Опрос
|
реклама
Быстрый переход
Физики обосновали существование тёмной материи повышенной плотности
13.04.2024 [15:14],
Геннадий Детинич
Космическая обсерватория им. Джеймса Уэбба помогла сделать ещё одно интересное открытие или вернее будет сказать предположение. В процессе наблюдения за галактикой JWST-ER1g на удалении примерно 3,7 млрд лет после Большого взрыва выяснилось, что она может содержать намного более плотную тёмную материю, чем обычно. Учёные доказали это используя моделирование и данные наблюдений и это редкий шанс взглянуть на мифическую субстанцию под новым углом. Галактика JWST-ER1g была открыта «Уэббом» в сентябре 2023 года. Она оказалась идеальным примерном кольца Эйнштейна — явления гравитационного микролинзирования, когда дальний объект оказывается размазан по кольцу вокруг гравитационной линзы. Определив этот далёкий объект и учтя все другие параметры можно вычислить силу гравитационной линзы. В данном случае это означает, что галактика JWST-ER1g может быть взвешена и оценена как с позиции массы видимого вещества, так и с точки зрения находящейся в ней массы тёмной материи. Сложив одно и другое, должна получиться сила, преломляющая свет в соответствии с известными нам законами. Наблюдения и расчёты показали, что свет от далёкого объекта преломляется сильнее, чем это допускала бы масса видимого вещества и расчётная масса тёмной материи в составе гало галактики JWST-ER1g. Поскольку с видимым веществом — звёздами и газом — всё просто, то выходит, что тёмной материи в гало JWST-ER1g явно больше, чем это допускают наиболее распространённые гипотезы и образованное галактикой гало. Сложившаяся ситуация позволила учёным предположить и позже математически доказать, что тёмная материя в галактике JWST-ER1g уплотнилась под воздействием видимого вещества и самой тёмной материи. Это сделало случай наблюдения за JWST-ER1g уникальным и удобным для дальнейшего изучения свойств тёмной материи, которой, по принятым расчётам, примерно 85 % от всего находящегося во Вселенной вещества. «Джеймс Уэбб» помог установить происхождение сильнейшего в истории наблюдений гамма-всплеска
12.04.2024 [15:57],
Геннадий Детинич
В один миг 9 октября 2022 года космические и наземные гамма-телескопы ослепли все как один. Это стало моментом регистрации сильнейшего в истории наблюдений гамма-всплеска, который получил индекс GRB 221009A и официальное прозвище BOAT (английская аббревиатура от «ярчайший за всё время»). Событие оказалось настолько ярким, что на месяцы затмило послесвечение, по которому можно было определить его источник. Но теперь эта тайна раскрыта. Группа американских астрономов из Северо-Западного университета (Чикаго) в сегодняшнем номере журнала Nature Astronomy опубликовала статью, в которой сообщила о происхождении всплеска BOAT и о процессах, его сопровождавших, что также стало открытием. Учёные смогли приступить к поискам источника только полгода спустя после регистрации всплеска. До этого высокоэнергичные фотоны гамма-излучения буквально слепили все направленные на потенциальный объект излучения датчики. Следует сказать, что учёные не сильно удивились, когда обнаружили на месте «преступления» останки сверхновой. Взрывы сверхновых — это один из вероятных источников гамма-всплесков. Интересно здесь то, что взорвалась, в общем-то, рядовая сверхновая, а не нечто рекордное по своему масштабу, как можно было бы ожидать. Другое дело, что гамма-излучение, возникшее в результате взрыва, оказалось очень сильно сфокусированным. Именно эта концентрация, да ещё направленная в сторону Земли, привела к столь яркому эффекту. Такое может происходить не чаще одного раза в 10 тыс. лет, считают учёные. Учёные считают, что предельная фокусировка гамма-лучей произошла по причине высокой скорости вращения звезды перед взрывом. В теории такие процессы могут вести к образованию наиболее тяжёлых металлов во Вселенной. Считается, что в звёздах в обычных условиях не могут быть синтезированы вещества тяжелее железа. Но в ряде экстремальных процессов, например, подогреваемые интенсивным гамма-всплеском, могут появиться и более тяжёлые элементы, включая золото и платину. Обратив свой взор к месту