Опрос
|
реклама
Быстрый переход
Apple вдвое увеличила ресурс батарей iPhone 15
21.02.2024 [08:55],
Алексей Разин
Аккумуляторы имеют определённый ресурс по циклам разрядки и зарядки, поэтому для владельцев смартфонов важно знать, когда они потребуют замены в силу ухудшения своей способности сохранять заряд. Компания Apple недавно порадовала владельцев смартфонов семейства iPhone 15, сообщив, что их батареи способны сохранить до 80 % первоначальной ёмкости после 1000 циклов разрядки и зарядки. ![]() Источник изображения: Apple Конечно, данный показатель справедлив только для неких идеальных условий, но и эта оценка в два раза превосходит ориентировочный ресурс аккумуляторов iPhone предыдущих поколений, который Apple оценивала в 500 циклов. По словам представителей компании, она постоянно улучшает потребительские характеристики используемых аккумуляторных батарей и совершенствует систему управления питанием компонентами смартфона, которая также влияет на расход заряда. Не исключено, что весьма оптимистичная оценка была обусловлена изменениями в методике расчёта ресурса, которую Apple не детализирует. В бета-версии iOS 17.4 компания Apple упростила владельцам iPhone 15 доступ к информации о состоянии аккумулятора смартфона. Количество циклов зарядки и разрядки тоже учитывается, поэтому пользователь может без труда спрогнозировать примерный ресурс батареи при текущей интенсивности эксплуатации. Программная оптимизация с учётом привычек пользователя тоже позволяет продлить ресурс аккумулятора смартфона. Владелец может ограничить предел заряда на 80 % ёмкости аккумулятора, тем самым дополнительно увеличивая его эксплуатационный ресурс. Найден способ продлить жизнь литийметаллических батарей — их нужно подержать в разряженном состоянии
14.02.2024 [16:41],
Алексей Разин
Исследователям Стэнфордского университета удалось установить, что литийметаллические аккумуляторы способны увеличивать свой срок службы, если их время от времени полностью разряжать и оставлять в таком состоянии. Одновременно после такой манипуляции повышается фактическая ёмкость аккумулятора, как показало исследование. ![]() Источник изображения: Samsung SDI По информации Electrek, такими выводами в своей статье в журнале Nature делится студент Стэнфордского университета Вэньбо Чжан (Wenbo Zhang), который занимается материаловедением и инженерными дисциплинами. Авторами исследования был найден простейший и доступнейший способ улучшения эксплуатационного ресурса литийметаллических аккумуляторов. Оставляя их в разряженном состоянии на какое-то время, можно добиться не только восстановления утраченной ёмкости, но и эксплуатационного ресурса батареи. Реализовать этот эффект можно исключительно за счёт программного обеспечения, управляющего процессом заряда аккумуляторов, а потому экономический эффект от внедрения этого новшества будет весьма высоким. Как правило, литийметаллические аккумуляторы способны на 30 % превосходить литийионные по удельной ёмкости в пересчёте на массу, но при этом они уступают им в эксплуатационном ресурсе, поэтому применять их на том же электротранспорте достаточно проблематично. Американские исследователи выяснили, что нивелировать этот недостаток частично можно за счёт изменения алгоритма зарядки. Правда, пользователь при этом должен понимать, что эксплуатируемое им устройство или транспортное средство в какой-то момент захочет «отдохнуть» с разряженной батареей, чтобы частично восстановить её ресурс. Программное обеспечение должно выбирать удобный для человека период для проведения подобных технических мероприятий. Впрочем, ПО можно настроить таким образом, чтобы ячейки в составе батареи «тренировались» поочерёдно, без ущерба для общей доступной пользователю ёмкости. В процессе эксплуатации аккумуляторов литийметаллического типа формируются отдельные частички лития, которые не возвращаются обратно в электролит при регулярных циклах зарядки и разрядки, тем самым сокращая ресурс анода. Учёным в ходе эксперимента удалось частично вернуть эти крохотные кусочки лития в состав анода, оставив аккумулятор в разряженном состоянии всего на один час. Этим способом можно восстанавливать не только рабочую ёмкость литийметаллических аккумуляторов, но и увеличивать срок их службы. Поскольку типовая тяговая батарея электромобиля содержит до 4000 аккумуляторных ячеек, программным способом их можно реабилитировать поочерёдно, не создавая особых неудобств при эксплуатации. Китайские учёные создали кальциевый аккумулятор потенциально не хуже литиевого
14.02.2024 [13:37],
Геннадий Детинич
