Сегодня 22 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Фото и видео

Анатомия цифрового фотоаппарата

⇣ Содержание

Как кажется на первый взгляд, между цифровым и пленочным фотоаппаратами почти нет различий. И там и там вы нацеливаете объектив на предмет, нажимаете на кнопку затвора и получаете изображение, которое позднее превратится в фотографию. Но на самом деле технология цифрового фотоаппарата намного более изощрена и сложна по сравнению с пленочным.

Если пленочные фотоаппараты дорабатывались и совершенствовались более 160 лет, то цифровые технологии съемки находятся в младенческом возрасте: в лабораторных условиях они используются около 20 лет, а на потребительском рынке цифровые фотоаппараты появились только 7-8 лет назад. Конечно, скорость развития технологии за этот период просто потрясает, но предела пока что не достигнуто, и цифровые технологии съемки будут развиваться в направлениях повышения качества изображения, производительности и удобства управления. В цифровых фотоаппаратах до сих пор остается много острых углов, которые еще требуется отшлифовать.

Сейчас состояние цифровой технологии съемки можно сравнить с другой технологией XX века: автомобилями. Мы только что научились хромировать кузов, изготовлять двигатель и подключать фары. Говоря другими словами, цифровые технологии доказали свое право на жизнь, основы уже явно выделены, и нас ожидает относительно скучный этап дальнейшей эволюции.

Но, хотя нас и ждет скорее экстенсивное, нежели интенсивное, развитие, эта отрасль все же приковывает к себе пристальное внимание. Большинство обозревателей и экспертов предсказывают, что цифровая фотография станет в очень короткое время такой же обыденной вещью как общественный транспорт, скоростные магистрали и другие современные чудеса.

До сих пор главной целью цифрового фотоаппарата была замена пленочного фотоаппарата. Но, как фильмы превзошли театральные постановки, по возможностям цифровой фотоаппарат сейчас значительно обгоняет свой пленочный аналог. Сегодня его предполагаемое использование уже не сводится только к получению статических изображений, фотоаппарат стал визуальным средством связи. За минуту (или даже за нескольких секунд) после съемки фотограф может распечатать изображение, использовать его на презентации, поместить в Интернет или передать по модему (в том числе и беспроводному).



Массив цветных светофильтров

В конечном счете, будет увеличиваться функциональность самого фотоаппарата, так что все показанные возможности будут доступны даже без компьютера. Уже сейчас камеры оснащаются беспроводным инфракрасным интерфейсом для прямого подключения к принтерам, сотовым телефонам и беспроводным сетям. Например, цифровой фотоаппарат HP PhotoSmart 912 может по нажатию клавиши передать выбранные изображения на фотопринтер HP или на подобные фотоаппараты по инфракрасной связи.


Прямая закачка на FTP, просмотр веб-страниц и даже больше

Планируемая к скорому выпуску модель Ricoh RDC i700 способна автоматически закачивать изображения по протоколу FTP через встроенный модем. Для этого фотоаппарат оснащен подобным PDA интерфейсом управления с электронным пером. Таким образом, пользователь сможет передать как статические изображения, так и видеоролики, текст и звук используя заранее подготовленный HTML шаблон.

Кроме того, i700 поддерживает периферию стандарта Type II, например, дополнительный модем, сетевую или ATA карту. В i700 даже интегрирован собственный веб-браузер. Точно также Polaroid PDC-640M содержит встроенный 56,6k модем для подключения по телефонной линии и прямой закачки фотографий на фотосайт Polaroid.

Разработка цифрового фотоаппарата

В этом году несколько производителей анонсировали недорогие цифровые фотоаппараты (например, Kodak mc3 и Samsung Digimax 35MP), совмещенные с MP3 проигрывателями. Многие современные модели могут снимать короткий видеофильм низкого разрешения (включая аудиопоток), который затем можно просмотреть на самом фотоаппарате, на телевизоре или поместить на веб-страницу. Пока что не было объявлено ни одного фотоаппарата с поддержкой Bluetooth или другой современной технологии связи, однако можно наверняка ожидать, что в будущем подобные технологии найдут свое место в цифровых фотоаппаратах.

Безусловно, узкоспециализированные цифровые фотоаппараты (которые могут только снимать изображения) не исчезнут из продажи, но они уже выйдут из сферы интереса потребителей, желающих получить максимальную функциональность за уплаченную цену.

По мере увеличения функциональных возможностей строение цифрового фотоаппарата усложняется: огромное число технологий пытаются впихнуть в такую маленькую коробочку. Сегодня выпускаются крошечные фотоаппараты размером с кредитную карточку или наручные часы (например, Casio WQV1-1CR и SmaL Ultra Pocket), но уже в ближайшем будущем мы увидим устройства размером с брошь или запонку.

Размер и набор возможностей фотоаппарата - это лишь вопрос времени, изобретательности и требований рынка.

В этой статье мы попытаемся разобраться, как работают компоненты цифровой камеры, и что нам даст будущее с точки зрения новых технологий и дизайнов. Но сначала давайте вкратце взглянем на поток данных в цифровой фотографии для лучшего понимания современного состояния технологий.


Основы пленочной фотографии

В обычном пленочном фотоаппарате свет отражается от объекта или сцены и проходит через прозрачные стеклянные или пластиковые линзы, которые фокусируют его на тонком гибком кусочке пластика ("пленка"). Пленка покрыта светочувствительным эмульсионным слоем галоида серебра. Попадающий на пленку свет (фотоны) приводит к немедленной химической реакции, которая после химической обработки помогает проявить и закрепить изображение на пленке. Свет различается по цвету и интенсивности, что приводит к практически идентичному дублированию сцены в результате химической реакции.

