Опрос
|
реклама
Быстрый переход
Учёные объяснили аномальное ядро Меркурия — давным-давно в него врезалась планета-близнец
25.09.2025 [21:17],
Геннадий Детинич
Солнечная система продолжает таить множество загадок, и Меркурий — яркий пример планеты, чья внутренняя структура вызывает вопросы. Несмотря на небольшой размер (диаметр всего 2400 км) у Меркурия необычно массивное ядро, составляющее примерно 70 % его массы и достигающее 1800 км в диаметре. Это в корне отличает его от Земли и других планет нашей системы, и однозначного объяснения этому нет, но современное моделирование готово решать такие задачи. ![]() Строение Меркурия глазами миссии MESSENGER. Источник изображения: NASA Первые данные о необычном соотношении ядра Меркурия по отношению к размерам самой планеты стали поступать с развитием радиоастрономии в 60-х годах прошлого века. Более полные сведения о Меркурии собрала миссия NASA «Маринер-10» (1975 год) и, совсем недавно — в 2010–2015 годах — миссия NASA «Мессенджер» (MESSENGER). Снабжённые научными приборами зонды подтвердили эту аномалию, известную как «проблема Меркурия». Такая диспропорция между металлическим ядром и силикатной мантией с корой поставила под сомнение стандартные модели формирования планет земной группы. ![]() Соотношения ядер и мантий/коры Меркурия и Земли (сравнение) Учёные предположили, что на заре формирования Солнечной системы Меркурий испытал удар гигантского астероида и лишился значительной части коры и мантии. Основная гипотеза описывает это как столкновение прото-Меркурия — планетарного зародыша в 2,25 раза массивнее современной планеты — с объектом в шесть раз меньшей массы. В результате мантия и кора были в значительной степени сметены, оставив массивное ядро с тонким силикатным слоем. Современное моделирование показывает, что такие столкновения объектов с сильно различающейся массой были крайне редки в молодой Солнечной системе. Для их реализации требовались крайне эксцентричные орбиты астероидов, что должно было быть редким явлением, и, следовательно, такой сценарий представляется статистически маловероятным. ![]() Моделирование столкновения одинаковых по массе объектов В свежем исследовании учёные из Института физики Земли в Париже (Institut de Physique du Globe de Paris) и Университета Парижа (Université Paris Cité) представили альтернативный сценарий: Меркурий образовался в результате скользящего столкновения с объектом схожей массы. Авторы подчёркивают, что традиционные модели не учитывают частоту столкновений равных по массе протопланет. В хаотичной ранней Солнечной системе, где планетезимали и зародыши планет гравитационно взаимодействовали друг с другом, такие события были наиболее частыми. «Столкновение двух протопланетных зародышей сходной массы может объяснить его [Меркурия] состав и является гораздо более правдоподобным сценарием», — отмечают исследователи. Используя метод гидродинамики сглаженных частиц (SPH), исследователи смоделировали столкновение прото-Меркурия с аналогичным объектом при низкой относительной скорости и под углом столкновения 32,5°. Модель воспроизвела текущую массу Меркурия (0,055 массы Земли) с погрешностью менее 5 %, включая соотношение металлов и силикатов. В результате было потеряно до 60 % мантии, что объясняет повышенное содержание металлов. В отличие от сценариев с неравными массами, где обломки возвращались к планете, здесь часть материала была выброшена, сохранив диспропорцию ядра и мантии. Выброшенная масса могла рассеяться под влиянием других планетезималей или даже быть поглощена соседними телами, такими как формирующаяся Венера, что требует дальнейшего изучения. Это происходило в первые десятки миллионов лет Солнечной системы, когда условия препятствовали повторной аккреции (возвращению выброшенного материала обратно на Меркурий и восстановлению его массы и пропорций). Для подтверждения представленной гипотезы необходимы геохимические анализы метеоритов и образцов с Меркурия. Когда-нибудь образцы его поверхности будут доставлены на Землю. Пока же к Меркурию движется японский зонд BepiColombo, который прибудет к планете примерно через год и с ещё большей точностью измерит соотношение его ядра к коре и мантии, а также соберёт самый полный комплект данных об этой всё ещё таящей в себе загадку планете. Зонд BepiColombo достигнет орбиты Меркурия с опозданием на 11 месяцев
04.09.2024 [10:01],
Владимир Фетисов
Европейско-японский зонд BepiColombo 4 сентября в четвёртый раз пролетит в непосредственной близости от Меркурия. Однако из-за проблем с двигателями аппарат сможет выйти на орбиту планеты на 11 месяцев позже запланированного изначально срока. Ожидалось, что BepiColombo достигнет орбиты в декабре 2025 года, но теперь учёные сообщили, что сделать это удастся не ранее ноября 2026 года. ![]() Источник изображения: ESA Зонд BepiColombo был запущен в космическое пространство с помощью ракеты-носителя Ariane 5 в 2018 году. Аппарат предназначен для исследования Меркурия, а его путь к планете изначально включал в себя один полёт вокруг Земли, два пролёта над Венерой и шесть над самим Меркурием. Однако первоначальный план пришлось пересмотреть, поскольку из-за произошедшего в апреле этого года сбоя двигатели зонда больше не работают на полную мощность. Инженеры миссии обнаружили «неожиданные электрические токи» между солнечной батареей модуля Mercury Transfer Module (MTM) и устройством, которое отвечает за распределение энергии между модулями зонда. «После нескольких месяцев изучения ситуации мы пришли к выводу, что двигатели MTM будут работать с тягой ниже минимальной, необходимой для выхода на орбиту вокруг Меркурия в декабре 2025 года», — заявил недавно глава миссии BepiColombo в Европейском космическом агентстве (ESA) Санта Мартинес (Santa Martinez). Отмечается, что проблема с двигателями BepiColombo не ставит под угрозу реализацию всей миссии. Инженерам удалось спланировать новую траекторию полёта с учётом того, что двигатели аппарата не могут работать на полную мощность. В соответствии с новым планом сегодня аппарат пролетит на 35 км ближе к Меркурию, чем планировалось изначально, за счёт чего в рамках пятого пролёта над поверхностью не потребуется включение двигателей на полную мощность. Во время шестого пролёта зонд выйдет на новую траекторию, которая позволит достигнуть орбиты Меркурия в ноябре 2026 года. Миссия BepiColombo состоит из двух орбитальных аппаратов, разработанных ESA и Японским агентством аэрокосмических исследований (JAXA). В общей сложности они несут на себе 16 научных инструментов. После выхода на орбиту Меркурия аппараты разделятся и в течение года будут использоваться для изучения планеты. В случае успеха миссия может быть продлена ещё на год. |