Китайские учёные в журнале Nature опубликовали статью, в которой рассказали о разработке кальциевого аккумулятора потенциально лучшего, чем традиционные литиевые элементы. Интереснейшей особенностью новых кальциевых батарей обещает стать их способность производиться в виде тонких нитей, из которых можно будет изготовить ткань. Это также откроет путь к новым носимым устройствам и умной одежде. ![]() Белая нить — это вплетённый в обычную ткань аккумулятор. Источник изображения: Fudan University Когда-нибудь нам придётся распрощаться с литиевыми аккумуляторами по одной простой причине — его запасы на Земле ограничены. Зато кальция на Земле в тысячи раз больше, чем лития. Но это не единственная причина, по которой нам необходимо искать замену литийсодержащим аккумуляторам. Вопросы безопасной эксплуатации литиевых аккумуляторов также стоят на повестке дня, и их никто не снимал. Кальциевые элементы питания в этом плане сама невинность, на что также важно делать ставку. Учёные давно подбираются к кальциевым соединениям, как к потенциальной альтернативе литию. Наиболее перспективными считаются кальциево-кислородные аккумуляторы, которые в процессе отдачи тока его потребителю (при разряде) берут кислород прямо из воздуха. Это очевидным образом поднимает химическую отдачу такого элемента до максимально возможного теоретического значения, ведь внутренний ресурс батареи освобождается от необходимости хранить этот компонент. Глобальным недостатком кальциево-кислородных аккумуляторов считалась проблема образования мёртвого балласта в виде оксида кальция. Пока идёт разряд — кальцийсодержащий электрод взаимодействует с атмосферным кислородом и это ведёт к высвобождению электронов с попутным образованием оксида кальция — всё хорошо. Но обратной реакции по превращению оксида кальция в чистый кальций с высвобождением кислорода при комнатной температуре не было. Это означает, что зарядить такой аккумулятор простым образом нельзя. Реакция была возможна только при значительном нагреве, что в бытовых условиях просто невозможно. Заслуга учёных из Университета Фудань (Fudan University) заключается в том, что они разработали подходящий жидкий электролит и «двухэлектронную» реакцию, которая при комнатной температуре восстанавливает электрод в процессе заряда кальциево-кислородного аккумулятора. Экспериментальный кальциево-кислородный аккумулятор пока не может похвастаться сравнимой с литиевыми аккумуляторами ёмкостью хранения энергии, но оказался способным выдержать 700 циклов заряда и разряда, что говорит о многом. Дальнейшее совершенствование разработки обещает сделать её сравнимой с литиевыми батареями при прочих выгодах — от дешевизны до массовости. Отдельно перспективные аккумуляторы были изготовлены в виде волокна и на обычном коммерческом ткацком станке его вплели в ткань для одежды. Это наглядно показало, что кальциево-кислородные аккумуляторы могут стать элементами питания следующих поколений электроники как носимой на теле, так и встроенной в одежду. Китайские производители объединили усилия по разработке твердотельных аккумуляторов для электромобилей
12.02.2024 [12:01],
Алексей Разин
Сейчас Китай доминирует на рынке литийионных аккумуляторов, поскольку в огромных количествах наладил выпуск наиболее дешёвых тяговых батарей для электромобилей на основе фосфата железа. Поскольку японские и европейские производители вкладывают серьёзные средства в разработку твердотельных аккумуляторов, китайским компаниям не хочется отставать, и они объединили свои исследовательские усилия в рамках консорциума. ![]() Источник изображения: CATL Об этом на текущей неделе сообщило издание Nikkei Asian Review, рассказав о мероприятии в Китае, которое собрало представителей более чем 200 компаний, ведомств и научных организаций. Под эгидой китайского правительства в конце января был создан консорциум CASIP, чьё обозначение расшифровывается как China All-Solid-State Collaborative Innovation Platform. В вольном переводе название организации описывает общенациональные усилия китайских разработчиков по созданию твердотельных аккумуляторов. Примечательно, что консорциум в своих рядах объединил конкурентов из числа китайских автопроизводителей и поставщиков тяговых батарей. Под знамёна организации встали BYD, CATL, CALB, EVE Energy, Svolt Energy Technology и Gotion High-Tech. В общей сложности шесть из десяти крупнейших производителей тяговых аккумуляторов в мире оказались членами этого консорциума. У некоторых из этих производителей батарей есть претензии друг к другу, которые материализовались в судебные иски. Это не помешало им забыть о разногласиях и выразить желание совместно разрабатывать твердотельные аккумуляторы. Последние должны не только увеличить плотность хранения электроэнергии и сократить массу батарей, но и значительно сократить время зарядки и снизить зависимость аккумуляторов от температуры окружающего воздуха. Кроме того, твердотельные