Опрос
|
реклама
Быстрый переход
«Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных
21.11.2024 [14:34],
Геннадий Детинич
Учёные из Австралии сообщили о разработке «трёхмерных» топологических кодов коррекции ошибок квантовых вычислений. Предложенная ими схема использует для коррекции меньше физических кубитов в пересчёте на один логический кубит. Новшество обещает приблизить появление «квантовых жёстких дисков» — хранилищ квантовых состояний для вычислений с невообразимым уровнем производительности. Как известно, время когерентности кубитов — время удержания запутанных квантовых состояний — очень маленькое по причине их высочайшей нестабильности. И если с физикой бороться предельно сложно, то операции коррекции ошибок могут помочь в проведении безошибочных вычислений. Классические компьютеры это показали с достаточной убедительностью. Но в случае операций с кубитами всё намного сложнее — для них нужны свои коды и механизмы коррекции. Традиционным методом исправления ошибок в квантовых вычислениях признан так называемый топологический код или поверхностный код, у которого также есть другие названия. Это своего рода таблица или матрица, которая требует физической или схемотехнической реализации логических кубитов из нескольких физических. В идеале для безошибочной работы каждого логического кубита необходимо 1000 физических кубитов, но на таком подходе масштабируемую вычислительную квантовую платформу построить нельзя. Учёные из Австралии поставили перед собой задачу уйти от традиционного поверхностного кода и создать его трёхмерный аналог, который помог бы облегчить создание квантового вычислителя или симулятора с более эффективной коррекцией ошибок и экономным расходованием физических кубитов. Как недавно они сообщили в журнале Nature Communications, им это удалось. «Предлагаемая нами квантовая архитектура потребует меньше кубитов для подавления большего количества ошибок, высвободив больше для полезной квантовой обработки», — говорится в заявлении ведущего автора работы Доминика Уильямсона (Dominic Williamson), исследователя из Нано-института и школы физики Университета Сиднея (University of Sydney Nano Institute and School of Physics). «Этот прогресс имеет решающее значение для разработки масштабируемых квантовых компьютеров, поскольку позволяет создавать более компактные системы квантовой памяти, — сказано в аннотации к работе. — За счёт сокращения физических затрат на кубиты полученные результаты прокладывают путь к созданию более компактного "квантового жёсткого диска" — эффективной системы квантовой памяти, способной надёжно хранить огромные объёмы квантовой информации». Создан первый в мире полностью механический кубит
19.11.2024 [13:12],
Геннадий Детинич
Швейцарские учёные впервые придали кубиту осязаемые физические черты. Вместо ионов, атомов и электромагнитных ловушек они предложили кубит на основе резонирующей пьезоэлектрической мембраны. Тем самым учёные значительно повысили время когерентности кубита, в течение которого он дольше остаётся в состоянии суперпозиции. Это открывает возможность проводить с ним квантовые вычисления или использовать его в качестве сверхчувствительного датчика Учёные давно научились транслировать квантовые свойства элементарных частиц и атомов в состояния кубитов для вычислений или измерений. Однако эти методы страдают от высокой вероятности ошибок и крайне малого времени удержания квантовых состояний, что затрудняет свободное манипулирование ими. Было бы заманчиво воспроизвести квантовые состояния на макроскопическом уровне, обучив систему реагировать на изменения на микроуровне. Этого удалось добиться исследователям из Швейцарской высшей технической школы Цюриха (ETH Zürich). Учёные объединили сверхпроводящий кубит и пьезоэлектрический резонатор. Предложенное решение позволило транслировать состояние суперпозиции в резонансные колебания мембраны. По сути, это первый полностью механический кубит, утверждают исследователи. В ходе серии экспериментов они доказали, что устройство способно реагировать на одиночные фотоны. Время когерентности механического (точнее, акустического) кубита значительно превышает время когерентности «бозонных» кубитов и напрямую зависит от типа используемых сверхпроводящих материалов. На следующем этапе учёные намерены проверить предложенный ими механический кубит в составе вычислительных схем квантового компьютера, а также использовать его в качестве сенсора для различных измерений. Nvidia поможет Google в разработке эффективных квантовых процессоров
19.11.2024 [04:30],
Николай Хижняк