рождения события BOAT, учёные начали поиск золота и платины. Помог им в этом спектрометр космического телескопа «Джеймс Уэбб». Ни золота, ни платины в результате обнаружить на месте взрыва сверхновой не удалось. Это позволяет отодвинуть в сторону теорию о GBR-канале, как катализаторе синтеза тяжёлых элементов. В то же время это лишь повод обнаружить больше похожих событий и набрать достаточно данных либо для полного опровержения такой возможности, либо для создания списка исключений. В любом случае, изучение события BOAT дало целый спектр данных, чтобы учёным было чем занять свои головы в поиске ответов на загадки Вселенной. «Джеймс Уэбб» помог рассмотреть, что происходит в сердце галактики Сигара
04.04.2024 [13:46],
Павел Котов
Космический телескоп «Джеймс Уэбб» (JWST) помог рассмотреть сердце галактики Сигара, в которой наблюдается яркая вспышка рождения звёзд. В ядре галактики, также известной как «Мессье 82» (Messier 82), находится компактная турбулентная среда, способная дать учёным более чёткое представление о массовом рождении звёзд и формировании галактик. Галактика Сигара располагается в 12 млн световых лет от Земли и наблюдается в созвездии Большая Медведица — звёзды здесь формируются примерно в 10 раз быстрее, чем в нашей относительно тихой галактике Млечный Путь. Учёные сделали снимок ядра этой галактики с активным звездообразованием с помощью камеры ближнего инфракрасного диапазона (NIRCam) «Джеймса Уэбба», чтобы понять, какие условия способствуют этому процессу. Звездообразование — распространённый во Вселенной процесс, но его окружает ореол загадочности, потому что образующие для него сырьё газ и пыль скрывают этот процесс в видимом диапазоне. Но сквозь эту среду способен проникать инфракрасный свет, а значит, «Джеймс Уэбб» хорошо подходит для этой задачи. Тёмные красновато-коричневые «щупальца» на снимке — это пыль, пробивающаяся сквозь светящееся ядро галактики. Маленькие зелёные точки на изображении — это скопления железа, оставшиеся от взрывов сверхновых, а красные пятна обозначают области, где молекулярный водород нагревается излучением молодых звёзд. Снимки подтверждают уникальные возможности «Джеймса Уэбба». Камера NIRCam помогла зафиксировать галактический ветер, вызванный звездообразованием и сверхновыми — умирающими старыми звёздами. Исследователям удалось определить, что в нём содержатся полициклические ароматические углеводороды (ПАУ) — мелкие пылинки, которые выживают в прохладных областях, но разрушаются при высоких температурах. Это показало, как в галактическом ветре взаимодействуют холодные и горячие компоненты. Учёные надеются, что дальнейшие наблюдения «Джеймса Уэбба» за этой и другими галактиками со звездообразованием помогут ответить на некоторые вопросы о рождении звёзд. Изучение спектра «Мессье 82» поможет оценить возраст звёздных скоплений в галактике. А это, в свою очередь, поможет понять, как долго длится каждая фаза звездообразования в галактиках с такими яркими вспышками. Учёные впервые засекли признаки формирования экзолун в молодой звёздной системе
04.04.2024 [09:36],
Геннадий Детинич
Человечество успешно справилось с обнаружением экзопланет — миров в иных звёздных системах. На очереди открытие экзолун. Эти планетарные тела сравнительно небольших размеров и поэтому обнаружить их пока не удаётся. Зато намного проще может оказаться увидеть будущий спутник, пока он «размазан» тонким слоем пыли и газа по протопланетному диску. Подобные признаки формирования экзолун были обнаружены в молодой звёздной системе PDS 70. Открытие системы PDS 70 несколько лет назад стало подарком астрономам и планетологам. Она расположена сравнительно недалеко от Земли — всего в 370 световых годах. Звезде и протопланетному диску PDS 70 всего 5,5 млн лет — это младенец по сравнению с Солнечной системой, возраст которой оценивается в 4,5 млрд лет. Поэтому система PDS 70 изучалась всеми доступными астрономическими инструментами от наземных до космических. Большинство интересных открытий были сделаны радиотелескопом ALMA и Очень большим телескопом, расположенными в Чили. Самым впечатляющим открытием стало обнаружение в системе PDS 70 двух формирующихся