Единственными регуляторами света в обычном пленочном фотоаппарате являются затвор (металлический или тканевой занавес или пластинки, которые быстро открываются и закрываются для управления временем выдержки/экспозиции сцены на пленке) и диафрагма (отверстие с изменяемым размером, позволяющее управлять количеством проходящего через линзу света). Перед съемкой фотограф устанавливает значение выдержки и размер диафрагмы. Диафрагма обычно устанавливается вручную при вращении ободка на объективе, который в свою очередь механически регулирует лепестки отверстия, пропускающего свет. Конечно, сегодня многие фотоаппараты (как аналоговые, так и цифровые) обладают некоторым интеллектом, позволяющим автоматически выбрать время выдержки и размер диафрагмы.

Но если мы обратимся к истокам, то современная пленочная фотография в любом случае есть разновидность химического и механического процесса, изобретенного в 1830 году Луисом Дагером и Фоксом Талботом.


Основы цифровой фотографии

В цифровых фотоаппаратах процесс получения изображения намного более сложен. Но, как и в пленочной технологии, принципы и основы будут неизменны в ближайшие годы, независимо от масштаба роста технологий.

Цифровой фотоаппарат Minolta изнутри

В цифровых фотоаппаратах также используется линза, но вместо фокусирования изображения на пленку, свет попадает на светочувствительные ячейки полупроводникового чипа, называемого сенсором (image sensor). Сенсор реагирует на получаемые фотоны, что фиксируется фотоаппаратом. Дальше вычислительный блок фотоаппарата анализирует полученную информацию и определяет необходимые значения выдержки и фокуса, цвет (баланс белого), необходимость вспышки и т.д. Потом сенсор захватывает изображение и передает его на чип АЦП (аналого-цифровой преобразователь), который анализирует аналоговые электрические импульсы и преобразует их в цифровой вид (поток нулей и единичек).

Используя дополнительную вычислительную мощность (цифровые фотоаппараты могут содержать несколько процессоров и других чипов, включая специализированные процессоры и главный процессор), данные проходят дальнейшую обработку с помощью специальных (зависящих от конкретной модели/фирмы) алгоритмов и преобразуются в файл изображения, который уже можно просмотреть. Файл записывается на встроенный или внешний электронный носитель. Далее изображение может быть перенесено на компьютер, выведено на принтер или телевизор. Равно как его можно просмотреть на встроенном в камеру ЖК экране/видоискателе, благодаря чему пользователь может обработать изображение с помощью дополнительных алгоритмов или фильтров, используя встроенный интерфейс (чаще всего работающий через ЖК экран) или просто стереть неудачный снимок и начать все сначала.

На всем протяжении этого многоступенчатого процесса, "интеллект" камеры непрерывно опрашивает операционную систему для немедленной реакции на действия фотографа (которые он производит через многочисленные кнопки, рычаги, регуляторы и ЖК интерфейс). Как видите, цифровой фотоаппарат является сложной системой, где множество данных и инструкций передается по множеству путей. И все это заключено в маленькой легкой коробочке с батарейками, которая умещается в вашей ладони.

Показанный процесс описывает лишь основы получения цифрового изображения. Его детали по-разному реализованы в различных цифровых фотоаппаратах. Давайте более подробно пройдемся по каждому шагу этого процесса в типичной цифровой камере.

Сенсор

До сих пор почти все камеры на рынке оценивались по количеству пикселей, которые может снять цифровой фотоаппарат (чем их больше, тем более детализированной будет фотография). Количество пикселей зависит от физического размера и концентрации элементов на сенсоре. Сенсор является сердцем цифровой камеры, и в качестве сенсора выступает ПЗС или КМОП чип. Сенсор состоит из множества светочувствительных элементов (photosites), содержащих фотодиоды. Элементы на чипе упорядочены и образуют матрицу. Таким образом, элементы матрицы можно сопоставить с пикселями (равно как и назвать). Элементы реагируют на свет и создают электрический заряд, величина которого пропорциональна количеству попавшего света. Количество пикселей сенсора можно измерять по числу строк и столбцов AxB (например, 640x480), а можно - по общему числу элементов (например, 1 000 000 пикселей). Миллион пикселей обычно называют Мегапикселем (1 MP). В любом случае пиксель является наименьшим элементом цифрового изображения. Поэтому этот термин используется также и при описании мониторов и сканеров.

Сенсор Kodak ColorVGA
Некоторые производители иногда дают в технической спецификации две пиксельные характеристики КМОП/ПЗС сенсора. Первая из них показывает общее число пикселей (например, 3 340 000 пикселей или 2,11 MP), а вторая - число активных пикселей, которые используются для получения изображения. Разница между этими числами обычно не превышает 5%.

Существует несколько причин такого расхождения. Во-первых, при производстве сенсора создаются "темные", дефектные пиксели (создание полностью исправного сенсора практически невозможно при существующих технологиях). Во-вторых, некоторые пиксели используются для других целей, например, для калибровки сигналов сенсора. Свет не попадает на часть пикселей, расположенных по краям. Эти пиксели помогают определить фоновый шум, который затем будет вычитаться из данных остальных пикселей. Также часть сенсора может не учитываться для создания изображения с требуемым форматом кадра (отношение количества точек по горизонтали к количеству точек по вертикали).

Кстати, зависимость размера фотографии от числа пикселей не линейная, а логарифмическая. Переход от 3 MP к 4 MP сенсору увеличивает размер изображения не на 25%, а на меньшее значение. По этой причине даже в новейших цифровых фотоаппаратах с увеличенной концентрацией пикселей на сенсоре размер изображения незначительно отличается от предыдущих моделей, что вряд ли так уж важно для большинства пользователей.