Компания Nvidia поможет Alphabet, материнской компании Google, в разработке квантовых процессоров. Согласно заявлению обеих компаний, подразделение Google Quantum AI будет использовать суперкомпьютер Nvidia Eos для ускорения проектирования квантовых компонентов. Идея состоит в том, чтобы на базе суперкомпьютера Nvidia Eos моделировать физические процессоры, необходимые для работы квантовых процессоров, что поможет преодолеть текущие ограничения в разработке по-настоящему эффективных квантовых систем. Квантовые вычисления основаны на принципах использования квантовой механики для создания машин, которые будут намного быстрее, чем современные технологии на основе полупроводников. Однако для массового характера использования таких технологий время пока не пришло. Как сообщает Bloomberg, несмотря на то, что различные компании заявляли о прорывах в области квантовых вычислений, могут потребоваться десятилетия, чтобы на рынке появились действительно крупномасштабные коммерческие проекты, связанные с квантовыми вычислениями. Nvidia, самая дорогая компания в мире, считает, что её аппаратные технологии помогут Google решить одну сложную проблему, связанную с квантовыми вычислениями. По мере того, как квантовые процессоры становятся всё более сложными и мощными, в квантовых вычислениях становится всё сложнее различать фактическую информацию и помехи, известные как шум. «Разработка коммерчески полезных квантовых компьютеров возможна только в том случае, если мы сможем масштабировать квантовое оборудование, контролируя шум. Используя ускоренные вычисления Nvidia, мы изучаем влияние шума на растущую сложность схем квантовых чипов», — прокомментировал Гифре Видал (Guifre Vidal), научный сотрудник Google Quantum AI. Для поиска решений Nvidia предлагает использовать гигантский суперкомпьютер, в котором используются её ИИ-ускорители. С помощью суперкомпьютера будут моделироваться процессы взаимодействия квантовых систем с окружающей средой. Например, многие квантовые чипы необходимо охлаждать до очень низких температур, чтобы они вообще работали. Раньше такие вычисления были чрезвычайно дорогими и отнимали много времени. Nvidia заявляет, что её система будет выдавать результаты расчётов, на которых ранее ушла бы неделя, за считанные минуты, и это обойдётся значительно дешевле. Apple оснастила новые MacBook Pro дисплеями на квантовых точках, но никому об этом не сказала
15.11.2024 [17:16],
Павел Котов
Две недели назад Apple представила новое поколение MacBook Pro — компьютеры получили чипы M4 Pro и M4 Max. Но в ходе анонса компания не сообщила, что ещё одним нововведением стали более качественные дисплеи на квантовых точках. Apple до сих пор устанавливает на MacBook ЖК-экраны IPS, пусть и более качественные, чем на большинстве других ноутбуков. Производитель указывает, что в них используется усовершенствованная подсветка miniLED — небольшие светодиоды, которые позволяют локально осветлять или затемнять участки экрана. Другими словами, базовая технология для этих дисплеев не меняется довольно давно, но удалось добиться заметного улучшения яркости и контрастности. В предыдущих моделях MacBook Pro на процессорах серии Apple M использовалась красная фосфорная плёнка KSF, которая обеспечивает с подсветкой miniLED более широкую цветовую гамму, чем это обычно возможно. Это достаточно эффективное решение, но не настолько, насколько эффективны квантовые точки, которые, по словам аналитика в области дисплеев Росса Янга (Ross Young), без громких анонсов дебютировали в MacBook Pro с процессорами M4. В комментариях к его сообщению в соцсети X пользователи добавили, что выросла и скорость отклика дисплеев на компьютерах нового поколения. Технология квантовых точек существует довольно давно, но Apple не спешила внедрять её, потому что квантовые точки предыдущих поколений производились с использованием кадмия. Компания ещё в 2015 году сообщила, что не желает использовать его — Всемирная организация здравоохранения объявила, что для человека это канцероген, а переработка и утилизация содержащей кадмий электроники опасны. В Китае установили рекорд по времени удержания квантовых состояний
14.11.2024 [11:30],
Геннадий Детинич
Квантовые состояния крайне нестабильны, но обладают невероятными возможностями. То же состояние квантовой запутанности Эйнштейн называл «ужасным» и не мог до конца принять, что запутанные атомы могут «чувствовать» друг друга на разных концах Вселенной. Такие свойства неоценимы для проведения сверхчувствительных измерений и даже для поиска новой физики, но им мешает чрезвычайная краткость времени когерентности, которую преодолели учёные из Китая. На сайте arXiv появилась статья исследователей из Университета науки и технологий Китая, в которой заявляется об удержании квантовых состояний атомов в течение 23 минут, что можно считать абсолютным рекордом. Обычно время когерентности не превышает нескольких миллисекунд, что кратно меньше нового достижения. Статья пока не прошла