экзопланет на одной орбите (PDS 70B и PDS 70C). После этого за системой стали следить ещё внимательнее и обнаружили удивительное — вокруг каждой из них наблюдались спиральные завихрения вещества в протопланетном диске. Моделирование показало, что с большой вероятностью это могут быть признаки образования естественных спутников у этих планет. Подобные завихрения вещества учёные наблюдали и раньше в протопланетных дисках других систем, но теперь появилась возможность связать все наблюдения воедино и предположить, что всё это один процесс — рождение будущих лун. Но на этом сюрпризы не окончились. На внутреннем крае протопланетного диска PDS 70 были обнаружены данные, которые заставили учёных заподозрить формирование там третьей экзопланеты. После подтверждения открытия другими группами планета получит индекс PDS 70D. «Мы нашли новые доказательства присутствия третьей планеты в системе, которые были предложены на основе наблюдений VLT, — сказал Валентин Кристианс, один из учёных проекта. — Более того, новые инфракрасные измерения [Джеймсом Уэббом], которые мы провели для двух известных протопланет, предполагают наличие вокруг них нагретого материала, который может быть строительным материалом для формирующихся вокруг них лун». Недалеко от Земли «Джеймс Уэбб» обнаружил потенциально обитаемую планету-океан
27.03.2024 [12:47],
Геннадий Детинич
Примерно в 50 световых годах от Земли находится система LHS 1140, в которой ранее были обнаружены две суперземли. Одна из них обещает оказаться планетой-океаном, потенциально пригодным для жизни. В этом помог разобраться космический инфракрасный телескоп им. Джеймса Уэбба, приборы которого проанализировали состав атмосферы экзопланеты LHS 1140b. Прибор NIRSpec «Джеймса Уэбба» изучил атмосферу экзопланеты LHS 1140b в июле 2023 года во время двух событий транзита экзопланеты по своей звезде. Ранее предполагалось, что это каменистый мир массой свыше 6 земных. Новые наблюдения позволили снизить оценку массы и размера экзопланеты до 5,6 массы Земли и радиуса 1,73 от земного. Инсоляция планеты предполагается на уровне 0,42 от земной, а усреднённая температура у поверхности может составлять 226 К. Добавим, планета LHS 1140b вращается вокруг красного карлика массой 0,18 солнечных масс. Она расположена достаточно близко к звезде, но слабое излучение центрального светила не перегревает её поверхность, а это важно, ведь для планеты с глобальным океаном повышенная инсоляция это автоматическое создание парникового эффекта и смерть всему живому. Вы только посмотрите, что сотворил парниковый эффект на Венере! Одним словом, если на LHS 1140b есть глобальный океан, то температура воды на его поверхности выше точки замерзания, что означает потенциальную его пригодность для зарождения биологической жизни. Впрочем, судя по размерам и оценкам плотности экзопланеты, вместо 10 % воды на её поверхности может присутствовать плотная газовая атмосфера. Спектральный анализ атмосферы и моделирование показали, что вероятность плотной атмосферы у LHS 1140b ниже, чем вероятность наличия огромного объёма воды на её поверхности. Поэтому это хороший кандидат на роль планеты-океана. И вдвойне ценно, что подобных миров обнаружено не так много, как хотелось бы учёным. Ещё один лишним не будет. «Джеймс Уэбб» обнаружил облака затвердевшего спирта вокруг протозвёзд
14.03.2024 [19:05],
Павел Котов
Международная группа учёных при помощи прибора MIRI (Mid-Infrared Instrument) на космическом телескопе «Джеймс Уэбб» (JWST) обнаружила в скоплениях вещества вокруг протозвёзд IRAS 2A и IRAS 23385 ледяные соединения сложных органических молекул: этилового спирта и, предположительно, уксусной кислоты. Некоторые из органических веществ, в том числе обнаруженные в рамках данного исследования в твёрдом агрегатном состоянии, ранее фиксировались в газообразном состоянии — учёные предположили, что вещество переходит из твердой в газообразную фазу посредством сублимации, то есть минуя жидкость. Обнаружение ледяной органики даёт учёным надежду лучше понять происхождение других, ещё более крупных молекул в космосе. Исследователи пытаются выяснить, в какой степени эти органические вещества переносятся