Ход светового пучка через линзы в фотоаппарате Minolta
Сейчас все цифровые камеры любительского уровня используют один КМОП или ПЗС сенсор. Некоторые high-end профессиональные аппараты (равно как и многие портативные видеокамеры) используют несколько сенсоров. В них входящий свет разделяется призмой на ряд пучков, каждый из которых попадает на свой сенсор. Такая технология позволяет предотвратить наложение цветов (когда границы красного, синего и зеленого цвета сдвинуты на изображении). Однако подобные камеры требуют более аккуратного процесса изготовления, а по причине наличия призмы они более массивны и менее выносливы. Также в них должна использоваться улучшенная оптика, так что общая цена такой камеры существенно выше.

Что интересно, использование нескольких сенсоров не приводит к линейному росту количества пикселей. В большинстве фотоаппаратов (равно как и в многосенсорных видеокамерах) используется три отдельных КПОМ/ПЗС сенсора для красного, зеленого и синего цвета. Каждый из них получает 1/3 цветовой информации. Таким образом, при использовании трех 3 MP сенсоров они будут работать как один 3 MP сенсор. Однако зачастую в цифровых фотоаппаратах механизм использования информации, полученной от сенсоров, отличается. Фактически он зависит от модели и от производителя.

В некоторых трех-сенсорных фотоаппаратах каждый сенсор захватывает 1/3 от разрешения полного изображения, а затем происходит интерполяция. Другие камеры используют какую-либо комбинацию главных цветов на каждом сенсоре и задействуют сложные алгоритмы для получения изображения. Например, теперь уже не выпускающаяся Minolta RD-175 была оснащена тремя ПЗС сенсорами, два из которых были зелеными, а третий был красно-синим. (Такое удвоение зеленого сенсора напоминает технологию Bayer Pattern, о которой будет рассказано ниже). Каждый из сенсоров RD-175 содержал меньше 1 MP, но благодаря дальнейшему математическому преобразованию получавшееся изображение состояло из 1,7 Мегапикселей.

Во многих цифровых камерах только часть пикселя реагирует на свет, поэтому важно направить как можно больше света на нужную область пикселя (это явление называется коэффициентом заполнения, fill factor). Для этого на сенсорах большинства фотоаппаратов любительского уровня используются микролинзы, располагающиеся непосредственно над каждым пикселем и направляющие фотоны напрямую на светочувствительную область (well). Фотоны преобразуются в электроны с помощью кремниевого фотодиода, располагающегося в верхней части светочувствительной области, а сама область работает как конденсатор, так как обладает возможностью сохранения электрического заряда.

Так как сенсоры по своей сути есть черно-белые устройства, не различающие цвет, в цифровых фотоаппаратах чаще всего используется массив цветных светофильтров (color filter array, CFA), располагающихся между микролинзой и светочувствительной областью пикселя. С помощью светофильтра каждому пикселю присваивается свой цвет. Производители цифровых камер используют различные архитектуры светофильтров, как правило, задействующие комбинацию основных цветов (красного, зеленого и синего) или дополнительных цветов (голубой, пурпурный и желтый). Но в любом случае принцип работы фильтра заключается в пропуске только нужного цвета (с определенной длиной волны). При этом требуется уменьшать проявления цветовых артефактов и избегать взаимного влияния соседних пикселей, в то же время сохраняя правильную цветопередачу. (Ниже мы рассмотрим, как процессор камеры создает изображение из отдельных битов цвета).



Массив цветных светофильтров

Чаще всего массив цветных светофильтров использует технологию Bayer Pattern, при которой красные, зеленые и синие фильтры располагаются в шахматном порядке, причем число зеленых фильтров в два раза больше чем красных или голубых. Это связано с тем, что человеческий глаз более чувствителен к свету с длиной волны в зеленом диапазоне, чем к синему или красному диапазонам. Соответственно удвоение числа зеленых пикселей должно обеспечивать лучшее восприятие яркости и более естественные цвета для человеческого глаза (что очень напоминает соотношение яркостей полного видеосигнала, где яркость (Y) = 0,59G + 0,30R + 0,11B).

Также в результате использования этой технологии получаются более резкие изображения. Проблема соответствия воспринимаемого цвета и фактического цвета решается несколькими способами. Различные производители используют всевозможные цветовые модели и алгоритмы для улучшения цветопередачи цифрового фотоаппарата.

Все цифровые камеры оснащены электронным эквивалентом затвора (он отличается от традиционного механического затвора в пленочных фотоаппаратах), который встроен в сенсор. Он нужен для точной регуляции времени приема света сенсором. Электронный затвор - это переключатель, который включает (или выключает) сенсор для приема приходящего светового потока. Некоторые цифровые камеры также используют и более дорогой механический затвор, но отнюдь не для избыточности, а для предотвращения попадания на сенсор света после окончания времени выдержки. Таким образом, предотвращаются артефакты типа появления ореола, затуманивания и смазывания.

Если вы нажимаете клавишу затвора наполовину, то в цифровом фотоаппарате фиксируются фокус и время выдержки в ожидании последующей съемки. Точно также все происходит и на обычной пленочной камере типа "навелся и снял" при нажатии клавиши затвора наполовину. Однако дальнейшие события в цифровом фотоаппарате принципиально отличаются от пленочного. При полном нажатии клавиши затвора в цифровой камере почти одновременно происходят следующие действия.

