Учёные превратили фотоны в световые торнадо, открыв путь для взрывного роста пропускной способности в оптике

Читать в полной версии

Ёмкость каналов оптических линий связи определяется множеством факторов — от длин волн и фаз до поляризации света. На протяжении десятилетий учёные шаг за шагом внедряли новые методы передачи и кодирования фотонов, чтобы расширить пропускную способность таких систем. Теперь же сделанное открытие обещает многократно увеличить ёмкость оптоволоконных каналов, что особенно актуально для платформ искусственного интеллекта и центров обработки данных.

Источник изображения: University of Melbourne

В качестве основы для исследования влияния на фотоны различных сил с целью возможного кодирования информации, учёные из Мельбурнского университета (Австралия) и их коллеги из Университета Ханьян (Южная Корея) изучили сцепки двумерных материалов типа графена. Такие материалы могут достаточно сильно слипаться друг с другом за счёт так называемых сил Ван-дер-Ваальса. Они слабее атомного взаимодействия, но достаточно сильны, чтобы надёжно удерживать слоистые материалы друг с другом, ведь эти же силы удерживают даже куда более крупных пауков, свободно бегающих по потолку.

Сводная команда учёных открыла новый способ создавать «световые завихрения», или спиралевидные водовороты света, с помощью вещества, удерживаемого вместе с помощью этой силы. Это может привести к повышению скорости, доступности и безопасности оптических систем обмена данными которая использует оптические волокна для передачи света на большие расстояния.

Опираясь на уникальные свойства ультратонких искусственных слоистых кристаллов, называемых материалами Ван-дер-Ваальса (vdW), команда создала световые вихри в лаборатории, работая с материалами тоньше человеческого волоса. До сих пор для создания таких вихрей требовалось громоздкое оборудование и дорогостоящие эксперименты. Но сделанное открытие может кардинально изменить ситуацию в сфере широкополосной оптической связи.

«Благодаря спиральной структуре световые вихри создают дополнительное измерение для кодирования информации. Подобно созданию дополнительных полос на магистрали для передачи данных, это позволит одновременно передавать больше информации», — объяснили учёные.

«Мы обнаружили, что когда свет с круговой поляризацией, в котором все световые частицы (фотоны) вращаются в одном направлении, попадает в материал с ван-дер-ваальсовыми силами, направление его вращения меняется, и он приобретает спиралевидную форму, превращаясь в оптический вихрь, или световой водоворот». И этот результат впервые получен экспериментально.

По оценкам учёных, технология позволит реализовать многобитовое кодирование каждого фотона в зависимости от направления его вращения или других характеристик, что может повысить ёмкость оптоволоконных каналов связи до 50 раз.

«Наш подход открывает путь к созданию миниатюрных устройств размером с чип, которые смогут значительно увеличить пропускную способность оптических сетей. Это крайне важно для отрасли и создаёт предпосылки для появления более компактных, дешёвых и масштабируемых решений, применимых в том числе в спутниковых системах связи», — резюмировали учёные.