рецензирование и должна восприниматься с осторожностью. Однако если другие коллективы смогут повторить опыт китайских учёных, то это станет крупным прорывом в разработке квантовых технологий. Эксперимент заключается в охлаждении 10 тыс. атомов иттербия до нескольких тысячных градуса выше абсолютного нуля, которые затем были пойманы в ловушку электромагнитными полями лазерного излучения. В этих условиях квантовыми состояниями атомов можно было очень точно управлять, и исследователи воспользовались этим, чтобы перевести каждый атом в суперпозицию двух состояний с наиболее сильно отличающимися спинами. Точная настройка лазеров — оптических ловушек — позволила удерживать атомы в состоянии суперпозиции 1400 секунд или 23 мин. Этого времени будет достаточно для постановки экспериментов в квантовой физике, для измерений с погрешностью менее квантового предела (это так называемое квантовое превосходство в метрологии), для квантовой компьютерной памяти, наконец. Китайцы использовали квантовый компьютер D-Wave Systems для взлома AES-шифрования — у них почти получилось
12.10.2024 [13:19],
Геннадий Детинич
Китайские учёные опубликовали в национальном рецензируемом журнале Chinese Journal of Computers статью, в которой сообщили об эффективных атаках на ряд алгоритмов AES-шифрования. Атаки были проведены с использованием квантового компьютера канадской компании D-Wave Systems. Но основным «ударным» механизмом стал новый математический аппарат, разработанный в Китае. Специалисты оценили угрозу как «реальную и существенную». Шифрование AES с ключами выше определённой длины сегодня считается чрезвычайно защищённым. Но это с точки зрения обычных компьютерных вычислений. Квантовые компьютеры и соответствующие алгоритмы потенциально обещают играючи взламывать ключи AES. Считается, что для этого должно пройти 10, 20 или даже больше лет. Однако есть опасения и признаки того, что всё произойдёт намного раньше — уже через 3-5 лет. Группа китайских учёных из Шанхайского университета в своей новой работе показала, что ряд алгоритмов шифрования, лежащих в основе AES, могут быть скомпрометированы квантовыми компьютерами. Используя квантовый компьютер канадской компании D-Wave Systems учёные провели атаку на алгоритмы Present, Gift-64 и Rectangle, которые относятся к так называемому блочному шифрованию Substitution-Permutation network (подстановочно-перестановочная сеть). Код не был взломан окончательно, как говорится в работе, но команда исследователей была близка к этому как никто и никогда ранее. Сеть SP является частью AES-шифрования, с помощью которого банковский сектор, госструктуры и военные всего мира хранят свои секреты. Даже призрачная угроза в данном случае должна рассматриваться, как реальная. «Это первый случай, когда настоящий квантовый компьютер представляет реальную и существенную угрозу для множества полномасштабных структурированных алгоритмов SPN, используемых сегодня», — говорится в рецензируемой статье. Сам квантовый компьютер D-Wave Systems с трудом можно назвать квантовым. Он использует принцип квантового отжига — работает на поиске энергетических минимумов, что в физике соответствует стремлению атомов к наименьшему энергетическому состоянию. Всё, что осталось после обработки — «прогорания» — данных и есть искомый результат. Учёным нужно было лишь создать математический аппарат для обработки данных в нужном для них направлении. Такой аппарат с привлечением ИИ был создан, но он не универсальный и это затрудняет практическое использование квантовых платформ сегодня, в том числе, для успешного взлома AES-ключей. Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению
10.10.2024 [09:19],
Дмитрий Федоров
Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий. Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения. Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах. Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем. Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами. В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах». Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным. В России создан 50-кубитный ионный квантовый компьютер
07.10.2024 [17:58],
Сергей Сурабекянц