  1. Если фотоаппарат оснащен механическим затвором, то он закрывается. Далее сенсор немедленно освобождается от любых электрических зарядов. Это связано с постоянной активностью сенсора, что приводит к накоплению электрических зарядов в различных точках. (На некоторых усовершенствованных камерах сенсор должен находиться в режиме сна перед съемкой изображения для исключения влияния нагрева и увеличения соотношения сигнал/шум). Если камера не получает никаких инструкций, то сенсор будет непрерывно освобождаться от заряда примерно каждую 1/60 долю секунды. Таким образом, перед съемкой изображения весь электрический заряд должен быть сброшен.
    Что интересно, некоторые цифровые фотоаппараты (типа Olympus Camedia E-100RS) сохраняют последнее "удаленное" с сенсора изображение во временном буфере памяти. Они могут показать "удаленное" изображение после съемки, так что пользователь может выбрать лучший вариант из двух. Такой "предварительный" режим съемки оказывается полезен для получения фотографий детей или животных, которые зачастую моргают или двигаются при любом щелчке фотоаппарата.
  2. Удаляет ли камера накопленный электрический заряд перед съемкой или преобразует ли его в изображение во временном буфере, в любом случае один из процессоров камеры использует эти данные для регуляции и выбора параметров будущей фотографии. Например, один из процессоров камеры, занимающийся регуляцией баланса белого (цветокоррекцией), может использовать полученные значения для определения, какие пиксели текущего изображения должны быть белыми. Он может попытаться отрегулировать все цвета для устранения смещения от "точки белого". Точно также на базе полученных данных выбирается фокус, необходимость вспышки и другие обязательные параметры (еще перед фактической съемкой изображения). Эти параметры сохраняются в буфере и могут быть использованы далее на фазе обработки изображения. Если для съемки используется ЖК видоискатель, то на него также поступят эти данные.
  3. Как только электрические заряды будут сброшены с сенсора и необходимые параметры съемки будут выбраны, сенсор готов к принятию требуемого изображения (которое вы ожидаете получить при нажатии на клавишу затвора). Далее камера открывает механический затвор и активизирует электронный затвор. Оба из них остаются открытыми на время выдержки (определенное ранее). По окончании времени выдержки механический затвор закрывается.
  4. Пока камера занимает обработкой, затвор вновь открывается. Он будет закрыт только при последующем нажатии на клавишу затвора (когда будет начат процесс сброса заряда для подготовки к получению следующего изображения). Если процессор (или фотограф) решит использовать электронную вспышку для получения фотографии сцены (обычно применяется встроенный в камеру стробоскопический источник света), то вспышка будет освещать сцену до тех пор, пока отдельный световой сенсор не решит, что вспышка достаточно осветила сцену для данного времени выдержки и не выключит вспышку.
Примечание: Olympus представляет себе процесс получения цифрового изображения в следующем виде.

Процесс получения цифрового изображения с точки зрения Olympus

Так как для сброса заряда сенсора требуется некоторое время (равно как и для чтения информации и установки параметров), всегда существует некоторая неизбежная задержка между полным нажатием на клавишу затвора и временем съемки изображения. На рядовой любительской цифровой камере эта задержка начинается от 60 миллисекунд (этот промежуток настолько мал, что вы вряд ли его заметите) до 1 секунды.

Использование больших буферов памяти и скоростных процессоров может уменьшить задержку, по этой причине дорогие фотоаппараты снимают быстрее своих дешевых собратьев. Среди самых дорогих профессиональных камер можно выделить новый Nikon DH1 с 128 Мб буфером. Другие камеры типа Kodak DCS 520, 620 и Fuji S1 оснащены 64 Мб буфером. Очень небольшое количество профессиональных и high-end любительских камер оснащено буферами размером 16 Мб или 32 Мб.

Кроме того, ряд сенсоров (особенно КМОП) являются многофункциональными чипами с некоторым встроенным интеллектом, что помогает им уменьшать время, затрачиваемое на передачу и на обработку полученной информации. Подобно любой другой цифровой системе, цифровая камера работает тем быстрее, чем выше ее внутренняя пропускная способность.

Когда сенсор преобразует попавшие на него фотоны в электроны, то он работает с аналоговыми данными. Следующим шагом является снятие сохраненных электрических сигналов из пикселей и дальнейшее их преобразование в электрический ток посредством встроенного выходного усилителя. Ток посылается на внешний или встроенный аналого-цифровой преобразователь (АЦП).

Одним из главных отличий между КМОП и ПЗС сенсорами является то, что в КМОП сенсоре АЦП интегрирован, а при использовании ПЗС сенсора он находится на внешнем чипе. Но по этой же причине КМОП сенсор более зашумлен. АЦП преобразует различные уровни напряжения в двоичные цифровые данные. Цифровые данные подвергаются дальнейшей обработке и организуются в соответствии с битовой глубиной цвета для красного, зеленого и синего каналов, что выражается в интенсивности данного цвета для выбранного пикселя.

Разберемся с терминологией

Некоторые могут неправильно интерпретировать термин "битовая глубина цвета". Для понимания этого термина рассмотрим основы цифрового цвета. Все цвета в цифровом фотоаппарате создаются с помощью комбинации интенсивности (или битовых значений) трех главных цветов - красного, зеленого и синего. Эти три главные цвета также называются каналами.

Битовая глубина может быть определена для каждого из трех каналов (например, 10 бит, 12 бит и т.д.) или для всего спектра, при этом битовые значения каналов умножаются на три (30 бит, 36 бит и т.д.) Однако в мире приняты зачастую нелогичные соглашения по терминологии, поэтому вам придется кое-что просто запомнить. Например, 24-битный цвет (который иногда также называют True Color, так как он первым в цифровом мире приблизился по количеству цветов к уровню восприятия человеческого глаза) отводит по 8 бит на каждый канал.