аккумуляторы более безопасны с точки зрения вероятности возгорания. В состав альянса вошли и автопроизводители из Китая, включая BYD и NIO, которые тоже конкурируют друг с другом. Авторы идеи такой консолидации надеются, что с привлечением государственных ресурсов и систем искусственного интеллекта китайские производители смогут к 2030 году наладить выпуск твердотельных аккумуляторов, тем самым не утратив лидирующих позиций на рынке в случае успеха конкурирующих инициатив. Японские Toyota и Nissan рассчитывают к 2028 году вывести на рынок первые электромобили, оснащённые твердотельными аккумуляторами. Не собираются отставать и немецкие Volkswagen и BMW, поддерживающие профильные стартапы, которые разрабатывают тяговые батареи такого типа. По оценкам китайских экспертов, к середине текущего десятилетия машины с тяговыми аккумуляторами будут формировать более половины первичного авторынка в мире. Китай с его огромным потенциалом реализации транспортных средств мог бы стать отличным полигоном для испытания новых типов аккумуляторных батарей. Местные производители при правильном подходе могли бы наладить выпуск твердотельных аккумуляторов на коммерческой основе уже к 2030 году. Впрочем, на уровне исследовательской деятельности перевес пока на стороне японских производителей. Та же Toyota обладает более чем 1300 патентами в сфере создания твердотельных аккумуляторов, тогда как китайские компании пока не добрались и до планки в 100 профильных патентов. Toyota массовый выпуск аккумуляторов нового поколения рассчитывает начать не ранее 2030 года, так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходец из Tesla поможет GM нарастить производство аккумуляторов
08.02.2024 [18:37],
Сергей Сурабекянц
General Motors наняла эксперта по батареям и бывшего руководителя Tesla Курта Келти (Kurt Kelty) на специально созданную для него новую должность вице-президента автопроизводителя по батареям. Келти приступит к работе 19 февраля. GM в настоящее время прилагает титанические усилия, чтобы увеличить производство аккумуляторных блоков для своей новой платформы Ultium, которая станет базовой для электромобилей следующего поколения. ![]() Источник изображений: GM Келти более десяти лет проработал главой команды аккумуляторов Tesla. Он участвовал в запуске первых четырёх автомобилей Tesla: Roadster, Model S, Model X и Model 3. Он также работал в Panasonic, партнёре Tesla по разработке аккумуляторов на заводе Gigafactory в Неваде. До прихода в GM Курт Келти занимал пост вице-президента по коммерции в Sila Nanotechnologies, компании, основанной одним из первых сотрудников Tesla Джином Бердичевски (Gene Berdichevsky). Sila Nanotechnologies занималась разработкой нового типа аккумуляторного анода на основе кремния, который в перспективе может значительно увеличить плотность энергии литий-ионных батарей. ![]() «Фундамент, созданный GM, в сочетании с исключительным опытом Курта в разработке аккумуляторной химии, установлении партнёрских отношений, построении цепочек поставок и тесном взаимодействии с командами, которые разработали ведущие аккумуляторные системы, помогут нам достичь наших целей в области электрификации и позиционировать GM как лидера в технологии электромобилей», — заявил президент GM Марк Ройсс (Mark Reuss). Российские учёные обнаружили перспективные химические соединения для аккумуляторов будущего
08.02.2024 [15:28],
Геннадий Детинич
Группа химиков нашла новый класс материалов, который поможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, новые накопители энергии будут безопаснее в эксплуатации и значительно дешевле. Вместо дефицитного лития в них будут использоваться соединения магния, цинка и даже алюминия. ![]() Руководитель проекта Кабанов Артем. Источник изображения: Зарина Беркимбаева, СамГТУ. Проектом руководил Артём Кабанов, кандидат физико-математических наук, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению (МНИЦТМ) СамГТУ. Помимо исследователей из Самарского государственного технического университета поиском занимались учёные из Физического института им. П. Н. Лебедева РАН (Москва), Самарского государственного медицинского университета (Самара) и Фрайбергской горной академии (Германия). Работа опубликована в журнале Physical Chemistry Chemical Physics. Использование в качестве альтернативы литию магний-, цинк- или алюминий-ионных соединений серьёзно снизило бы удельную стоимости хранения энергии. Это подтолкнуло бы в развитии, как электротранспорт, так и область возобновляемой энергетики. Но пока разработка металл-ионных аккумуляторов сдерживается отсутствием ключевых элементов таких батарей — электродов и электролитов с высокой ионной проводимостью. Именно такие перспективные соединения искала группа