Опрос
|
реклама
Быстрый переход
Китай обогнал США по количеству и качеству патентов на термоядерный синтез — первое «искусственное Солнце» может оказаться китайским
22.02.2023 [15:54],
Геннадий Детинич
Анализ поданных китайскими учёными и компаниями патентов в сфере термоядерного синтеза показывает, что Пекин всеми силами стремится первым зажечь «Солнце на Земле» — добиться устойчивой реакции слияния ядер водорода. По числу поданных патентов в этой сфере Китай впереди планеты всей. Но главное, что растёт качество патентов, а это приближает момент энергетического изобилия на Земле. Японская аналитическая компания Astamuse составила «термоядерный» рейтинг 30 стран и регионов после изучения 1133 тематических патентов, поданных в период с 2011 по сентябрь 2022 года. В этом рейтинге Китай занял первое место, опередив США, за которыми выстроились Великобритания и Япония. В процессе оценивания использовались данные как количества поданных патентов, так и их осуществимость. Динамика Китая на опережение начала прослеживаться с 2015 года, и она была выше, чем со стороны США. Аналитики отмечают, что поданные китайцами патенты в основном сосредоточены в области практических решений. Например, одной из ценнейших технологий считается создание керамического композитного материала Китайской академией наук, который может быть использован в стенке термоядерного реактора. За рассматриваемый период эта разработка считается самым важным прорывом. Внутри реактора развивается температура свыше 100 млн °C и надёжность активной зоны реактора играет в этом главную роль. Один грамм термоядерного топлива выделяет энергию эквивалентную сжиганию восьми тонн нефти. Топливом для термоядерного реактора служат изотопы водорода тритий и дейтерий. Они выделяются из морской воды, а это потенциально неиссякаемый источник чистой энергии на Земле. Кто первый зажжёт на Земле искусственное Солнце — сможет воспроизводить управляемые термоядерные реакции — тот станет хозяином этого мира. Великобритания создаст термоядерную установку на лазерном зажигании — она должна оказаться эффективнее американской
26.01.2023 [14:26],
Геннадий Детинич
В декабре мир всколыхнула новость о первом положительном выходе энергии в процессе управляемой термоядерной реакции синтеза. И хотя всё обстоит не так радужно, как рисуют новости, синтез на основе «лазерного зажигания» впервые показал обнадёживающий результат. Плодами трудов американских коллег воспользовались британские учёные, которые на волне успеха установки NIF договорились с местным регулятором о создании похожего проекта в Великобритании. Сообщается, что компания First Light Fusion подписала с Управлением по атомной энергии Великобритании (UKAEA) соглашение о проектировании и строительстве объекта для размещения нового демонстратора Machine 4 для получения чистой энергии. Начало строительства намечено на 2024 год на территории кампуса Кулхэм в Оксфордшире. Начало эксплуатации установки ожидается в 2027 году. Термоядерный синтез — это процесс, при котором два лёгких ядра объединяются в одно более тяжёлое ядро с выделением большого количества энергии. Метод компании First Light использует ту же физику, которая в декабре 2022 года доказала свою работоспособность на Национальной установке зажигания (NIF) в Национальной лаборатории им. Лоуренса в Беркли, США. Но эта физика — выстрел из батареи лазеров по топливной мишени — сочетается с уникальным подходом First Light Fusion, который включает в себя также выстрел снарядом в топливную мишень, что добавляет значительную часть энергии для запуска термоядерного синтеза. Декабрьский эксперимент на NIF, напомним, позволил получить значение Q или эффективность термоядерной установки — отношение выделившейся термоядерной энергии к вложенной энергии в нагрев плазмы — на уровне 1,54. Наилучшее значение Q для токамаков составляет 0,75. Но если оценивать затраты энергии «из розетки», то инженерное значение Qen для лазерной установки будет всего 0,0027 для признанного успешным эксперимента, тогда как для токамаков Qen уже достигает значения 0,1. Иными словами, поддержка работы лазеров «зажигания» забирает настолько