на планеты, появляющиеся на гораздо более поздних стадиях эволюции протозвёзд. Считается, что в ледяной фазе эти вещества легче переносятся из молекулярных облаков в диски, из которых формируются планеты, чем в более горячей газообразной фазе. В ледяном состоянии они могут попадать на кометы и астероиды, которые, в свою очередь сталкиваются с формирующимися планетами и доставляют на них ингредиенты для потенциального зарождения жизни. Учёные также обнаружили более простые молекулы, в том числе муравьиную кислоту, метан, формальдегид и диоксид серы. Исследования показывают, что серосодержащие соединения играли важную роль в запуске метаболических реакций на молодой Земле. Особый интерес в данном исследовании представляет IRAS 2A — протозвезда малой массы, развитие которой может быть похожим на ранние стадии жизни Солнечной системы. Обнаруженные вокруг этой протозвезды органические вещества, возможно, также появились на ранних стадиях развития Солнечной системы, а впоследствии были доставлены на древнюю Землю. «Джеймс Уэбб» обнаружил самые первые сливающиеся галактики — в те времена этого не должно было случиться
13.03.2024 [20:37],
Геннадий Детинич
Международная группа из 27 учёных опубликовала в журнале Nature Astronomy работу, в которой сообщила об открытии самой ранней пары сливающихся галактик. Событие обнаружено на красном смещении Z=9,3127 или через 510 млн лет после Большого взрыва. В те времена и галактику обнаружить — это редкая удача, а увидеть пару сливающихся галактик — это вообще за пределами понимания. Учёные из Австралии, Таиланда, Италии, США, Японии, Дании и Китая провели скрупулёзную работу, расшифровывая то, что они увидели в ранней Вселенной. Открытие сразу задало загадку. Судя по изображению, это должны были быть молодые звёзды возрастом около 20 млн лет. Спектральный анализ с помощью прибора «Уэбба» NIRSpec показал, что возраст звёзд составляет 120 млн лет плюс-минус 20 млн. Дальнейшее изучение объекта позволило сделать вывод, что ничего удивительного в таком сочетании нет. На изображении предстали две сливающиеся галактики: одна молодая и одна массивная старая. О событии слияния также говорит тот факт, что на изображении виден приливной хвост. При слиянии галактик выброс вещества и даже отдельных звёзд в виде хвоста или шлейфа — это обычное явление. Необычным это событие делает то, что, по крайней мере, у одной из галактик не было достаточного времени на развитие, как мы себе это представляли до появления «Уэбба». «Джеймс Уэбб» снова преподнёс сюрприз, открыв то, чего по нашим теориям не должно было случиться. Новые наблюдения свидетельствуют о быстром и эффективном накоплении массы и металлов сразу после Большого взрыва в результате слияний, наглядно демонстрируя, что в ранние времена существовали массивные галактики с несколькими миллиардами звезд. «Хаббл» не позволял этого увидеть, и теоретики были сильны в своих убеждениях. «Уэбб» ломает представления об эволюции звёзд и галактик в ранней Вселенной. Данных для пересмотра базовых теорий всё ещё мало, но база растёт и, похоже, к концу десятилетия у нас будет заметно дополненная и даже местами изменённая теория эволюции Вселенной. «Джеймс Уэбб» запечатлел близкую к Земле туманность, в которой много молодых массивных звёзд
12.03.2024 [18:42],
Павел Котов
Космический телескоп «Джеймс Уэбб» (JWST) сделал снимок туманности NGC 604, которая находится в одной из ближайших к нашему родному Млечному Пути галактик и отличается высокой концентрацией молодых массивных звёзд. Астрономов уже давно интересует туманность NGC 604, расположенная в относительно близкой к нашей Галактике Треугольника (2,7 млн световых лет). В этой туманности находятся около двухсот крупнейших звёзд, большинство из которых пребывает на ранних стадиях своей жизни. Это преимущественно звёзды классов O и B, то есть с самыми высокими температурами поверхности. Массы некоторых из этих звёзд в сто и более раз превосходят массу Солнца. Астрономам не известна ни одна другая область Вселенной, настолько плотно населённая крупными звёздами, как эта туманность. Изображение, полученное камерой ближнего инфракрасного диапазона на телескопе «Джеймс