Кабанова. Учёные из СамГТУ вместе с коллегами проанализировали свыше 1,5 тысячи химических соединений. Исследуемые материалы были пропущены через систему теоретических фильтров по принципу «от простого к сложному». «Для каждого соединения химики рассчитали характеристики свободного кристаллического пространства, энергию активации диффузии ионов, коэффициент диффузии и проводимость. В итоге они отобрали 16 соединений, которые могут быть эффективными ионными проводниками», — сказано в пресс-релизе СамГТУ. Среди отобранных соединений был выявлен новый класс кристаллических материалов, которые обладают особенно высокой катионной проводимостью. Эти вещества относятся к структурному классу La3CuSiS7, и их ионная проводимость в 10–100 раз выше аналогов. «Результаты нашей работы помогут ускорить разработку аккумуляторов нового поколения. С помощью теоретических методов мы смогли найти новые перспективные материалы. Наша следующая цель — синтезировать и экспериментально подтвердить характеристики найденных веществ, после чего можно будет собрать прототип аккумулятора», — говорят исследователи. Спад на рынке автомобилей заставил Volkswagen отменить IPO дочернего производителя батарей PowerCo
30.01.2024 [17:57],
Владимир Мироненко
Volkswagen AG (VW) прекратила подготовку к планировавшемуся выводу на биржу дочернего предприятия по выпуску тяговых аккумуляторов PowerCo в этом или следующем году. Отмена IPO обусловлена снижением спроса на электромобили, которое ставит под сомнение перспективы этого бизнеса, пишет Bloomberg. ![]() Источник изображения: stux/Pixabay Автопроизводитель также отложил переговоры с инвесторами на второй план в связи с появлением сомнений по поводу возможности наладить производство аккумуляторов в больших масштабах, сообщили источники Bloomberg. Источники не исключают проведение IPO подразделения PowerCo в случае, если ситуация на рынке улучшится. По данным Bloomberg, первичные публичные размещения акций в 2023 году оказались худшими за более чем десятилетие после резкого роста процентных ставок. Комментируя ситуацию с PowerCo, VW сообщила в электронном письме Bloomberg о готовности «продолжить оценивать собственные варианты с учётом рыночной конъюнктуры». Рост продаж электромобилей оказался не таким резким, как ожидалось, но интерес инвесторов к PowerCo «остаётся высоким», заявили в VW. PowerCo начала строительство двух заводов в Европе, где более высокие цены на энергоносители снизили инвестиционный оптимизм у многих промышленных игроков. Производство аккумуляторов должно начаться в Германии в следующем году и в 2026 году в Испании. Также ведутся работы на третьем объекте компании в Канаде. Если VW будет придерживаться намеченного курса, к 2030 году PowerCo обеспечит половину потребностей автопроизводителя в аккумуляторах, превратившись в гиганта с 20 000 рабочих мест. Как ожидается, к тому времени более 70 % продаж автопроизводителя в Европе и более 50 % в Северной Америке будут приходиться на полностью электрические автомобили. В понедельник стало известно, что Renault SA отменила планы по IPO своего бывшего подразделения Ampere EV, занимающегося выпуском электромобилей, в связи с неблагоприятными рыночными условиями. Американские химики за деньги Lamborghini разработали органические катоды для аккумуляторов будущего
25.01.2024 [13:10],
Геннадий Детинич
Химики Массачусетского технологического института за несколько лет работы по заказу компании Lamborghini создали перспективный материал для катодов, который может вытеснить кобальт из литиевых аккумуляторов. Новые аккумуляторы сэкономят до 70 % стоимости производства литиевых аккумуляторов, и будут содержать меньше дефицитных и вредных химических веществ. При этом они будут не хуже обычных батарей и даже лучше. ![]() Источник изображения: MIT Новое пустое обещание, скажите вы? Сколько было этих батарей — не перечесть. Тем не менее, Lamborghini получила патент на изобретение и намерена изучить вопрос производства перспективных аккумуляторов. Судя по всему, от электрификации транспорта никто не собирается отказываться. В то же время ресурсы нашей планеты ограничены, и выпускаемые по современным технологиям аккумуляторы рано или поздно начнут испытывать дефицит по поставкам сырья. Кроме того, стратегическое для выпуска литиевых батарей сырьё добывается, преимущественно, в зонах социальной напряжённости в Африке. Прежде всего, это касается добычи кобальта, которая также уничтожает экологию вокруг шахт. Использование кобальта и никеля в катодах литийсодержащих батарей позволяет поддерживать высокую ёмкость и плотность энергии в аккумуляторах. Многократные попытки заменить их другими материалами особыми успехами не увенчались. По крайней мере, дальше лабораторных проектов