Опрос
|
реклама
Быстрый переход
Создан прототип литиевого аккумулятора, выдерживающий 6000 циклов заряда почти без потери ёмкости
13.01.2024 [16:42],
Геннадий Детинич
Группа учёных из США подобрала методику изготовления твердотельных аккумуляторов с анодом с использованием металлического лития. При этом они решали задачу максимально увеличить цикличность работы батареи. Созданный прототип размером с почтовую марку показал способность выдерживать до 6000 циклов заряда с потерей не больше 20 % первоначальной ёмкости. ![]() Источник изображения: Nature Materials Учёные из американской Школы инженерных и прикладных наук Гарвардского университета (SEAS) разработали такой процесс гальванизации кремниевого анода металлическим литием, в ходе которого микрогранулы кремния в составе анода покрываются литием как орешки шоколадной глазурью. Заявленная плотность энергии прототипа батареи оказалась сравнительно небольшой по современным меркам — всего 218 Вт/кг, что примерно в два раза меньше, чем в случае новейших литиевых элементов. Но способность выдерживать 6000 циклов разряда и заряда с потерей не больше 20 % ёмкости — это дорогого стоит. Сегодня мы можем только мечтать об аккумуляторах с подобной устойчивостью к износу. Обычно они выдерживают в два-три раза меньше полных рабочих циклов. Но учёные не собираются останавливаться на достигнутом, и мечтают также значительно увеличить ёмкость аккумуляторов, благо твердотельные электролиты и аноды с использованием металлического лития предоставляют для этого массу возможностей. О своём достижении учёные сообщили в статье в журнале Nature Materials, которая свободно доступна по ссылке. «Литийметаллические анодные батареи считаются святым Граалем аккумуляторов, поскольку их ёмкость в 10 раз превышает ёмкость коммерческих батарей на графитовых анодах и они могут значительно увеличить дальность передвижения электромобилей, — сказал Синь Ли (Xin Li), доцент кафедры материаловедения SEAS. — Наше исследование является важным шагом на пути к созданию более практичных твердотельных аккумуляторов для промышленного и коммерческого применения». «Во всём виноват катод»: учёные определили, откуда у твердотельных литиевых аккумуляторов растут дендриты
17.05.2023 [13:04],
Геннадий Детинич
Учёные из Института им. Макса Планка (MPI-P) исследовали микроструктуру твердотельных литиевых аккумуляторов, вдохновившись наблюдением за ростом сталактитов и сталагмитов в пещерах. Первые растут сверху, а вторые — снизу. Похожим образом в твердотельных батареях растут дендриты из металлического лития. Но прежде никто не изучал вопросы, на каком электроде начинается рост дендритов и что его к этому подталкивает и, главное, как этого избежать. ![]() Поиски корней дендритов в электродах батарей. Источник изображения: Xue Zhang / MPI-P Команда исследователей MPI-P из департамента Ганса-Юргена Бутта (Hans-Jürgen Butt) в деталях изучила атомное строение твердотельных электролитов и электродов от физического строения до карты распределения электронов в кристаллической решётке. В качестве основного инструмента использовался метод зондовой силовой микроскопии Кельвина (KPFM). Подход позволяет создать карту распределения зёрен кристаллов в поликристаллических материалах и отобразить межзёренные границы. Также KPFM даёт возможность измерить потенциалы на поверхности материала (оценить величину заряда). Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития (что происходит в момент зарядки и разрядки аккумуляторов) они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания. Своими выводами учёные поделились в статье в журнале Nature Communications, которая свободна доступна по этой ссылке. Следствием проделанной работы может стать появление намного более безопасных и долговечных батарей с твёрдым электролитом, которые будут невоспламеняемые и более энергоёмкие, чем привычные литиевые аккумуляторы с жидким электролитом. |