Уэбб», содержит множество участков ярко-оранжевого цвета — так обозначено присутствие полициклических ароматических углеводородов. Звёздные ветры самых ярких и горячих молодых звёзд образовали в этой туманности полости, а ультрафиолетовое излучение ионизировало окружающий газ — ионизированный таким образом водород обозначен бело-голубым свечением. Возраст туманности NGC 604 составляет всего 3,5 млн лет, что по космическим меркам чрезвычайно мало. Облако светящегося газа протянулось на 1300 световых лет. В галактике Млечный Путь подобные области не обнаружены. «Джеймс Уэбб» подтвердил скорость расширения Вселенной, определённую «Хабблом» — напряжённость никуда не делась
11.03.2024 [23:04],
Владимир Чижевский
Последние данные с космического телескопа «Джеймс Уэбб» подтвердили вычисленную на основе наблюдений с помощью телескопа «Хаббл» скорость расширения Вселенной — ранее считалось, что прежние расчёты могли оказаться ошибочными. Скорость расширения Вселенной известна как постоянная Хаббла, однако между ней и предсказанным на основе послесвечения Большого взрыва значением наблюдается расхождение, называемое «напряжённостью Хаббла». Тем не менее, «Джеймс Уэбб» подтвердил правильность измерений телескопа «Хаббл». До запуска «Хаббла» в 1990 году наблюдения с земных телескопов давали огромные погрешности, и в зависимости от них возраст Вселенной оценивался от 10 до 20 миллиардов лет. За 34 года наблюдений посредством «Хаббла» учёные пришли к оценке в 13,8 миллиарда лет с погрешностью в 1 %. Этого удалось добиться уточнением шкалы астрономических расстояний посредством наблюдения за цефеидами. Однако данные «Хаббла» расходились с другими измерениями, указывающими на то, что сразу после Большого взрыва Вселенная расширялась быстрее. Предполагалось, что в данные с «Хаббла» закралась ошибка или же погрешность измерений. Однако наблюдения посредством телескопа «Джеймс Уэбб» указывают, что ошибки не было. В надежде снять «напряжённость Хаббла», некоторые ученые предположили, что ошибки в измерениях могут расти и становиться заметными по мере того, как мы будем заглядывать все глубже во Вселенную. В итоге с помощью «Уэбба» были проведены дополнительные наблюдения за объектами, которые являются важнейшими космическими маркерами, известными как переменные звезды Цефеиды, которые теперь можно соотнести с данными Хаббла. «Теперь, когда мы охватили весь диапазон измерений "Хаббла", мы с большой уверенностью можем заключить, что хаббловская напряжённость не вызвана ошибкой измерений», — прокомментировал результаты физик из Университета Джона Хопкинса в Балтиморе, обладатель Нобелевской премии за открытие ускоренного расширения Вселенной из-за загадочного явления, именуемого «тёмной энергией», Адам Рисс (Adam Riess). «Поскольку мы подтвердили точность измерений, вероятно и весьма захватывающе, что мы попросту чего-то не понимаем в этой Вселенной», — добавил Рисс. В итоге хаббловская напряжённость остаётся для учёных загадкой. В ранней Вселенной нашли «мёртвую» галактику — в ней внезапно остановилось звездообразование
07.03.2024 [15:41],
Геннадий Детинич
Наблюдения с помощью телескопа им. Джеймса Уэбба открыли человечеству окно в не известную ранее эпоху младенчества Вселенной. Все предыдущие наблюдения позволили создать определённые модели эволюции звёзд и галактик. Сейчас «Уэбб» разрушает эти представления, о чём лишний раз напоминает новое открытие — телескоп заметил чрезвычайно быстрое затухание звездообразования в галактике, существовавшей всего через 700 млн лет после Большого взрыва. Наши модели эволюции галактик хорошо описывают процессы звездообразования в них. Тем удивительнее было открыть галактику на рубеже 700 млн лет после Большого взрыва с полностью и, по-видимому, навсегда угасшим звездообразованием. К такому результату могли привести два наиболее вероятных процесса: во-первых, в центре галактики могла образоваться сверхмассивная чёрная дыра, которая своим излучением вынесла бы вещество из галактики-хозяина и, во-вторых, звёзды могли эволюционировать настолько быстро, что израсходовали бы весь запас вещества, после чего процесс замер. Обычно ожидается, что активность