый процессор позволяет собрать даже более энергоэффективную конфигурацию, чем двухъядерные Haswell. Впрочем, это закономерно: расчётное тепловыделение современных Core i3 — 54 Вт.

Графическая нагрузка не вызывает столь же серьёзного роста тепловыделения и энергопотребления, как вычислительная. Совершенно неудивительно, что у 65-ваттного процессора A10-7800 частота и конфигурация графического ядра такая же, как и у 95-ваттного A10-7850K, — в дополнительных ограничениях не было никакого смысла.

Если учесть, что при нагрузке на графическое ядро тактовая частота A10-7800 снижается, сравнительно невысокое потребление этого процессора при комплексной нагрузке совсем не удивляет. Даже в стандартном 65-ваттном состоянии он способен конкурировать по своим энергетическим аппетитам с Haswell семейства Core i3. Урезание же для A10-7800 расчётного теплового пакета до 45 Вт позволяет и вовсе впихнуть всю платформу целиком в 85-ваттные рамки.

До сих пор были приведены результаты измерения энергопотребления в экстремальных режимах, когда нагрузка на блоки APU создавалась специальными утилитами. Если же речь идёт об обычной для среднестатистического пользователя ситуации, то картина получается следующей (для примера потребление измерялось в игре World of Tanks):

Использование A10-7800 вместо A10-7850K даёт примерно 15-ваттную экономию. Платформы на базе Core i3 поколения Haswell потребляют меньше, но у предложения AMD существует отлично работающая возможность дополнительного урезания энергетических аппетитов. Ценой некоторого снижения производительности она позволяет сделать из A10-7800 вполне «холодный» APU.

#Выводы

Когда в начале этого года мы впервые тестировали процессоры Kaveri, к ним нашлось немало претензий. С выходом обновлённых модификаций A10-7800, A8-7600 и A6-7400K AMD смогла исправить часть недостатков этих APU. В частности, свежие процессоры получили более выгодное сочетание цены и производительности и стали заметно экономичнее. Однако многие проблемы Kaveri имеют слишком глубокие корни для того, чтобы с ними можно было бороться без внесения серьёзных изменений в существующую микроархитектуру. Поэтому в целом пополнившееся семейство гибридных процессоров в Socket FM2+ исполнении продолжает оставаться не слишком привлекательным для обычных покупателей недорогих персональных компьютеров.

По результатам тестирования мы даже не можем сказать, что рассмотренный нами новый процессор A10-7800 выступил лучше своего 65-ваттного предшественника поколения Richland, A10-6700. Да, скорость работы графического ядра возросла, и местами это очень заметно. Но вместе с тем процессор поколения Kaveri получил более низкие тактовые частоты и стал медленнее с точки зрения традиционной однопоточной x86-производительности. Уровень же его энергопотребления при этом практически не изменился.

Специалисты по маркетингу из AMD пытаются убедить нас в том, что A10-7800 превосходит все конкурирующие решения благодаря поддержке вычислений на графическом ядре и технологии HSA. И это отчасти так — в синтетических OpenCL-тестах вычислительный потенциал графического ядра Kaveri очень хорошо заметен. Но дело в том, что в большинстве повседневно используемых Windows-программ поддержки OpenCL нет либо она носит формальный характер и не даёт заметного прироста в скорости работы. Но и даже в том случае, когда приложение использует мощности графики для параллельных вычислений, суммарная производительность CPU- и GPU-частей Kaveri оказывается не лучше, чем у конкурирующего Core i3-4370, — такую картину мы увидели в тесте рендеринга LuxMark.

Поэтому единственная область, где APU компании AMD могли бы держать непререкаемое лидерство — это 3D-игры. У рассмотренного сегодня A10-7800, вне всяких сомнений, — лучшая интегрированная графика в мире процессоров для настольных ПК. Однако изъян нашёлся и тут: из-за того, что тактовая частота A10-7800 при активации графического ядра принудительно снижается до 2,5 ГГц, некоторые игры начинают ощущать нехватку процессорной производительности, что в конечном итоге «просаживает» частоту кадров. Именно такую обескураживающую картину мы получили в популярном сетевом танковом симуляторе World of Tanks, где старшие Kaveri уступают и своим предшественникам, и процессорам Core i3.

Но самое главное, если вашей целью является сборка недорогой игровой системы, то существенно более быструю, чем с Kaveri, конфигурацию примерно за те же деньги можно получить, совместив процессор класса Intel Pentium с дискретной видеокартой вроде Radeon R7 250X.

Суммируя всё сказанное, остаётся лишь вновь повторить нашу старую сентенцию о том, что APU компании AMD имеют смысл лишь там, где во главе угла стоит не сочетание цены и графической или вычислительной производительности, а иные факторы вроде размера системы, её шумности, компактности, энергопотребления или тепловыделения. Другими словами, Kaveri — это прежде всего мобильный чип (и, надо сказать, очень неплохой), поэтому в настольный компьютер он хорошо вписывается только в том случае, если такой десктоп в каких-то аспектах похож на ноутбук. То есть A10-7800 может стать подходящим выбором для моноблоков, HTPC, ультракомпактных систем, игровых консолей вроде «паровой машины», но не более того.

К счастью, AMD уже готовит следующую версию APU с кодовым именем Carrizo, в которой будет внедрена улучшенная базовая микроархитектура Excavator. Хочется надеяться, что удельная производительность x86-ядер при этом будет повышена, плюс поднимутся и тактовые частоты. Ведь выполнения этих двух простых условий наверняка будет достаточно для того, чтобы APU компании AMD перестали быть нишевым продуктом и переросли в привлекательные общеупотребительные решения для настольных персональных систем.



Оригинал материала: https://3dnews.ru/900580