Но 24-битный цвет никогда не называют 8-битным цветом. Если вы услышите, что кто-то говорит о 8-битном цвете, то он вовсе не имеет в виду 8 бит на канал. Скорее всего, этот человек подразумевает 8 бит на весь спектр, что дает 256 различных цветов (очень ограниченный спектр, кстати). 24-битный же цвет дает возможность отобразить 16,7 млн различных оттенков. Поэтому лучше всего принять 24-битный цвет как разделительную линию: если количество бит в спектре больше 24, то принято называть такую битовую глубину по количеству бит на весь спектр или по количеству бит на канал. Если же количество бит 24 или меньше, то такую битовую глубину лучше называть по количеству бит в полном спектре.

До прошлой осени почти все любительские цифровые фотоаппараты работали с 24-битным цветом (используя 8-битные АЦП). Сейчас уже появились некоторые модели, типа Olympus E-10 и HP PhotoSmart 912, которые могут работать 30 или 36-битным цветом (используя 10 или 12-битные АЦП). Впрочем, некоторые цифровые фотоаппараты, способные снимать с большей глубиной цвета, используют 8-битные АЦП, что приводит к выводу изображения только с 24-битной глубиной. (Небольшое число камер, типа Canon PowerShot G1, могут записывать 36-битное изображение в формате RAW, но этот формат патентован, и он не может быть считан напрямую ни одной программой редактирования изображений. Хотя Photoshop и понимает изображения с глубиной вплоть до 16 бит на канал, его функциональность в таких случаях ограничена. Программное обеспечение для работы с камерой Canon должно сначала преобразовать файл в TIFF, который уже можно будет загрузить в Photoshop. Еще одна неприятная вещь: с такими файлами не будет работать большинство устройств вывода). Возникает закономерный вопрос: зачем нам нужно снимать с такой глубиной цвета, если нам будет очень трудно или даже невозможно использовать такие изображения? Все дело в том, что чем больше битовая глубина цвета, тем больше деталей и градаций оттенков мы получим, особенно это касается затененных и ярко освещенных объектов. Здесь существует интересное решение. Как только камера (или ее программное обеспечение) получит данные, она может проанализировать их и при преобразовании изображения в 24-битное фотоаппарат попытается сохранить правильные цвета на самых критических участках.

Если в камере используется хороший алгоритм, то в результате получится лучшее изображение (по диапазону полутонов и по детализации в ярко освещенных областях и тенях), чем если бы камера изначально получала 24-битное изображение и потом его записывала. Большая глубина цвета (производная от глубины получаемого на сенсоре цвета и АЦП) является одной из характеристик, отличающих профессиональные цифровые камеры от любительских и полу-профессиональных (в дополнение к лучшей оптике и большим возможностям профессиональных устройств). По этой же причине, даже если цифровые фотоаппараты <$1000 оснащаются сенсором с большим разрешением чем камера за $10 000, это отнюдь не означает, что менее дорогой фотоаппарат будет получать такие же качественные снимки.

АЦП передает поток цифровых данных на чип цифрового процессора сигналов (DSP). В некоторых камерах используется несколько DSP. В чипе DSP данные преобразуются в изображение на основе определенных инструкций. Эти инструкции включают в себя определение координат полученных от сенсора точек и присвоение им цвета по черно-белой и цветной шкале. В камерах с одним сенсором, использующим массив цветных светофильтров, применяются алгоритмы присвоения цветов с учетом мозаичного расположения пикселей.

Лучше всего представлять расположение массива цветных светофильтров как мозаику, составленную из трех или четырех основных или дополнительных цветов. Из этих цветов создаются все остальные оттенки. Алгоритмы преобразования анализируют соседние пиксели для определения цвета данного пикселя. Таким образом, в итоге получается изображение, похожее на то, если бы мы создавали его от трех физически разделенных сенсоров (если используются цвета RGB). Поэтому в результате изображение передает естественные цвета и переходы между ними.

Кроме описанного процесса, DSP отвечает за разрешение изображения. Хотя большинство цифровых фотоаппаратов можно настроить на различные разрешения, внутри себя они будут получать и обрабатывать данные исходя от разрешения сенсора. Например, при VGA съемке на 3 Мегапиксельной цифровой камере, она будет выполнять съемку в разрешении 2048x1548, а не в 640x480. Далее DSP переведет (интерполирует) изображение в выбранное фотографом разрешение (кстати, разрешение выбирается через операционную систему с помощью ЖК дисплея или панели управления, или при нажатии соответствующей клавиши).

Однако некоторые сенсоры (как правило, КМОП) могут выборочно отсеивать пиксели вместо интерполирования, таким образом, выбирая меньшее или большее разрешение прямо во время съемки. Такая возможность КМОП сенсоров связана с подобной ОЗУ структурой, благодаря чему сенсор может выбрать требуемые данные через быстрый доступ по строке/столбцу. В отличие от КМОП сенсора, ПЗС сенсор является устройством последовательного вывода данных, он должен непременно передать все данные, а уже потом процессор камеры сам будет осуществлять интерполяцию. Обычно использование КМОП сенсора, который может снимать только нужные данные, позволяет ускорить время обработки изображения в фотоаппарате.

Кстати, алгоритм преобразования изображения в требуемое разрешение обычно держится производителями в секрете, так что он зависит от конкретной модели фотоаппарата. Другими словами, DSP осуществляет улучшение изображения в зависимости от параметров, заданных производителем. Таким образом, изображение, созданное любой камерой, является уникальным. Оно реализует свой баланс цветов и свою насыщенность (которые производитель счел наилучшими). Некоторые производители предпочитают добавлять теплые (розоватые) цвета, другие, наоборот, - холодные (голубоватые). Третьи выбирают нейтральную, реалистичную насыщенность для более аккуратной передачи цветов. (Производитель выбирает цвета и насыщенность в каждой модели на основе своих предположений о том, какие цвета и оттенки больше понравятся среднему покупателю. Такой выбор редко бывает случайным, чаще всего он базируется на основе выбранного корпоративного дизайна).