звездообразования в галактиках снижается постепенно. Но в этой галактике на красном смещении z=7,3 образование звезд прекратилось на удивление рано, что делает её редким открытием. Исходя из полученных «Уэббом» данных, эта галактика пережила короткий всплеск звездообразования между 30 и 90 млн лет и прекратила образовывать звёзды за 10–20 млн лет до того момента, как её обнаружил «Уэбб». Теория допускает остановку звездообразования и длительный период затишья, но потом оно обычно возобновляется в том или ином виде (звёзды взрываются и из останков образуются новые), чего в данном случае учёные не наблюдают, и это ставит их в тупик. Следить за работой телескопов «Уэбб» и «Хаббл» можно в режиме реального времени
07.03.2024 [11:57],
Геннадий Детинич
Регулярно появляются новости о том или ином открытии, сделанном с помощью космических телескопов «Уэбб» и «Хаббл», но всё они были сделаны на основе наблюдений, выполненных около года назад или даже больше. Но чем эти обсерватории занимаются прямо сейчас? На какой участок неба смотрит каждый из телескопов и что он там надеется увидеть? У NASA есть ответ на эти вопросы, достаточно лишь зайти на правильную страницу. Ещё в 2016 году по заказу агентства Научный институт космических телескопов в Балтиморе разработал интернет-приложение, которое позволяло учёным со всего мира видеть будущие и прошлые цели «Хаббла». После ввода в строй телескопа «Уэбба» этот инструмент также стал доступен через эту площадку — NASA Space Telescope Live. Постепенно интерфейс был развит и облагорожен, чтобы с ним разобрался обычный пользователь. Даже сейчас в NASA собирают отзывы по работе с приложением и обещают делать его лучше и доступнее. Непосредственно данных с обоих телескопов мы не увидим. Они должны пройти обработку и лишь потом станут доступны в опубликованных работах, а также в архиве NASA, включая страницу Space Telescope Live, где простым нажатием мышки можно пройтись по прошлым и запланированным целям для наблюдений. На главных страницах для каждого из этих двух телескопов представлена область неба, куда он направлен в данную секунду, его поле зрения, тип задействованного оборудования и описание наблюдательных задач. Изображение неба построено на атласе Aladin Sky Atlas и служит лишь для иллюстрации позиционирования приборов. Архив данных «Уэбба» начинается с первых тестовых изображений, полученных в январе 2022 года, а «Хаббла» — с мая 1990 года. «Уэбб» впервые увидел ветер от протопланетного диска у молодой звезды — каждый год из него выдувает массу одной Луны
05.03.2024 [21:37],
Геннадий Детинич
Несмотря на понимание общего принципа формирования планет из протопланетных дисков, большинство деталей человечество не знает. Ответ скрывается во Вселенной. Наблюдая за тысячами протопланетных дисков, можно узнать об их поведении на разных отрезках эволюции. Первым шагом в таких исследованиях стало наблюдение приборами «Джеймса Уэбба» за протопланетным диском звезды TCha, от которого впервые был зарегистрирован ветер — поток частиц и газа. Впервые линию неона в спектре потока частиц от протопланетного диска ещё в 2007 году обнаружил телескоп «Спитцер». Появление «Уэбба» побудило учёных ещё раз взглянуть на протопланетный диск TCha. Наблюдение помогло выявить ещё три линии, относящиеся к истечению из диска вещества. На этот раз был определён аргон. Оставался вопрос, что побуждает газ покидать протопланетный диск? Обычно такое происходит под воздействием высокоэнергичных фотонов, исходящих от молодой звезды, но это также может происходить под воздействием магнитного поля, индуцируемого самим диском. Природа утечек, интенсивность этих процессов, а также распределение их во времени позволят понять эволюцию планет от пыли и газа до полноценных небесных объектов планетарной массы. К примеру, планеты Солнечной системы до Марса включительно вобрали в себя мало газов, тогда как дальше в системе расположены газовые гиганты, где газов аномально много. Было бы важно узнать и пронаблюдать, как газы распределены по протопланетным дискам и насколько разноудалённые от звезды планеты способны абсорбировать этот газ до того момента, как звёздный ветер или что-то ещё