дело не пошло. Ещё сложнее оказалось заменить эти металлы органическими соединениями. Высокая способность органических веществ растворяться в электролитах сильно сузила выбор. Наконец, связующие органические вещества полимеры занимали дефицитное место в составе электродов батарей и тем снижали их ёмкость. По утверждению команды MIT во главе с профессором Мирчем Динкэ (Mircea Dincă), учёным удалось подобрать для катодов литийсодержащих аккумуляторов как органический материал с высокой пропускной способностью по току и ёмкости, так и связывающий органику полимер, которого понадобилось совсем немного. «Я думаю, что этот материал может оказать большое влияние, потому что он действительно хорошо работает, — сказал Мирча Динкэ. — Разработка уже конкурентоспособна по сравнению с существующими технологиями, и это может значительно снизить затраты, страдания и экологические проблемы, связанные с добычей металлов, которые в настоящее время идут в аккумуляторы». Новый материал для катодов состоит из множества слоёв бис-тетраамин бензохинона (TAQ). По своей организации это вещество напоминает графит — популярный для изготовления электродов материал. Внутри кольцеобразных молекул этого вещества помещаются хиноны и амины. Хиноны накапливают электроны, а амины создают прочные водородные связи, что препятствует растворению вещества катодов в электролите. Испытания этого материала показали, что его проводимость и ёмкость в составе аккумулятора сравнимы с проводимостью традиционных кобальтосодержащих аккумуляторов. Кроме того, аккумуляторы с TAQ-катодом могут заряжаться и разряжаться быстрее, чем существующие аккумуляторы, что может ускорить скорость зарядки электромобилей. QuantumScape позволила литиевым аккумуляторам «дышать» и это может изменить всё
17.01.2024 [14:59],
Геннадий Детинич
Компания QuantumScape поделилась деталями относительно новейшего литиевого аккумулятора, который может вдохнуть больше жизни в электромобили и не только. Интересной особенностью разработки стала её способность «дышать» или «биться как сердце», что при обычной эксплуатации литиевых аккумуляторов не приветствуется. ![]() Источник изображений: QuantumScape Стенки элемента питания FlexFrame расширяются при заряде и сжимаются в процессе разряда. В случае обычных литиевых элементов подобное может привести к выходу аккумулятора из строя. Однако для батарей FlexFrame это станет штатной особенностью, что, очевидно, необходимо будет учитывать при проектировании батарей и устройств на их базе. В настоящий момент компания завершила испытание батареи в версии A0. В начале 2023 года стало известно, что прототип обладает ёмкостью 5 А·ч (обозначение — QSE-5). Испытания прототипов в версиях B и С стартуют в этом и/или в следующем году, после чего можно ожидать начало массового производства новинок. ![]() Устройство 24-слойного «дышащего» аккумулятора FlexFrame В начале этого года принадлежащий Volkswagen стартап PowerCo заявил, что аккумуляторы компании QuantumScape «практически не стареют». В процессе их опытной эксплуатации 1000 циклов заряда и разряда снизили ёмкость FlexFrame всего на 5 %, тогда как современные аналоги допускают снижение ёмкости при заметно меньшем числе циклов на 20 % и больше. Кажется ерунда, но это сотни километров хода без каких-либо затрат. Аккумулятор FlexFrame может стать первым коммерчески успешным накопителем энергии на твёрдом электролите и с анодом из металлического лития. Концентрация в этих батареях едва ли не всех перспективных направлений в развитии литиевых батарей способна представить взрывную в хорошем смысле этого слова смесь технологий, которая далеко вперёд подтолкнёт развитие электрического транспорта. В видео ниже представители компании подробно рассказывают об устройстве нового аккумулятора. Остаётся напомнить, что компания QuantumScape имеет за плечами внушительный научный и инвестиционный багаж. Она была создана около 14 лет назад выходцами из Стэнфордского университета и использует в основе своих технологий полученные там наработки. В публичное пространство QuantumScape вышла в 2020 году. До этого 10 лет её финансировали два источника: один из фондов Билла Гейтса и компания Volkswagen. Panasonic намерена начать выпуск аккумуляторов 2170 с увеличенной ёмкостью уже в этом году
15.01.2024 [09:16],
Алексей Разин