50-кубитный квантовый ионный компьютер разработан научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН). На данный момент он является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу. Разработка велась в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является госкорпорация «Росатом». Представленный квантовый компьютер базируется на уникальной кудитной технологии, которую российские учёные стали использовать третьими в мире, после Австрии и США. Впервые российский 16-кубитный компьютер был представлен в июле 2023 года на первом Форуме будущих технологий (ФБТ). На втором ФБТ в феврале 2023 года была продемонстрирована 20-кубитная машина. Менее чем за год после этого удалось увеличить количество кубитов до 50. «За год мы полностью переделали ультрастабильный лазер и существенно модернизировали и систему адресации и считывания, поработали над стабильностью всех подсистем, автоматизировали многие калибровки. За счёт этого получилось в короткий срок поднять мощность нашего квантового компьютера и нарастить число кубит. Дальше мы планируем работать и над увеличением числа кубит, и над достоверностью двухкубитных операций. Всё это нужно для запуска более сложных квантовых алгоритмов. Потенциал для модернизации у нашей машины есть», — прокомментировал научный руководитель проекта Илья Семериков. Эксперты полагают, что квантовые вычисления в первую очередь будут востребованы в фармацевтике для моделирования сложных соединений при создании новых лекарств. Квантовые вычисления помогут при прогнозировании эпидемий. Врачи смогут в кратчайшие сроки разработать персональные рекомендации для лечения с учётом конкретных симптомов и особенностей организма. Квантовые вычисления обеспечат принципиально новые возможности при моделировании химических процессов, что безусловно будет востребовано в промышленном секторе. В логистических операциях использование квантовых компьютеров для составления оптимальных маршрутов и расписаний движения транспорта приведёт к сокращению задержек, удешевит и ускорит доставку грузов. Аналитики уверены, что квантовые технологии радикально повысят возможности ИИ в области машинного обучения, распознавания и анализа, обработки больших данных при меньших энергозатратах. Постквантовое шифрование должно обеспечить необходимый уровень защиты персональных и конфиденциальных данных. В финансовом секторе квантовые вычисления помогут минимизировать риски и точнее оценить кредитоспособность клиента. «Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование» — заявил Директор ФИАН Николай Колачевский. «50 кубитов - это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. […] Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу», — считает сооснователь Российского квантового центра Руслан Юнусов. Ранее он озвучивал планы создания 100-кубитного квантового компьютера к 2030 году. Россия наряду с США и Китаем сегодня входит в число стран, создавших квантовые компьютеры на всех четырёх приоритетных для квантовых вычислителей платформах: сверхпроводниках, ионах, нейтральных атомах и фотонах. И только шесть стран построили квантовые компьютеры с 50 кубитами и более: Китай, США, Канада, Россия, Япония и Франция. Физики обнаружили явление «отрицательного времени», но путешествовать в прошлое оно не поможет
05.10.2024 [20:18],
Геннадий Детинич
Учёные из Университета Торонто обнаружили очередное свидетельство контринтуитивного восприятия квантового мира. В серии экспериментов было доказано, что в определённых условиях атомы и фотоны могут вести себя так, как будто время идёт вспять. Работа учёных пока не прошла рецензирование и с сентября находится на сайте arxiv.org. В ходе опытов исследователи пропускали свет (фотоны) через облако охлаждённых почти до абсолютного нуля атомов. Через такую среду свет проходит с некоторой задержкой, называемой групповой. Это связано с тем, что некоторые фотоны поглощаются атомами и возбуждают их. Это происходит вследствие поглощения энергии фотонов электронами атомов и их переходом на более высокий уровень. Затем электроны испускают фотоны и возвращаются на прежний энергетический уровень, а атомы выходят из возбуждённого состояния. Свет выходит как ни в чём не бывало, но спустя какое-то детектируемое время. Интересное начинается, когда частота фотонов приближается к резонансной частоте атомов. В таких ситуациях групповая задержка становится отрицательной. В эксперименте учёные определяли это по фазовому сдвигу между опорным лучом и зондирующим — это так называемый эффект Керра. Согласно проделанным наблюдениям и расчётам, отрицательная групповая задержка света — это не ошибка измерений, а данность. Атомы вещества как бы возбуждались заранее ещё до прохождения фотонов, что, судя по всему, можно объяснить их суперпозицией в квантовом мире. Как это может происходить в нашем мире, объяснил Шрёдингер на примере кошки. «Отрицательная временная задержка может показаться парадоксальной, но это означает, что если бы вы построили "квантовые" часы для измерения того, сколько времени атомы проводят в возбужденном состоянии, стрелка часов при определенных обстоятельствах двигалась бы назад, а не вперёд», — объяснил автор исследования Джозайя Синклер (Josiah Sinclair) из Университета Торонто. По крайней мере, для групповой задержки прохождения света через вещество «отрицательное время» имеет ощутимое физическое значение, что необходимо будет учитывать в будущих исследованиях. Для мечтающих попасть в прошлое или будущее это не поможет осуществить их заветное желание, но лишний раз даёт убедиться, что в квантовом мире происходят настоящие чудеса. Квантовая механика помогла придумать оптическую память невообразимой плотности