Пример цветовой насыщенности: теплые (розоватые) цвета Пример цветовой насыщенности: холодные (голубоватые) цвета
Более того, благодаря использованию одного или нескольких DSP вкупе с остальной логикой, камера комбинирует настойки фотографирования с анализом типа изображения. (А не является ли картинка с большим количеством голубого цвета небом, а бежевый блок - это случайно не кожа?) При этом также учитываются ручные настройки фотографа, заданные через интерфейс операционной системы камеры. Если камера производит ненужный шум, или ее электронный затвор приводит к появлению затуманивания, то будет использован специальный алгоритм (заданный производителем) для выполнения необходимых исправлений.

Подобным же образом регулируется резкость/мягкость изображения, используется заранее заданный баланс белого и т.д. Именно на этом этапе обработки изображения и существуют значительные отличия между цифровыми фотоаппаратами от разных производителей.

Как только изображение пройдет через DSP, процессор камеры будет преобразовывать поток данных в файл изображения формата JPEF, TIFF или RAW. Обычно к этому файлу прикрепляются и метаданные фотографии (значение диафрагмы, скорость затвора, баланс белого, коррекция экспозиции, включение вспышки, время/дата и т.д.) Если файл не записывается в форматы RAW или TIFF, то он сжимается в соответствии с выбранным фотографом коэффициентом сжатия (обычно можно указать высокое, средне или низкое сжатие) и логикой камеры. Алгоритмы сжатия в фотоаппарате стараются соблюсти баланс между размером файла, скоростью обработки и качеством изображения. После этого изображение записывается либо на встроенную память (как правило, в недорогих цифровых камерах), либо на съемную карту или другой устройство (такой путь используется в большинстве камер).

Преимущество использования съемной памяти заключается в возможности смены карты при ее заполнении. Таким образом, вы можете продолжать фотографировать, вместо того чтобы бежать к компьютеру, скачивать на него фотографии и стирать затем память камеры. Кроме того, съемная память дает пользователю возможность гибкой модернизации на карты большей емкости. Чаще всего используются карты CompactFlash (CF) и SmartMedia (SM). Тип используемой карты определяется маркой производителя и моделью фотоаппарата. Например, большинство цифровых камер Toshiba, Fuji и Olympus используют SmartMedia, в то время как большинство моделей Kodak, Nikon, Canon и Hewlett-Packard - CompactFlash. Впрочем, различия между картами CompactFlash и SmartMedia сейчас довольно размыты, тем более что некоторые модели Olympus и Canon могут использовать оба типа карт.

Карта SmartMedia
Карты SmartMedia тоньше и меньше, стоимость их производства также ниже. Но они изготавливаются из тонкого пластика, их позолоченные контакты выведены наружу, и их можно легко повредить, к примеру, статическим электричеством.

Карта CompactFlash
Карты CompactFlash толще и прочнее, кроме того, в них встроена некоторая логика, ускоряющая скорость чтения/записи. Также в карты CompactFlash можно добавлять буферную память. Емкость у карт CF также выше - сейчас выпущены уже 512 Мб CF карты от SanDisk, в то время как максимальный размер SM карт не превышает 128 Мб. Относительно новый тип CF карты, называемый Type II, может вмещать в себя еще больший объем памяти и даже работать с крошечным винчестером IBM Microdrive объемом до 1 Гб. Минусом CF карт остается их ощутимо большая толщина по сравнению с SM картами, что приводит к увеличению отводимого под карту места в дизайне фотоаппарата.

Карта Sony Memory Stick
Из других видов носителей можно упомянуть Sony Memory Stick, MultiMedia (MM) и Secure Digital (SD). Кроме твердотельных карт памяти в некоторых фотоаппаратах используется несколько разновидностей миниатюрных дисков. Здесь следует перечислить 730 Мб магнито-оптический привод в новом фотоаппарате Sanyo IDC-1000Z, 156 Мб CD-R в Sony Mavica CD1000 и подобный 3'' 156 Мб CD-RW диск в Sony Mavica CD200 и CD300, флоппи-диски с повышенной емкостью 120MM в Panasonic PVD-SD5000 и 40 Мб Click! диск в Agfa ePhoto CL30 Click! Сейчас данные решения, скорее всего, являются патентованными технологиями, так как они используются только определенными производителями в некоторых моделях. Нам еще предстоит узнать, станут ли более распространенными.

Параллельно с записью изображения на носитель, оно может быть также показано и на ЖК видоискателе (или на электронном прямом видоискателе). В большинстве ЖК видоискателей используются 1,8'' или 2'' TFT панели, вмещающие от 65 000 до 220 000 пикселей. Частота их регенерации - от 1/8 до 1/30 секунды. ЖК панель разработана для оптимального просмотра с расстояния от 8'' до 18''.