Принято считать, что Tesla и Panasonic основную ставку делают на серийный выпуск аккумуляторных ячеек типа 4680, но японская корпорация при этом не отказывается и от идеи совершенствования привычных ячеек типоразмера 2170. Их обновлённый вариант с увеличенной плотностью хранения заряда встанет на конвейер предприятия в штате Невада либо в этом году, либо в следующем. ![]() Источник изображения: Panasonic Об этом в интервью Bloomberg сообщил технический директор подразделения Panasonic, которое специализируется на выпуске тяговых аккумуляторов. При благоприятном стечении обстоятельств, как пояснил Соитиро Ватанабэ (Shoitiro Watanabe), предприятие корпорации в Неваде уже в этом году освоит выпуск более ёмких аккумуляторных ячеек типоразмера 2170. В крайнем случае, это произойдёт в 2025 году. Тогда же компания рассчитывает увеличить производительность своего американского предприятия на величину до 10 % без строительства дополнительных корпусов и линий. В целом же Panasonic ставит перед собой цель к 2030 фискальному году наладить на территории США выпуск до 200 ГВт‧ч тяговых аккумуляторов в эквивалентной ёмкости, сейчас данный показатель в четыре раза ниже. Компания строит второе предприятие в Канзасе, а с местом строительства третьего она обещает определиться до конца марта текущего года. На территории Японии Panasonic тоже бы хотела выпускать достаточное количество тяговых аккумуляторов. К концу десятилетия этот показатель планируется довести до 150 ГВт‧ч в год. Помимо работы над освоением выпуска ячеек типоразмера 4680, японская компания сейчас занимается внедрением композитного материала на основе кремния для производства анодов, которым её будет снабжать компания Sila Nanotechnologies. Этот материал, помимо прочего, будет использоваться при производстве тяговых аккумуляторов для электрического варианта Mercedes-Benz Geländewagen. Создан прототип литиевого аккумулятора, выдерживающий 6000 циклов заряда почти без потери ёмкости
13.01.2024 [16:42],
Геннадий Детинич
Группа учёных из США подобрала методику изготовления твердотельных аккумуляторов с анодом с использованием металлического лития. При этом они решали задачу максимально увеличить цикличность работы батареи. Созданный прототип размером с почтовую марку показал способность выдерживать до 6000 циклов заряда с потерей не больше 20 % первоначальной ёмкости. ![]() Источник изображения: Nature Materials Учёные из американской Школы инженерных и прикладных наук Гарвардского университета (SEAS) разработали такой процесс гальванизации кремниевого анода металлическим литием, в ходе которого микрогранулы кремния в составе анода покрываются литием как орешки шоколадной глазурью. Заявленная плотность энергии прототипа батареи оказалась сравнительно небольшой по современным меркам — всего 218 Вт/кг, что примерно в два раза меньше, чем в случае новейших литиевых элементов. Но способность выдерживать 6000 циклов разряда и заряда с потерей не больше 20 % ёмкости — это дорогого стоит. Сегодня мы можем только мечтать об аккумуляторах с подобной устойчивостью к износу. Обычно они выдерживают в два-три раза меньше полных рабочих циклов. Но учёные не собираются останавливаться на достигнутом, и мечтают также значительно увеличить ёмкость аккумуляторов, благо твердотельные электролиты и аноды с использованием металлического лития предоставляют для этого массу возможностей. О своём достижении учёные сообщили в статье в журнале Nature Materials, которая свободно доступна по ссылке. «Литийметаллические анодные батареи считаются святым Граалем аккумуляторов, поскольку их ёмкость в 10 раз превышает ёмкость коммерческих батарей на графитовых анодах и они могут значительно увеличить дальность передвижения электромобилей, — сказал Синь Ли (Xin Li), доцент кафедры материаловедения SEAS. — Наше исследование является важным шагом на пути к созданию более практичных твердотельных аккумуляторов для промышленного и коммерческого применения». Microsoft открыла перспективный материал для новых аккумуляторов за две недели расчётов — в сотни раз быстрее учёных
10.01.2024 [21:57],
Геннадий Детинич
Специалисты компании Microsoft оригинально проверили возможности своей новой облачной платформы Azure Quantum Elements для научной работы. Они поставили перед ней задачу найти наилучший материал для электролита аккумулятора, который превзойдёт литийионную батарею. Платформа справилась с заданием за две недели, тогда как обычно коллективы учёных тратят на такое годы, если не десятилетия. ![]() Слева опытные аккумуляторы, справа стенд для их тестирования и самодельные часы на них. Источник изображения: Harry McCracken Платформа Azure Quantum Elements представлена компанией Microsoft прошлым летом. Слово «квантовое» в названии платформы не должно вводить в заблуждение. Пока это классические суперкомпьютеры. Квантовыми они станут когда-нибудь потом — через пять или десять лет, а может позже. В идеале Azure Quantum Elements будет представлять собой гибридный подход — симбиоз классических и квантовых систем. Тем не менее, платформа заточена на обработку научных данных по особенным алгоритмам, что делает её полезной уже на данном этапе. По большому