04.10.2024 [23:06],
Геннадий Детинич
Группа учёных из США смогла соединить квантово-механическую теорию и цифровую запись, проложив путь к потенциально сверхплотной оптической памяти. Запись осуществляется излучателями атомарного размера, встроенными в саму память, а ячейками для хранения информации выступают множественные дефекты в атомарной структуре памяти. Всё это замешано на управляемом изменении квантовых состояний дефектов, явив собой смесь классической и квантовой физики. Исследование и разработку моделей изучаемых явлений осуществили физики из Аргоннской национальной лаборатории министерства энергетики США и Притцкеровской школы молекулярной инженерии Чикагского университета. Сначала они провели моделирование и предсказали возможные результаты и лишь потом провели эксперименты. Проделанная учёными работа во многом новаторская. Ещё никто не изучал вопрос, как поведут себя дефекты в атомарной структуре твёрдых материалов, если по соседству с ними в нанометровой доступности расположатся излучатели энергии (фотонов). Фактически это физика в ближнем поле, которая непросто поддаётся изучению и, прежде всего, из-за возникновения разного рода квантовых эффектов. «Мы разработали фундаментальные физические основы того, как передача энергии между дефектами может лежать в основе невероятно эффективного оптического метода хранения, — сказала Джулия Галли (Giulia Galli), профессор Чикагского университета и старший научный сотрудник Аргоннской национальной лаборатории. — Это исследование иллюстрирует важность изучения основных принципов и квантовомеханических теорий для освещения новых, зарождающихся технологий». Если мы будет рассматривать, например, оптические диски, то минимально допустимое пятно для записи будет ограничено дифракционным пределом оптической системы и не сможет быть меньше длины волны записывающего лазера. Учёные предложили насытить материал атомами редкоземельных элементов, которые отличаются тем, что способны переизлучать падающий на них свет в более узком диапазоне и на других длинах волн. Тем самым можно создать материал с мириадами записывающих «лазеров» внутри, каждый из которых был бы размером с атом. Точно также материал можно насытить ячейками для записи, в роли которых выступали бы дефекты в кристаллической структуре. При достаточном количестве атомов редкоземельных элементов и дефектов большинство из них находились бы в нанометровой доступности друг от друга. Суть открытия в том, что редкоземельные излучатели (точнее — переизлучатели) необратимо или на очень длительное время меняют квантовые состояния находящихся по соседству дефектов (переводят их из синглетного в триплетное состояние). А это память, работающая в оптическом диапазоне. И очень плотная память — на уровне атомарной структуры. Учёные предупреждают, что они пока слабо представляют многие механизмы работы такой памяти, но не сомневаются, что это интересный и перспективный путь для удовлетворения нужд человечества в сохранении цифровых архивов. Квантовые компьютеры оказались слишком слабыми для запуска Doom
01.10.2024 [11:23],
Павел Котов
Выпущенная в 1993 году игра Doom имеет по сегодняшним меркам настолько скромные системные требования, что её запускают на самом неожиданном оборудовании: это может быть встроенный в клавишу Backspace крошечный экран, ёлочная игрушка, воксельный дисплей, другая игра, система искусственного интеллекта, умная газонокосилка или стандартная программа Windows. Но не квантовый компьютер. Разработчик Люк Мортимер (Luke Mortimer) из Барселоны опубликовал на GitHub проект Quandoom — он воссоздал первый уровень культового шутера для запуска на квантовом компьютере и пришёл к выводу, что пока не существует достаточно мощной для его запуска машины. Но можно создать её «эффективную симуляцию» на ноутбуке. Для запуска Quandoom требуются 70 000 кубитов и 80 млн логических вентилей. Самый мощный на текущий момент квантовый компьютер построила компания Atom Computing, и у него 1225 кубитов. И это даже не полная версия игры. Адаптация одного только первого уровня в Quandoom представлена базовой каркасной графикой, отсутствуют музыка и звук, а враги не могут перемещаться между комнатами. Но и этого пока слишком много для существующих квантовых компьютеров. «Сейчас я всё ещё дорабатываю код движка, но в основе у меня 8000 строк функций C++, позволяющих выполнять ряд обратимых двоичных и арифметических операций на квантовых регистрах, например, „flipIfLessThanOrEqualTo“, обращает все кубиты в регистре, если значение другого регистра меньше заданного. Всё делается целыми числами. Используя такие функции, я написал небольшой 3D-движок и всю игровую логику», — говорится в описании Quandoom. Учёные впервые квантово запутали топ-кварки — исполинов среди всех обнаруженных элементарных частиц
