Самое дотошное в истории изучение тёмной энергии не дало окончательных ответов об устройстве Вселенной
Читать в полной версииНа днях вышло сразу 19 статей, посвящённых наиболее полному анализу шестилетнего обзора Dark Energy Survey (DES) по изучению свойств тёмной энергии — гипотетической силы, которая с ускорением расширяет нашу Вселенную. С 2013 по 2019 год четырьмя способами изучалось распределение галактик и скоплений на глубину до 10 млрд световых лет, и теперь у учёных есть что сказать об этом. Как водится, мнения разделились.
Источник изображения: CTIO/NOIRLab
Согласно космологической модели λCDM (лямбда-CDM), наиболее полно описывающей современные представления о структуре и природе нашей Вселенной, 68 % энергии во Вселенной приходится на тёмную энергию, ещё 28 % на тёмную материю и только 5 % на видимую материю, включая нас с вами (в сущности, мы тоже энергия, что следует из всем известного уравнения E=mc2). Энергия равна массе через константу — скорость света в квадрате.
В обзоре DES, охватившем участок примерно в 1/8 неба, расстояния между галактиками и скоплениями галактик, а также удалённость этих объектов оценивались по четырём методикам: по распределению барионных акустических колебаний, по «стандартным свечам» — сверхновым типа Ia, по распределению галактик и по эффектам слабого гравитационного линзирования. Задача стояла выяснить, как скорость расширения Вселенной менялась с течением времени.
Тем самым учёные получили наборы данных, которые в совокупности обещают дать наиболее полное представление о поведении тёмной энергии. Основной вопрос, который анализ этого массива данных должен был решить, является ли тёмная энергия постоянной величиной во времени (как в стандартной космологической модели λCDM) или её свойства со временем изменяются, что отражено в расширенной модели ωCDM?
Источник изображения: DES
Как выяснилось, результаты наблюдений в целом согласуются со стандартной моделью λCDM, согласно которой тёмная энергия сохраняет постоянную плотность на всём протяжении наблюдаемого участка Вселенной. Но полученные данные также вписываются в рамки модели ωCDM, допускающей изменение плотности тёмной энергии со временем. При этом наблюдается некоторое несоответствие в том, как галактики группируются в более поздние эпохи. Это несоответствие заметно как в случае предсказаний в рамках λCDM, так и ωCDM.
Авторы отмечают, что несовпадение наблюдений с предсказаниями ниже 5 «сигма» и они не могут претендовать на достоверное открытие. И всё же это может быть зацепка для перехода к новой физике или для окончательного разъяснения сущности тёмной энергии. Полученный результат даёт пищу для проверки других гипотез строения Вселенной, включая возможный пересмотр теории гравитации. Но это будет уже другая история.