счёту в Microsoft не нуждались в новых аккумуляторах. Это в стороне от непосредственных интересов компании. Но проверить платформу Azure Quantum Elements в деле — провести боевое крещение, было заманчиво. В компании работает группа исследователей по вопросам квантовых вычислений, и работа с материалами для них обычная рутина. Команда отобрала 32,6 млн веществ и соединений для анализа платформой. Интеллектуальные алгоритмы сначала сократили число кандидатов до 500 тыс., затем до 500, до 150 и до 18. На завершающем этапе отбора Microsoft обратилась за помощью к узким специалистам — к учёным из Тихоокеанской северо-западной национальной лаборатории (Pacific Northwest National Laboratory, PNNL). Они отобрали наиболее перспективный материал — соединение лития и натрия в соотношении 30/70 — и помогли сделать прототипы аккумуляторов в формфакторе CR2032. Получившийся аккумулятор с твёрдым электролитом не горит, не взрывается, обладает большим числом циклов перезаряда и большей ёмкостью, чем аналогичные по исполнению чисто литийионные аккумуляторы. Компания не считает это изобретение своим достижением. Она гордится платформой Azure Quantum Elements, которая ужала годы исследований, проб и ошибок всего в две недели работы. Правда, доводка разработки до ума и изготовление прототипов в PNNL заняли ещё один год, но без этой завершающей фазы нельзя обойтись сейчас и вряд ли её можно будет значительно ускорить в будущем. Сейчас платформа Azure Quantum Elements доступна некоторым клиентам Microsoft и работает в ограниченном тестовом режиме. Известно, что с её помощью британская Johnson Matthey разрабатывает каталитические нейтрализаторы и водородные топливные элементы. «Цифра» позволила нам спрессовать десятки и сотни лет изысканий в недели и часы вычислений. Наука получила мощный толчок к движению вперёд, и эти инструменты становятся совершеннее год от года. Европа впервые выдала субсидию производителю аккумуляторов, чтобы тот не сбежал в США
09.01.2024 [21:12],
Геннадий Детинич
Европейская комиссия впервые предоставила субсидию производителю аккумуляторов в рамках защиты от утечки бизнеса в США. Получателем стала шведская компания Northvolt — разработчик оригинальных литиевых аккумуляторов с конкурентоспособными характеристиками. Ещё в марте 2022 года Northvolt пообещала построить в Германии мегафабрику по выпуску батарей, но позже отказалась от обещания и нацелилась на завод в США. ![]() Рендер будущего завода в Германии. Источник изображения: Northvolt Американский Закон об инфляции (IRA), подписанный президентом Джозефом Байденом 16 августа 2022 года, предполагает обильное субсидирование производителей, пожелавших строить предприятия на территории США. Это поколебало намерение Northvolt работать в Европе, о чём они публично и объявили вскоре после этого. Для ЕС это было нежелательно, и начались длительные переговоры, а ведь эксперты предупреждали: бюрократия и инвестиционная политика США погубят производство аккумуляторов для электромобилей в Европе. Сегодня стало известно, что Европейская комиссия согласилась выдать компании Northvolt беспрецедентную субсидию для строительства завода. Это стало первой акцией в рамках противодействия финансовой политике США. По словам Маргрет Вестагер (Margrethe Vestager), исполнительного вице-президента, отвечающего за политику в области конкуренции, грант является «первой индивидуальной помощью, одобренной для предотвращения утечки инвестиций из Европы в соответствии с новой возможностью, предлагаемой Рамками временного кризиса и переходного периода с марта 2023 года». «Строительство завода в Германии является важным шагом для электрификации транспорта в Европе при сохранении равных условий игры на едином рынке», — добавила она. ![]() Пример продукции Northvolt. Источник изображения: Northvolt Для строительства завода Northvolt получила от европейских властей €902 млн ($986 млн). Завод будет построен в городе Хайде, земля Шлезвиг-Гольштейн. Строительство стартует в 2025 году (ещё один привет евробюрократии) с началом работы в 2026 году и выходом на полную мощность в 2029 году. На полной мощности завод ежегодно будет производить аккумуляторы для 1 млн электромобилей. А теперь о грустном для Европы. Компания Northvolt уже начала строить завод в Северной Америке — в Канаде. Власти Квебека выделили компании $2,9 млрд, а федеральное правительство ещё $4,4 млрд. Похоже, речь о канадских долларах, что примерно на 30 % снижает сумму, если говорить о долларах США. Но всё равно, на этом фоне Европа выглядит не очень богатым регионом мира с довольно прохладным инвестиционным климатом. TDK намерена улучшить кремниево-угольные батареи — это позволит реже заряжать носимую электронику и смартфоны
05.01.2024 [15:55],