20.09.2024 [19:48],
Геннадий Детинич
Топ-кварки или t-кварки, были обнаружены всего 30 лет назад. Они чрезвычайно массивны по сравнению с остальными элементарными частицами Стандартной модели. Это делает их уникальными и загадочными, открывая перспективы для новых открытий в области физики — неизвестных взаимодействий или частиц. Раскрывая секреты топ-кварков, учёные впервые смогли квантово запутать их пары, что произошло на Большом адронном коллайдере без экстремального охлаждения среды. До сих пор исследователи создавали квантовую запутанность лёгких частиц в условиях низких энергий. Обычно это были фотоны. Квантовая запутанность означает, что мы можем узнать некоторые квантовые свойства одной частицы (например, фотона) по детектируемым свойствам другой частицы из запутанной пары, даже если первая находится на краю Вселенной. При этом никакой передачи информации или энергии не происходит. Нам просто становятся известны определённые квантовые характеристики фотона из запутанной пары. Топ-кварки — это частицы совершенно другого масштаба по массе и энергии. Они были открыты последними из шести типов кварков. Масса топ-кварка в 184 раза превышает массу протона и, например, значительно больше массы атома вольфрама. Запутать пару топ-кварков — значит выйти на энергетический уровень выше 10 ТэВ (тераэлектронвольт). В случае фотонов или других лёгких частиц (фотоны не имеют массы) для предотвращения разрушения квантовых состояний и запутанности экспериментальные системы охлаждаются до абсолютного нуля, чтобы минимизировать все внутренние колебания. Это известная проблема квантовых вычислений, которые страдают от короткого времени когерентности. Для запутывания пар топ-кварков этого не потребовалось. Авторы исследования из коллаборации ATLAS создали необходимые для этого условия в процессе эксперимента на коллайдере БАК. Статья о работе вышла в журнале Nature. Похожую работу независимо также проделали учёные из коллаборации CMS, но их работа пока есть лишь на сайте препринтов arXiv.orgc. Топ-кварки, благодаря своим свойствам, оказались удобным объектом для изучения запутанности с использованием относительно простых средств, по сравнению с другими случаями, и при этом на совершенно новом уровне энергий. Хотя стоит признать, что Большой адронный коллайдер трудно назвать «подручным инструментом», это вряд ли позволит в ближайшее время перевести эксперименты с топ-кварками в практическую плоскость квантовых вычислений или криптографии. Тем не менее, изучение квантовой запутанности на столь высокой энергетической ступени — это не просто шаг вперёд, это прорыв! В телевизорах TCL на квантовых точках исследователи не нашли квантовых точек — производитель отмёл обвинения
18.09.2024 [11:11],
Павел Котов
Китайский производитель бытовой техники TCL оказался в центре внимания: сторонние эксперты провели тестирование трёх его телевизоров, которые позиционируются как модели на квантовых точках, и признаков наличия квантовых точек на них не было обнаружено. Производитель эти результаты отверг. Квантовые точки — полупроводниковые компоненты размером в несколько нанометров, которые производят свет разных цветов при попадании на них света определённой частоты. Излучаемый квантовой точкой цвет зависит от размера самой квантовой точки, поскольку он влияет на длину волны. Это решение помогает телевизорам и мониторам премиум-класса охватывать более широкий цветовой диапазон. Квантовые точки стали важным аргументом в пользу моделей QLED, QD Mini LED и QD-OLED, и они имеют более высокую цену. Производитель, который продаёт стандартные модели, заявляя о наличии квантовых точек, рискует и репутацией, и собственным благополучием — такие действия могут привести к юридическим последствиям. Южнокорейское технологическое издание ETNews опубликовало отчёт об исследовании, согласно которому три телевизора TCL, которые позиционируются как модели на квантовых точках, на самом деле этих квантовых точек лишены. Заказчиком выступила сеульская компания Hansol Chemical; тесты проводили компании SGS и Intertek, штаб-квартиры которых находятся соответственно в Женеве и Лондоне. Эксперты исследовали модель TCL C755, заявленную как телевизор Mini LED на квантовых точках; TCL C655, позиционируемую как модель QLED; а также TCL C655 Pro — тоже QLED. По результатам исследований в телевизорах не было обнаружено индия и кадмия — важных материалов, без которых невозможно реализовать квантовые точки. Кадмий должен был обнаружиться, если бы он присутствовал в минимальной концентрации 0,5 мг на 1 кг; индий пытались обнаружить в концентрациях 2 и 5 мг/кг в разных лабораториях. В ответ на публикацию материала представитель TCL заявил, что компания «производит телевизоры с плёнками на квантовых точках, поставляемыми тремя компаниями», а «количество квантовых точек <..