Рекомендуется всегда использовать прямой видоискатель при съемке изображений, а ЖК видоискатель - главным образом для установки различных параметров и последующем просмотре снятого изображения. Даже при использовании ЖК видоискателей с высоким разрешением, цифровые камеры все равно вынуждены уменьшать изображение, так что вы никогда не увидите изображения 1:1 на видоискателе. По этой причине ЖК видоискатель сложно использовать для фокусировки или установки кадра. Но что еще хуже, ЖК экран просто пожирает батарейки при частом своем использовании. Еще одним важным недостатком выступает то, что во многих дизайнах фотоаппаратов ЖК дисплей находится вблизи ПЗС или КМОП сенсора, а это может привести к нежелательному шуму или к появлению визуальных артефактов. (Главное преимущество шарнирных ЖК видоискателей - то, что они не находятся в корпусе камеры, например, в Canon G1. Чем дальше ЖК панель находится от сенсора, тем меньше шуму она создаст). В большинстве цифровых фотоаппаратов используется один из трех типов традиционного прямого видоискателя: просто стеклянный глазок, светоделитель или шарнирное зеркало. При использовании светоделителя (также он называется пленочным зеркалом), 90% света проходит через наклоненное под углом зеркало на сенсор, а 10% отражается под углом 90 градусов и через пентапризму попадает в глаз фотографа. Преимущество такой системы заключается в неподвижности зеркала (уменьшении вибрации) и отсутствии движущихся частей. Таким образом, светоделитель является более надежной системой. Но опять же, главным его недостатком является низкая эффективность при съемке в помещениях и в темноте: слишком мало света попадает в глаз фотографа, подчас такого света бывает недостаточно для выбора нужной композиции и фокуса.

Видоискатель Fuji S1
В большинстве однолинзовых зеркальных пленочных фотоаппаратах и в профессиональных цифровых фотоаппаратах используется шарнирное зеркало, которое во время наводки отражает до 100% поступающего в объектив света в глаз фотографа. Когда фотограф нажмет клавишу затвора, зеркало сойдет с пути светового потока, на время зачерняя видоискатель, но в то же время, не препятствуя попаданию всего света на сенсор. После съемки зеркало возвращается обратно, и фотограф может продолжать составлять композицию для следующего кадра. При маленьких выдержках фотограф буквально даже не успеет моргнуть во время зачернения видоискателя - настолько быстро движется зеркало. Однако такая система механически более сложна, а, следовательно, менее вынослива. Впрочем, она обеспечивает лучшее качество картинки в видоискателе, чем при использовании светоделителя.

Намного более дешевым и менее сложным прямым видоискателем является стеклянный глазок. Эта система используется в большинстве любительских цифровых фотоаппаратов. Глазок выполнен из прозрачного стекла, и вместо демонстрации изображения, на которое нацелен объектив (а такой режим называется TTL), в глазок видно изображение, смещенное вверх или в сторону от объектива. Преимущество такого глазка заключается в отсутствии энергопотребления и движущихся частей. К тому же, изображение в глазке более ярко по сравнению с системами TTL. Однако главным минусом является неаккуратность глазка (как правило, глазок показывает меньше, чем будет снято на самом деле, так что вам придется обрезать ненужное изображение по краям кадра). Также глазок приводит к появлению параллакса.

Параллакс связан с тем, что глазок находится на расстоянии 1'' или 2'' от объектива, и вы видите сцену немного под другим углом (в сравнении с объективом). Сей факт не важен при фотографировании удаленных сцен, но отличие будет все более заметно при приближении к объекту. При макросъемке (12'' или ближе), глазок становится бесполезным в связи с большим параллаксом.

Электронный прямой видоискатель - новейшая технология, призванная заменить оптический видоискатель крошечным монитором с высоким разрешением и низким энергопотреблением. Кроме прямого и детального изображения объекта, по которому можно четко определить фокус, в большинстве электронных видоискателей отображается дополнительная важная информация о настройках: фокусное расстояние, выдержка, состояние вспышки и т.д. Главный недостаток такой технологии заключается в том, что она слишком нова и несовершенна в цифровых фотоаппаратах (в отличие от цифровых видеокамер), поэтому электронный глазок не всегда такой яркий и четкий, как традиционный оптический видоискатель.

Так же как и в ЖК видоискателе, прямой электронный видоискатель выводит изображение в более низком разрешении после обработки процессором. Или он может выводить электронный thumbnail, полученный из заголовка файла TIFF или JPEG. По мере улучшения технологии можно ожидать, что прямые электронные видоискатели заменят ЖК видоискатели во многих моделях.

Кроме всей той обработки, что была показаны выше, в цифровом фотоаппарате происходят еще и другие процессы. Главный процессор выполняет общий контроль, в то время как другие процессоры и специализированные микросхемы проверяют и обрабатывают различную информацию. Например, операционная система должна постоянно проверять настройки фотографа, для того чтобы они сразу же отражались на получаемом изображении без задержек. Постоянно должна проверяться и зарядка батарей, чтобы фотоаппарат смог получить достаточно энергии для завершения цикла съемки одного изображения. Все компоненты фотоаппарата должны постоянно опрашиваться, чтобы убедиться в их корректной и правильной работе. Так что даже в простейших цифровых камерах типа "нацелился и снял" все совсем не так просто, как может показаться на первый взгляд.

Число процессоров, DSP и других микросхем широко варьируется в зависимости от имени производителя и марки цифрового фотоаппарата. Впрочем, сейчас можно наметить тенденцию интеграции максимально возможного количества функций на один чип, дабы сэкономить на стоимости и пространстве.

Вся показанная выше обработка изображения требует большого количества электроэнергии. Пару лет назад при работе с цифровыми фотоаппаратами приходилось запасаться большим количеством щелочных (alkaline) AA батареек. Цифровые камеры потребляли очень много энергии, и батарейки приходилось менять даже после нескольких снимков. В современном поколении цифровых фотоаппаратов улучшилась эффективность использования электроэнергии и повысилась их экономичность. Многие цифровые камеры были переведены с щелочных элементов на более совершенные технологии, типа перезаряжаемых никель-гидридных или литий-ионных батарей. Некоторые производители, к примеру, Sony, разработали для своих цифровых фотоаппаратов "умные" батареи, которые могут в нужный момент информировать пользователя о количестве оставшейся энергии.

По мере усложнения конструкции фотоаппаратов, при добавлении компонент и повышении требований к скорости съемки, потребление энергии и экономичность будут находиться под пристальным вниманием разработчиков.