Алексей Разин
Производители аккумуляторов всё активнее экспериментируют с их химическим составом, поскольку современному миру нужно всё больше батарей, и пространство для экспериментов и инноваций остаётся большим. С прошлого года подразделение японской компании TDK выпускает литийионные аккумуляторы с кремниевым электродом, которые тоньше обычных и позволят уменьшить толщину мобильных устройств без ущерба для времени их автономной работы. ![]() Источник изображения: TDK Предполагается, как отмечает Bloomberg, что представленный в прошлом году складной смартфон Honor Magic V2 оснащается именно такой батареей, а толщина его корпуса меньше 10 мм. Данный китайский производитель хоть и признаёт, что внутри этого устройства действительно применяется кремниево-угольная батарея, не уточняет её поставщика, но гонконгская ATL является единственным производителем батарей такого типа. В 2005 году эту компанию поглотила TDK, а в 2011 году бизнес ATL по выпуску тяговых батарей для электромобилей был выделен в самостоятельную компанию CATL, которой к настоящему моменту удалось стать мировым лидером по объёмам их производства. Даже сейчас у ATL и CATL есть два совместных предприятия, которые выпускают батареи для стационарных систем хранения электроэнергии, промышленного оборудования и электроциклов, а также необходимые им зарядные устройства. ATL свои аккумуляторы поставляет компании Apple и Samsung, помимо прочих, и в целом занимает первую позицию на рынке аккумуляторов для мобильных устройств по объёмам поставок в мире. Материнскую компанию TDK данный бизнес обеспечивает более чем половиной годовой выручки, и крупнейшими его клиентами являются именно производители смартфонов. Кремниево-угольная батарея позволяет увеличить ёмкость на 10 % по сравнению с решением, использующим анод из графита, но по некоторым оценкам, эту разницу можно увеличить до 40 % и даже больше. По мнению аналитиков, подобные батареи найдут широкое применение в носимой электронике, которая должна быть компактной и лёгкой, но при этом не требовать слишком частой зарядки. Устройства виртуальной и дополненной реальности тоже относятся к этой категории. По прогнозам представителей TDK, батареи нового типа в течение ближайших нескольких лет будут занимать в структуре поставок аккумуляторов ATL долю, измеряемую двузначным числом в процентах, тогда как сейчас их доля несколько меньше 5 %. Для TDK бизнес по выпуску аккумуляторов для смартфонов должен стать одним из локомотивов роста в долгосрочной перспективе, и рассуждения о стагнации рынка в данном случае не станут помехой, как признаются руководители компании. Твердотельный аккумулятор QuantumScape выдержал 483 тыс. км пробега с минимальным износом
04.01.2024 [12:55],
Владимир Мироненко
Одним из недостатков литиевых аккумуляторов является то, что в процессе эксплуатации они деградируют, теряя ёмкость. Это актуально и для электромобильных батарей, однако, как сообщает принадлежащий Volkswagen стартап PowerCo, у твердотельных аккумуляторов калифорнийской компании QuantumScape эта проблема сведена к минимуму. Тестирование показало, что они «практически не стареют». ![]() Источник изображений: QuantumScape Согласно данным PowerCo, в ходе тестирования, длившегося несколько месяцев, предоставленный QuantumScape прототип литийметаллического 24-слойного аккумулятора с твердотельным электролитом сохранил 95 % начальной ёмкости после 1000 циклов перезарядки. Это эквивалентно примерно 300 тыс. миль пробега (около 483 тыс. км). Действующий отраслевой стандарт для электромобилей нацелен на потерю 20 % ёмкости за 700 циклов зарядки. То есть, имея первоначальный запас хода от одного заряда батареи 250 миль (около 402 км), к концу срока службы электромобиль будет обладать запасом хода в 200 миль (около 323 км). Но с твердотельной батареей QuantumScape теоретически запас хода электромобиля может сократиться примерно до 240 миль после гораздо большего пробега, отметил ресурс PCMag. «Это очень обнадёживающие результаты, которые впечатляюще подтверждают потенциал твердотельных элементов, — заявил гендиректор PowerCo Фрэнк Блом (Frank Blome). — Конечным результатом этой разработки может стать аккумуляторная батарея, которая обеспечивает больший запас хода, может заряжаться очень быстро и практически не стареет». Следует отметить, что такие батареи вряд ли появятся в электромобилях в ближайшие несколько лет. По словам основателя и гендиректора QuantumScape Джагдипа Сингха (Jagdeep Singh), компании ещё предстоит «многое сделать», чтобы вывести аккумуляторы на рынок. Главным инвестором QuantumScape является Volkswagen Group, поэтому в первую очередь новые твердотельные аккумуляторы QuantumScape появятся в электромобилях этой немецкой компании. |