> на плёнке может варьироваться в зависимости от поставщика, но кадмий, несомненно, присутствует». Далее TCL опубликовала результаты другого исследования, проведённого по заказу Guangdong Region Advanced Materials — одного из поставщиков плёнок с квантовыми точками. Примечательно, что это исследование снова провела SGS, и на этот раз она обнаружила присутствие кадмия в плёнках в концентрации 4 мг/кг. TCL также заявила, что «подтвердила флуоресцентные характеристики квантовых точек», и представила спектрограмму, которая якобы свидетельствует о наличии квантовых точек в плёнках телевизоров. Одна из очевидных причин разницы в результатах — разные методы тестирования. В исследовании, где был обнаружен кадмий, изучались плёнки на квантовых точках, которые поставляются TCL. В исследовании по заказу Hansol рассматривались плёнки на квантовых точках на готовых телевизорах китайского производителя. Это может свидетельствовать, что у TCL недостаточно хорошо организован контроль качества, а концентрация квантовых точек может варьироваться от партии к партии или даже в пределах одного телевизора. Впрочем, это не означает, что у TCL есть намерение обмануть потребителей. По мнению опрошенного изданием Ars Technica эксперта, наиболее адекватным методом исследования были бы не замеры концентрации квантовых точек, а тестирование показателей изображения, которые выдаёт телевизор — цветовой гаммы и яркости. Следует также обратить внимание, что TCL говорит о применении кадмия в телевизорах QLED и Quantum Mini LED, но не упоминает об индии. Присутствие обоих элементов в телевизорах на квантовых точках не обязательно. Некоторые экраны на квантовых точках имеют в основе лишь собственно квантовые точки, в других же используется смесь индиевых и/или кадмиевых квантовых точек и люминофоров — это материалы совершенно иного класса, но их целью является такое же преобразование синего цвета светодиодов в зелёный и красный. В последнем случае содержание квантовых точек может быть в десять раз ниже, и в минимально допустимый по нормам Hansol показатель в 0,5 мг/кг оно действительно не попадёт. Этот вариант дешевле в производстве, а цветовая гамма, чистота цвета и яркость будут уступать дисплеям на «чистых» квантовых точках. И вполне вероятно, что TCL использует его в QLED-моделях начального уровня. Стоит также отметить, что в Евросоюзе действует директива RoHS (Restriction of Hazardous Substances Directive), ограничивающая содержание вредных веществ в продукции на территории региона. Она, в частности, не допускает превышения массовой концентрации кадмия в 0,01 %, но есть исключение, позволяющее использовать его в количестве до 0,2 г на м² в дисплеях. При этом в большинстве экранов на квантовых точках кадмий либо используется в малых количествах, либо не используется вообще. Так, Samsung заявляет, что применяет только квантовые точки без кадмия. При этом заказавшая исследование корейская химическая компания Hansol не поставляет свою продукцию TCL, зато продаёт её Samsung. Samsung и LG пока остаются крупнейшими в мире производителями телевизоров, но этот статус все чаще пытаются оспорить китайские компании. Поэтому Hansol можно рассматривать как предвзятую сторону. Наконец, трудно представить, чтобы такая крупная компания, как TCL, рискнула своей репутацией и начала просто обманывать покупателей, считают эксперты. Изготовление «фальшивых» плёнок на квантовых точках без квантовых точек стоило бы почти столько же, сколько производство настоящих, но без преимуществ в качестве изображения. Возможно, TCL использует квантовые точки в небольших количествах совместно с материалами на основе фосфора — качество картинки может действительно оказаться хуже, чем у телевизоров с экранами на основе других решений, но это будет значить, что квантовые точки в продукции TCL всё-таки есть. Прояснить ситуацию может серия дальнейших и более подробных исследований продукции компании. Учёные сделали шаг к квантовому интернету — впервые квантовые и обычные фотоны передали по одному оптоволокну
27.08.2024 [11:56],
Геннадий Детинич