Качество цифрового фотоаппарата - это больше чем пиксели

Важно понимать, что фотография в цифровой камере - это результат сложного взаимодействия многих частей. Ни один компонент сам по себе не может получить качественное изображение, и в то же время любой затор может полностью прервать процесс съемки или негативно сказаться на качестве картинки.

Фотография высокого качества, полученная с помощью Fuji S1
В первых цифровых фотоаппаратах самым значимым ограничивающим фактором являлось низкое качество и крошечный размер (примерно с горошину) сенсоров. Производители камер пришли к выводу, что в таких устройствах вряд ли имеет смысл использовать высококачественные линзы, так как сенсоры слишком слабы для получения хорошего изображения. Поэтому первые любительские цифровые фотоаппараты использовали дешевые пластиковые линзы с относительно низким оптическим качеством. С другой стороны, современные камеры с 3-Мегапиксельными сенсорами, наконец, достигли качественного уровня пленочных камер, поэтому сейчас требуется подровнять по качеству и остальные механизмы. В настоящее время достаточно много внимания разработчиков приковано к линзам. Продолжается их совершенствование по направлениям увеличения количества пропускаемого света, улучшения цветопередачи, углового разрешения и фокусировки, дабы не пропал ни единый пиксель на сенсоре. Точно также на остальные компоненты цифрового фотоаппарата возлагается задача получения изображений лучшего качества, скорости и эффективности, дабы не отставать от быстрого развития сенсоров.

В недалеком будущем мы, безусловно, будем наблюдать значительные улучшения технологии цифровых фотоаппаратов. Будут продолжать совершенствоваться сенсоры, их плотность будет увеличиваться (первые 5-Мегапиксельные любительские камеры поступили в продажу уже этим летом). На таких сенсорах пиксели будут более плотно упакованы (и более мелки), а форм-фактор сенсоров увеличится. Чем плотнее располагаются пиксели, чем они меньше, тем точнее необходимо доставлять фотоны через систему линз. Тем тщательнее нужно удалять различные шумы, равно как и использовать более эффективные алгоритмы улучшения изображений.

Схема расположения линз в Olympus Brio D-100
По мере роста плотности сенсоров, все остальные детали, скорее всего, будет уменьшаться в размерах, так что сами камеры начнут становиться все более и более миниатюрными. В настоящее время самые маленькие камеры основаны на компромиссном технологическом выборе между функциональностью и размером. Но чипы выполняют все больше функций, технологии совершенствуются, так что вскоре даже самые маленькие фотоаппараты будут предоставлять полный комплекс услуг. Еще одним подходом к миниатюризации является кардинальная перестройка дизайна самой камеры. Например, новый фотоаппарат Olympus Brio D-100 поражает своим необычно тонким корпусом. Для этого разработчикам пришлось позиционировать ПЗС сенсор под углом 90 градусов к объективу с помощью зеркала. Такая простая, хотя и достаточно революционная, идея привела к появлению нескольких принципиально новых дизайнов.

Наоборот, большие полупрофессиональные фотоаппараты будут падать в цене и постепенно завоевывать любительский рынок. Самые дешевые камеры с небольшим разрешением будут властвовать на нижнем сегменте этого рынка. Несмотря на относительно низкое разрешение, качество картинки будет повышаться и достигнет своих собратьев с высоким разрешением. (Помните, что количество пикселей - всего лишь один из аспектов цифровой фотографии, качество очень сильно зависит и от других аспектов).

Каждое новое поколение цифровых фотоаппаратов по своему интеллекту будет превосходить предыдущее. Вскоре фотоаппараты перейдут грань поистине многофункциональных устройств, успешно соединяя в себе цифровые видеокамеры, диктофоны, веб-камеры, PDA и сотовые телефоны. Поэтому вскоре мы должны увидеть поистине гениальные решения в области разработки фотоаппаратов и обработки изображений, которые смогут обойти создаваемый шум и другие проблемы, связанные с накоплением такого количества различной электроники в столь маленькой коробочке. Ну и, конечно, цены продолжат свое падение вниз, равно как будет повышаться производительность и качество. Сейчас начинается очень интересное время для цифровых фотографов (а это значит и для всех нас).


Дополнительные материалы:
Анатомия цифрового фотоаппарата. Часть 2: сенсоры
Sony Cyber-shot DSC-P72
Canon PowerShot G3
Casio Exilim ZOOM EX-Z3
Rekam Di 1.3M
RoverShot RS-2100

 
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
Облако Vultr привлекло на развитие $333 млн при оценке $3,5 млрд 33 мин.
Разработчик керамических накопителей Cerabyte получил поддержку от Европейского совета по инновациям 38 мин.
Вышел первый настольный компьютер Copilot+PC — Asus NUC 14 Pro AI на чипе Intel Core Ultra 9 3 ч.
Foxconn немного охладела к покупке Nissan, но вернётся к этой теме, если слияние с Honda не состоится 8 ч.
В следующем году выйдет умная колонка Apple HomePod с 7-дюймовым дисплеем и поддержкой ИИ 8 ч.
Продажи AirPods превысили выручку Nintendo, они могут стать третьим по прибыльности продуктом Apple 9 ч.
Прорывы в науке, сделанные ИИ в 2024 году: археологические находки, разговоры с кашалотами и сворачивание белков 17 ч.
Arm будет добиваться повторного разбирательства нарушений лицензий компанией Qualcomm 21 ч.
Поставки гарнитур VR/MR достигнут почти 10 млн в 2024 году, но Apple Vision Pro занимает лишь 5 % рынка 23 ч.
Первая частная космическая станция появится на два года раньше, но летать на неё будет нельзя 24 ч.