Европа разрешила создание в космосе гигантского детектора гравитационных волн
Читать в полной версииВ четверг Комитет научных программ Европейского космического агентства дал добро на подготовку к производству оборудования по созданию космической лазерно-интерферометрической гравитационно-волновой обсерватории проекта LISA. Изготовление трёх детекторов начнётся примерно через год. В космос установка будет выведена гораздо позже, но это будет невероятный рывок в изучении Вселенной.
До недавнего времени люди могли изучать космос в целом спектре электромагнитных излучений от радиодиапазона до оптического и заканчивая гамма-лучами. После запуска в работу в 2015 году лазерно-интерферометрической гравитационно-волновой обсерватории LIGO в США у людей появилась возможность улавливать гравитационные волны. Благодаря этому Вселенная предстала для учёных в новом свете, что невозможно переоценить.
Например, вместе с LIGO мы получили возможность напрямую уловить сигналы от чёрных дыр — невидимых и поэтому пока гипотетических объектов. Проект LISA в космосе позволит улавливать подобные сигналы в намного большем диапазоне явлений вплоть до ожидания детектирования «реликтовых» гравитационных волн.
Гравитационно-волновые обсерватории на Земле — два детектора LIGO в США, один Virgo в Италии и один KAGRA в Японии — ограничены протяжённостью и воздействием разного рода помех. Каждое из плеч земных интерферометров имеет длину около 3 км. По каждому из них благодаря зеркалам многократно курсирует лазерный луч. Если через детектор проходит гравитационная волна, то один из коридоров растягивается или сжимается в процессе искажения геометрии пространства-времени. Тогда луч в этом коридоре проходит с задержкой или опережением луча в соседнем коридоре (коридоры соединены буквой «Г»). В детекторе происходит наложение одного луча на другой и разница в сдвиге фаз расскажет о масштабе события.
Сравнительно небольшая длина коридоров позволяет фиксировать гравитационные волны только большой частоты. Во-первых, это ограничивает нас по массе объектов — LIGO и другие датчики фиксируют волны только от слияний компактных объектов, таких как нейтронные звёзды и небольшие чёрные дыры. Во-вторых, частота гравитационных волн повышается только перед слиянием таких объектов, когда гравитация заставляет их бешено вращаться вокруг общего центра масс.
Чтобы улавливать низкочастотные гравитационные волны, датчики должны быть разнесены далеко-далеко друг от друга, тогда появится возможность следить за гравитацией парных объектов за год до слияния, а также улавливать слияние сверхмассивных чёрных дыр, которые никуда не торопятся и поэтому излучают гравитационные волны в длинноволновом диапазоне.
Согласно проекту LISA, в космос будет выведено три космических аппарата. Каждый из них будет представлять собой лазерный интерферометр, построенный на основе детекторов, уже опробованных на проекте LIGO. Космические детекторы расположат треугольником, в составе которого каждый из них будет направлять луч в сторону двух других. Длина каждого плеча составит 2,5 млн км. Это будет невероятный по своим возможностям инструмент, которого буквально ещё не было в руках учёных. Мы сможем увидеть Вселенную в гравитационном спектре, если так можно сказать. Выше на видео, например, NASA показало, как это может быть на примере Млечного Пути, где каждый источник гравитационных волн привязан к тому или иному событию или объекту. Это почти как заглянуть в суть вещей.
А ведь это не всё! Группа европейских учёных предложила лёгким движением руки превратить проект LISA в LISAmax. Технически нам ничего не мешает разместить в космосе детекторы на другом расстоянии, чтобы повысить их чувствительность к гравитационным явлениям. Поэтому учёные обосновали возможность разнести детекторы на 295 млн километров! Не исключено, что к 2034 году, когда начнётся вывод детекторов LISA в космос, у нас появится возможность сделать этот проект ещё более революционным.