Сегодня 24 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → литиевоионный

Создан прототип литиевого аккумулятора, выдерживающий 6000 циклов заряда почти без потери ёмкости

Группа учёных из США подобрала методику изготовления твердотельных аккумуляторов с анодом с использованием металлического лития. При этом они решали задачу максимально увеличить цикличность работы батареи. Созданный прототип размером с почтовую марку показал способность выдерживать до 6000 циклов заряда с потерей не больше 20 % первоначальной ёмкости.

 Источник изображения: Nature Materials

Источник изображения: Nature Materials

Учёные из американской Школы инженерных и прикладных наук Гарвардского университета (SEAS) разработали такой процесс гальванизации кремниевого анода металлическим литием, в ходе которого микрогранулы кремния в составе анода покрываются литием как орешки шоколадной глазурью. Заявленная плотность энергии прототипа батареи оказалась сравнительно небольшой по современным меркам — всего 218 Вт/кг, что примерно в два раза меньше, чем в случае новейших литиевых элементов. Но способность выдерживать 6000 циклов разряда и заряда с потерей не больше 20 % ёмкости — это дорогого стоит.

Сегодня мы можем только мечтать об аккумуляторах с подобной устойчивостью к износу. Обычно они выдерживают в два-три раза меньше полных рабочих циклов. Но учёные не собираются останавливаться на достигнутом, и мечтают также значительно увеличить ёмкость аккумуляторов, благо твердотельные электролиты и аноды с использованием металлического лития предоставляют для этого массу возможностей.

О своём достижении учёные сообщили в статье в журнале Nature Materials, которая свободно доступна по ссылке.

«Литийметаллические анодные батареи считаются святым Граалем аккумуляторов, поскольку их ёмкость в 10 раз превышает ёмкость коммерческих батарей на графитовых анодах и они могут значительно увеличить дальность передвижения электромобилей, — сказал Синь Ли (Xin Li), доцент кафедры материаловедения SEAS. — Наше исследование является важным шагом на пути к созданию более практичных твердотельных аккумуляторов для промышленного и коммерческого применения».

«Во всём виноват катод»: учёные определили, откуда у твердотельных литиевых аккумуляторов растут дендриты

Учёные из Института им. Макса Планка (MPI-P) исследовали микроструктуру твердотельных литиевых аккумуляторов, вдохновившись наблюдением за ростом сталактитов и сталагмитов в пещерах. Первые растут сверху, а вторые — снизу. Похожим образом в твердотельных батареях растут дендриты из металлического лития. Но прежде никто не изучал вопросы, на каком электроде начинается рост дендритов и что его к этому подталкивает и, главное, как этого избежать.

 Поиски корней дендритов в электродах батарей. Источник изображения: Xue Zhang / MPI-P

Поиски корней дендритов в электродах батарей. Источник изображения: Xue Zhang / MPI-P

Команда исследователей MPI-P из департамента Ганса-Юргена Бутта (Hans-Jürgen Butt) в деталях изучила атомное строение твердотельных электролитов и электродов от физического строения до карты распределения электронов в кристаллической решётке. В качестве основного инструмента использовался метод зондовой силовой микроскопии Кельвина (KPFM). Подход позволяет создать карту распределения зёрен кристаллов в поликристаллических материалах и отобразить межзёренные границы. Также KPFM даёт возможность измерить потенциалы на поверхности материала (оценить величину заряда).

Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития (что происходит в момент зарядки и разрядки аккумуляторов) они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались.

Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания. Своими выводами учёные поделились в статье в журнале Nature Communications, которая свободна доступна по этой ссылке.

Следствием проделанной работы может стать появление намного более безопасных и долговечных батарей с твёрдым электролитом, которые будут невоспламеняемые и более энергоёмкие, чем привычные литиевые аккумуляторы с жидким электролитом.