выдует вещество из протопланетного диска. Звезда TCha с её протопланетным диском и впервые наблюдаемым учёными ветром от него может дать несколько ответов или подсказок на эти вопросы. Согласно первым оценкам, каждый год из протопланетного диска этой звезды улетучивается вещества как на одну нашу Луну. «Важно знать, как газ рассеивается, поскольку это ограничивает время, оставшееся зарождающимся планетам для поглощения газа из окружающей среды», — поясняют учёные в своей работе. В данном случае, как показали модели, газ выдувается из диска высокоэнергичными фотонами, исходящими от центральной звезды, что сужает границы возможностей и даёт больше информации для выводов. Но наблюдения за системой будут продолжены. «Джеймс Уэбб» впервые обнаружил в ранней Вселенной быстрорастущую сверхмассивную чёрную дыру
28.02.2024 [22:34],
Геннадий Детинич
Ранняя Вселенная на красных смещениях больше 10 была в основном белым пятном для наблюдательной астрономии. Из-за смещения света в красный диапазон заглянуть дальше мог только инфракрасный телескоп, что привело к рождению «Уэбба». Открытия пошли косяком. Да, такие, что грозят изменить наши космологические теории. Ранняя Вселенная оказалась не пустыней, а средоточием удивительных вещей, включая зрелые массивные галактики и сверхмассивные чёрные дыры. Новым удивительным открытием стало обнаружение быстрорастущей сверхмассивной чёрной дыры примерно через 700 млн лет после Большого взрыва. Намёк на её существование в те времена появился после одного из первых глубоких наблюдений «Уэбба» летом 2022 года за окрестностями сверхмассивного скопления галактик Abell 2744. На снимке по бокам и над скоплением были замечены три ярких красных точки, привлёкших внимание астрономов. Анализ показал, что это один и тот же квазар — активный центр галактики или активно питающаяся сверхмассивная чёрная дыра, которая благодаря эффекту гравитационного микролинзирования отобразилась одновременно в трёх местах на небе. С помощью спектрометра «Уэбба», а также с привлечением радиотелескопа ALMA и рентгеновского телескопа «Чандра» группа астрономов внимательно изучила этот объект и пришла к далеко идущим выводам. Измерения и моделирование показало, что квазар слишком тяжёлый для подобного среднестатистического объекта. Его масса достигает 3 % массы галактики-хозяйки, тогда как в окружающей нас Вселенной масса квазаров обычно составляет 0,1 % массы галактик. Открытие такого массивного и активно питающегося объекта, о чём говорит его красный цвет, и так рано после Большого взрыва, заставляет предположить, что учёные наткнулись на недостающее переходное звено между зародышем сверхмассивной чёрной дыры и ярким квазаром. Учёных смущают участившиеся случаи открытия содержащих сверхмассивные чёрные дыры квазаров в первый миллиард лет жизни Вселенной. Нам непонятен процесс быстрого набора массы чёрными дырами за короткий промежуток времени. В теории зародышами сверхмассивных чёрных дыр могут быть чёрные дыры, рождённые смертью первых звёзд определённой большой массы, либо чёрные дыры, возникшие при прямом коллапсе газовых облаков вскоре после Большого взрыва. Обнаруженный учёными объект A2744-QSO1 на красном смещении z=7,045 демонстрировал высокий темп естественного роста, что может помочь объяснить механизмы эволюции сверхмассивных чёрных дыр на раннем этапе развития Вселенной. Одного наблюдения определённо не хватит для построения стройных математических моделей эволюции сверхмассивных чёрных дыр. Но «Джеймс Уэбб» поможет набрать достаточно данных по таким объектам, и тогда своё слово скажут теоретики. Пока они не спешат разрушать космологические устои, требуя больше доказательств по наблюдаемым с помощью «Уэбба» явлениям. «Джеймс Уэбб» нашёл лучшее доказательство существования нейтронных звёзд
23.02.2024 [11:56],
Геннадий Детинич