Возможности квантовых компьютеров приумножатся, когда их начнут соединять в сети. И будет отлично, если эти сети будут построены на уже имеющихся волоконно-оптических каналах. Так будет дешевле, а в придачу это повысит защищённость обычных каналов передачи информации. Другое дело, что «квантовые» фотоны и обычные плохо совмещаются в одном канале, ведь квантовые состояния чувствительны к помехам и легко разрушаются, но в Германии научились справляться с этим. Эксперимент поставили учёные из Ганноверского университета им. Лейбница (Leibniz University Hannover). Он должен был показать, что квантовая информация и классическая цифровая может быть передана по одному и тому же оптическому волокну. Потенциально это будет означать абсолютно защищённый от взлома обычный интернет, а также объединение в будущем нескольких квантовых компьютеров в кластеры для решения невообразимых сегодня по сложности задач. «Чтобы сделать квантовый интернет реальностью, нам нужно передавать запутанные фотоны по оптоволоконным сетям, — поясняет физик Майкл Кус (Michael Kues) из Ганноверского университета им. Лейбница. — Мы также хотим продолжать использовать оптические волокна для обычной передачи данных. Наше исследование — важный шаг к объединению обычного Интернета с квантовым интернетом». Для совмещения квантового и обычного оптического сигнала в одном канале учёные воспользовались самодельным модулятором с линейным изменением фазы или задержки (т.н. серродином). Серродин производит сдвиг фаз оптического сигнала в оптоволокне (в одном частотном канале), чтобы поместить туда одновременно квантовые и классические данные. Как показал опыт, это не разрушает запутанность фотонов. На выходе таким же образом потоки разделяются на квантовый и обычный для обработки каждого на своём приёмнике. Подчеркнём, всё происходит в одном частотном канале, а не просто в волокне, где частотных каналов могут быть десятки и даже сотни. Тем самым обычная пропускная способность снизится незначительно, открывая путь к более быстрому появлению квантового интернета. В США разработали квантовый «движок» для навигации без GPS
20.08.2024 [15:09],
Геннадий Детинич
В ряде случаев системы навигации GPS использовать нельзя или невозможно. Они могут быть скомпрометированы или заблокированы по разным причинам, а также остаются фактором риска в работе автопилотов. Параллельная система навигации без GPS могла бы решить проблему, но пока такие системы размером с комнату. Учёные из США обещают преодолеть эти ограничения и создать доступный миниатюрный «квантовый» компас уже в ближайшее время. Квантовая навигация строится на так называемой атомной интерферометрии. Частицы ведут себя также как волны, а волны одной и той же частицы могут накладываться друг на друга и отличаться по фазе. Сдвиг по фазе и эффекты интерференции волн измеряются лазером. На атомы действуют силы, например, гравитация, или они ощущают ускорение или торможение, угловой момент и прочее, что измеряется с атомарной точностью — те самые сдвиги фаз и интерференция. Перенос этих данных в наш мир позволяет соотнести измерения со всеми нюансами движения навигационного прибора на транспортном средстве. Это обеспечивает настолько высокую точность навигации, что она может превосходить возможности GPS. Для точной навигации без GPS необходимы шесть атомных интерферометров, что определяет конечные — немаленькие — размеры платформы. Учёные их Сандийских национальных лабораторий (Sandia National Labs) смогли удивить, разработав сверхкомпактные оптические чипы для привода в действие квантовых систем навигации. Громадные лазерные установки они заменили крошечными фотонными интегральными схемами. «Используя принципы квантовой механики, эти усовершенствованные датчики обеспечивают непревзойденную точность измерения ускорения и угловой скорости, обеспечивая точную навигацию даже в районах, где GPS недоступен», — утверждают разработчики. Ключевым элементом для датчиков нового поколения стал модулятор, способный управлять и комбинировать лучи с несколькими длинами волн, получаемыми из одного источника. Тем самым отпадает необходимость в объединении отдельных лазеров (читай — умножать габариты), ведь всю работу может выполнить один лазер, используя для этого схему модулятора. Помимо намного большей компактности, такие чипы также более устойчивы к вибрациям и ударам. Подобная надёжность позволит использовать квантовые датчики в самых сложных условиях эксплуатации, которые могут вывести из строя современные модели. Фактор стоимости также на повестке дня. Один современный лазерный модулятор легко преодолевает барьер в $10 тыс. Перевод производства на кремниевые пластины с сотнями и более чипов на 200- и 300-мм подложках — это залог снижения стоимости решений и повышение степени их доступности. Предложенные «квантовые» компасы способны выйти далеко за пределы сферы навигации. Квантовые детекторы масс, к примеру, легко справятся с картографированием скрытых под землёй коммуникаций и сооружений. Они могут оказаться востребованы для оптической связи и квантовых вычислений, в дальномерах и прочем. |