Создан литиевый аккумулятор со всеми передовыми технологиями — у него рекордная энергоёмкость, но множество проблем

Международная группа учёных изучила взаимное влияние нескольких перспективных компонентов литиевых аккумуляторов на рабочие характеристики батарей. В основном они испытывали новый твердотельный электролит, хотя электроды тоже были не простые, а литийметаллические и литийвоздушные. И хотя не всё получилось гладко, предложенные аккумуляторы запасали почти в два раза больше энергии, чем традиционные литийионные.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Остроту проблемы умножает то, что и литийметаллические, и литийвоздушные электроды (анод и катод) имеют собственные и до конца нерешённые проблемы. Поэтому исследователи не были уверены, как они поведут себя с твёрдым электролитом. Забегая вперёд, отметим, что работа показала возможные пути решения целого ряда проблем при изготовлении перспективных аккумуляторов и в этом её главная ценность.

Вкратце сообщим, что металлический литий в составе электрода провоцирует быстрое осаждение лития из электролита на нём и это ведёт как к потере ионов лития, что сказывается на ёмкости батареи, так и к росту игл-дендритов, а это риск короткого замыкания и выхода аккумулятора из строя. Литийвоздушные электроды, в свою очередь, страдают от паразитных процессов окисления, и это резко снижает срок службы батарей.

Разобраться с проблемами литийвоздушного электрода и ионной проводимостью твёрдого электролита помог такой материал, как фосфид тримолибдена (Mo3P). Наночастицы Mo3P в составе пористого материала электрода участвуют в нужных перестройках связей между атомами кислорода и снижают образование агрессивных оксидов на электроде: супероксида лития (LiO2) и пероксида лития (Li2O2). И этому была посвящена основная часть исследования, что самым прямым образом влияет на долговечность аккумулятора. Так, электрод с Mo3P выдержал 1200 циклов заряда и разряда, тогда как ранее в случае литийвоздушных батарей речь шла всего о десятках циклов.

Что касается нового электролита, то он, во-первых, показал высочайшую проводимость ионов лития и, во-вторых, обеспечил высокую плотность каналов проводимости и их равномерное распределение в месте соприкосновения с электродами. Благодарить за это надо наночастицы Li10GeP2S12 в ионных каналах, которые оказались отличными транспортёрами для ионов лития. Более того, ионы лития в таком электролите концентрировались даже без включения аккумулятора в цепь, что позволяло сразу запускать батарею в работу после включения, а это высокие стартовые токи, необходимые, например, для тяговых нагрузок.

К сожалению, предложенная учёными конструкция аккумулятора заметно уступила традиционным литиевым аккумуляторам по энергоэффективности. Рабочий нагрев перспективной батареи довольно быстро вёл к деградации её ёмкости. Кроме того, изначально этот параметр был ниже, чем у современных аккумуляторов и находился на уровне 93 % вместо 95 % у действующих батарей.

Положительным моментом учёные справедливо посчитали то, что удельная плотность накопления энергии у новой разработки более чем в два раза выше современных прототипов, и в 2,5 раза выше современных массовых аккумуляторов — 685 Вт·ч/кг. Осталось найти возможность уменьшить негативные факторы и хотя бы сохранить позитивные. Научная работа показала, в каком направлении для этого надо двигаться.


window-new
Soft
Hard
Тренды 🔥
Huawei предлагает для HarmonyOS в 200 раз меньше приложений, чем есть в Google Play — разрыв планируется сократить в течение года 10 ч.
World of Warcraft исполнилось 20 лет — это до сих пор самая популярная ролевая игра в мире 12 ч.
Microsoft хочет, чтобы у каждого человека был ИИ-помощник, а у каждого бизнеса — ИИ-агент 15 ч.
«Атака на ближайшего соседа» сработала — хакеры удалённо взломали компьютер через Wi-Fi поблизости 17 ч.
Google Gemini сможет управлять приложениями без пользователя и даже не открывая их 20 ч.
Илон Маск отделался выплатой $2923 за неявку для дачи показаний по делу о покупке Twitter 21 ч.
Новая статья: Death of the Reprobate: что не так на картине? Рецензия 23-11 00:05
Главный конкурент OpenAI получил $4 млрд на развитие ИИ без следов Хуанга 22-11 23:13
Valve раскрыла часть игр, которые получат скидку на осенней распродаже Steam — официальный трейлер акции 22-11 22:34
Threads получила «давно назревавшие улучшения» в поиске и тренды 22-11 22:17