Нейтронные звёзды обнаружить ничуть не легче, чем чёрные дыры. Они тоже темны, но к тому же очень компактны. Все обнаруженные ранее нейтронные звёзды определены по косвенным признакам и нашим моделям. Телескоп «Уэбб» вплотную подобрался к обнаружению нейтронной звёзды, являющейся останками взрыва сверхновой. Сразу после ввода телескопа в строй летом 2022 года учёные начали следить за останками сверхновой 1987A. Это близкий к нам объект всего в 160 тыс. световых лет. Сверхновая вспыхнула в феврале 1987 года и к маю стала видна на Земле даже невооруженным глазом. Это первая такая яркая сверхновая с 1604 года (со времён сверхновой Кеплера). За два часа до обнаружения сверхновой в оптическом диапазоне три земных нейтринных обсерватории зафиксировали короткий всплеск нейтрино от объекта в том же месте пространства. Расчёты показали, что сверхновая, скорее всего, закончит своё существование нейтронной звездой, а не чёрной дырой. Однако твёрдых доказательств этому не было, и учёные все последующие 40 лет следили за сверхновой 1987A в надежде получить больше данных для уточнения моделей терминальной стадии эволюции звёзд. Обсерватория им. Джеймса Уэбба получила лучшие доказательства в пользу образования после взрыва сверхновой 1987A нейтронной звезды, а не чёрной дыры. На снимке выше слева можно увидеть изображение останков сверхновой 1987A, сделанные камерой NIRCam телескопа. Справа вверху данные прибора MIRI показывают однократно ионизированный аргон вокруг предполагаемой нейтронной звезды (атомы аргона потеряли по одному электрону под воздействием ионизирующего излучения нейтронной звезды). Справа внизу показан снимок многократно ионизированного аргона, полученный прибором NIRSpec «Уэбба» (атомы аргона потеряли до пяти электронов каждый). Ионизация аргона означает, что компактный объект в центре излучает высокоэнергичные фотоны, которые выбивают электроны из окружающего объект газового облака. На основании наших знаний об эволюции звёзд с большой вероятностью можно предположить, что в центре останков сверхновой 1987A находится нейтронная звезда, а не чёрная дыра, что на сегодня стало лучшим доказательством существования нейтронных звёзд. На этом работа по объекту не прекратится. Открытие придало исследованиям ещё больше смысла. «Джеймс Уэбб» обнаружил самую невозможную из невозможных галактик в ранней Вселенной
17.02.2024 [13:53],
Геннадий Детинич
Наблюдения последних лет за ранней Вселенной всё чаще позволяют обнаруживать там массивные галактики, образование которых не могут объяснить современные теории. Ещё больше таких объектов позволил найти космический телескоп «Джеймс Уэбб». Но свежее открытие вышло ещё дальше за рамки возможного — учёные обнаружили чрезвычайно массивную галактику, сформировавшуюся всего через 400 млн лет после Большого взрыва. Строго говоря, галактика ZF-UDS-7329 попала в поле зрения наземных телескопов ещё в 2010 году. Она обнаружена на удалении 1,75 млрд лет после Большого взрыва (красное смещение z=3,205). Наземные телескопы способны работать на такой дистанции, но подтвердить истинное удаление этого объекта и состав его звёздного населения спектральными наблюдениями с Земли они не смогли. Семь лет исследований ZF-UDS-7329 ничего не принесли и только появление «Джеймса Уэбба» изменило правила игры. С помощью приборов «Уэбба» учёные выяснили, что в спектре галактики ZF-UDS-7329 присутствуют следы очень древних для того времени звёзд. В основном возраст звёзд в далёкой галактике составил от 1 до 1,5 млрд лет. При этом масса звёзд в 4 раза превысила массу звёзд в нашей галактике Млечный Путь. Это выглядит невероятным. Получается, что массивная галактика сформировалась уже через 400 млн лет после Большого взрыва. Это очень сильно ограничивает базовые модели образования и эволюции галактик и фактически бросает вызов всем современным теориям астрофизики. По нашим представлениям, для зарождения в те времена настолько массивных галактик банально не хватило бы тёмной материи, ведь считается, что именно она обеспечивает сборку вещества в пространстве и запуск звездообразования. Таким образом, новые открытия помогают также создать рамки для изучения этой загадочной и неуловимой субстанции, без которой не было бы звёзд, планет и нас с вами. Для дальнейшего изучения этого непростого вопроса понадобится сделать ещё множество открытий. Пока объект ZF-UDS-7329 обнаружен в единственном таком экземпляре. Для создания новых математических моделей эволюции звёзд и галактик нужны новые множественные открытия. |