Память MRAM подсказала лучший путь для управления квантовыми состояниями кубитов
Читать в полной версииОдной из проблем масштабирования квантовых компьютеров остаются слишком большие размеры кубитов — элементов, сохраняющих и отдающих квантовые состояния в процессе вычислений. Уменьшить размер кубита мешают множество факторов, среди которых значительное место занимают методы измерения и управления их квантовыми состояниями с помощью микроволн. Это очень неизбирательный метод. Им невозможно «посветить» на электрон или атом, не затронув соседние.
В то же время учёным хорошо известно явление, при котором на электроны можно действовать избирательно. Это спин-поляризованный ток, который возникает при правильном приложении электромагнитного поля к источнику электронов. В электромагнитном поле спины электронов принимают одинаковую ориентацию и могут точечно воздействовать на тот же кубит. Именно на этом принципе работает магниторезистивная память с переносом спина (STT-MRAM), которая уже есть в продаже. Учёные из Швейцарской высшей технической школы Цюриха (ETH Zurich) решили выяснить, можно ли этим методом управлять квантовыми состояниями атомов или молекул.
Исследователи создали «идеальную», как они утверждают, модель атомов и электронов в свободном состоянии. Для этого они поместили молекулы пентацена (ароматического углеводорода) на серебряную подложку, а ещё ранее на серебряную подложку был нанесён слой оксида магния. Затем на кончике иглы сканирующего туннельного микроскопа были собраны несколько атомов железа — это соорудило там своеобразный магнит, который ориентировал в одном направлении спины слетающих с иглы электронов и, фактически, создавал спин поляризованный ток.
Как выяснилось в ходе экспериментов, возникающий на туннельном эффекте спин-поляризованный ток мог избирательно воздействовать на отдельные молекулы и помогал считывать характеристики облака их электронов. Кроме того, спин поляризованный ток изменял спин молекулы, доказывая, что этот процесс поддаётся контролю и измерению. С помощью радиочастотного излучения (электромагнитного поля) подобного разрешения получить невозможно, что обещает найти применение при разработке масштабируемых квантовых компьютеров.