Российские учёные придумали, как встроить многоуровневый подход в квантовые алгоритмы — от этого выиграют все

Читать в полной версии

Учёные Университета науки и технологий МИСИС совместно с исследователями Российского квантового центра (РКЦ) систематизировали современные подходы к реализации квантовых алгоритмов с использованием многомерных квантовых систем — кудитов. Зарубежные исследователи редко интересуются этим направлением. В то же время кудиты способны упростить архитектуру квантовых компьютеров и позволить реализацию более сложных алгоритмов, а это дорогого стоит.

Источник изображения: НИТУ МИСИС

«Мы показали, как упростить сложные операции, без которых невозможно большинство квантовых алгоритмов. Обычно для их выполнения требуется множество шагов и дополнительных элементов, что повышает риск ошибок. Использование дополнительных состояний уже имеющихся в кудитах позволяет сократить число шагов для выполнения подобных операций», — отметил директор Института физики и квантовой инженерии НИТУ МИСИС, к.н. Алексей Фёдоров.

В основе квантовых вычислений лежат кубиты — квантовые биты, которые могут находиться одновременно в суперпозиции состояний «0» и «1». Такие системы существенно превосходят классические биты по возможностям обработки информации, но современные квантовые процессоры ограничены по числу кубитов и подвержены ошибкам, что снижает эффективность выполнения алгоритмов. Чтобы преодолеть эти ограничения, российские исследователи обратились к кудитам, которые представляют собой многоуровневые квантовые носители с тремя, четырьмя или большим числом состояний, что теоретически позволяет кодировать и обрабатывать больше информации в рамках одного физического элемента.

Ключевым вкладом группы МИСИС и РКЦ стали разработанные схемы включения дополнительных уровней кудитов исключительно на этапах выполнения определённых операций, после чего система возвращается к стандартной кубитной работе. Такой подход обеспечивает сокращение количества шагов, необходимых для реализации сложных квантовых алгоритмов, и уменьшает риск ошибок, поскольку меньшее число операций означает меньшую вероятность возникновения декогеренции и других технологических проблем. Учёные подчёркивают, что их схемы не привязаны к конкретной технологической платформе, будь то сверхпроводниковые цепи, ионные ловушки или фотонные системы.

Предложенное учёными «включение» кудитов в классические квантовые алгоритмические схемы позволит незнакомым с многоуровневыми системами коллегам начать использовать кудиты без переосмысления хорошо знакомых им алгоритмов. В то же время кудиты могут сократить число операций в классических алгоритмах или позволят запускать алгоритмы на платформах с меньшим числом физических элементов, чем требуется для работы этих алгоритмов в обычном режиме.

«Мы сознательно фокусируемся на квантовых алгоритмах, представленных в виде кубитных цепочек, поскольку именно в таком виде сегодня описывается подавляющее большинство квантовых алгоритмов. Это позволяет напрямую связать теоретические идеи с реальными аппаратными платформами и показать, как кудиты могут быть использованы без необходимости полностью переосмысливать существующие алгоритмы», — уточнила к.ф.-м.н. Анастасия Николаева, старший научный сотрудник группы квантовых информационных технологий РКЦ и НИТУ МИСИС.