много энергии, что на фоне классических токамаков они выглядят очень и очень бледно. Тем не менее, до этого лазеры вообще не могли показать что-то более-менее вменяемое в сфере запуска термоядерной реакции. Установка Machine 4 компании First Light Fusion будет передавать топливной мишени энергию за счёт удара снаряда, разогнанного до скорости 60 км/с. При попадании в цель уникальный «ускоритель скорости» разгонит продукты удара до 200 км/с и сфокусирует их на топливной мишени в виде сферических волн, обжимающих мишень. За счёт использования комбинации кинетического и лазерного удара разработчики намерены значительно снизить энергопотребление термоядерной установки. Будущий объект будет далёк от способности вырабатывать электрическую энергию и призван лишь доказать работоспособность концепции. Составлен общий план ремонтных работ на термоядерном проекте ИТЭР — надо заменить 23 км труб охлаждения и нарастить сотни кг металла по швам
14.01.2023 [14:36],
Геннадий Детинич
Уже известно, что выявленные в ходе сборки термоядерного реактора ИТЭР дефекты конструкции отдельных узлов заставят на месяцы или даже годы перенести запуск первой реакции. И хотя детали ремонтных работ и их смету придётся ещё не раз уточнять, картина действий уже ясна и коллектив ИТЭР приступил к её реализации. Реактор будет починен и построен! Во-первых, на проекте начали готовить тепловые экраны для замены труб охлаждения. Всего рабочую камеру реактора будет закрывать 27 панелей, а это 23 км труб. Предыдущая технология наварки труб на панели привела к появлению микротрещин. Этому способствовали остатки хлора, которые попадали в крошечные карманы в процессе сварки, что вело к коррозии, а также напряжение металла после сварки, которое разрывало уязвлённый металл труб. Сейчас специалисты отрывают трубы от панелей и прорабатывают новые технологии сварки. Рассматривался даже вариант крепления труб с помощью хомутов, но он был отброшен как слишком сложный и ненадёжный. Все трубы охлаждения для уже произведённых панелей будут изготовлены и приварены заново, и, скорее всего, будет сделано также несколько новых панелей про запас. Тендер на проведение этих работ будет размещён в начале февраля, чтобы уже в марте нашёлся подрядчик и приступил к ремонтным работам. С отклонениями в геометрии девяти секторов вакуумной камеры всё будет сложнее. Каждый из секторов собирался из трёх частей. Именно это привело к отклонениям в геометрии секторов после сварки трёх частей в одно изделие. Эти отклонения разные для каждого сектора. Например, чтобы привести к требуемым допускам сектор №6 (уже установленный в шахту реактора), по периметру стыков придётся нарастить примерно 73 кг металла. Для сектора №1(7) потребуется наращивание 100 кг металла, а для наиболее пострадавшего из трёх измеренных секторов сектора №8 — целых 400 кг металла. Для наращивания металла по месту будущих сварных швов каждый сектор придётся освободить от тех же тепловых экранов и другого оборудования, которое будет мешать в процессе проведения работ. Для наращивания секторы разместят на специальных платформах. Сектор №6 при этом придётся извлекать из шахты, что тоже довольно сложная операция, ведь каждый из секторов весит 440 т (высотой с пятиэтажное здание и весом с Airbus A380, как характеризуют эти изделия представители ИТЭР). Подрядчик для проведения восстановительных работ на секторах рабочей камеры будет выбран до начала лета. Вместе с ИТЭР над этим будет работать государственный французский регулятор в сфере ядерной энергетики. Технология будет опробована на множестве образцов, а после завершения работ все швы проверят в полном объёме методом неразрушающего контроля. Работы предстоят достаточно сложные, но вполне осуществимые. «Здесь нет никакого скандала, — сказал генеральный директор ИТЭР Пьетро Барабаски. — Такие вещи случаются. Я видел много подобных проблем, и гораздо хуже...» Запуск термоядерного реактора ИТЭР будет отложен на месяцы и даже годы, сообщил директор проекта
11.01.2023 [12:57],
Геннадий Детинич
На днях в интервью Agence France-Presse генеральный директор проекта ИТЭР Пьетро Барабаски сообщил, что на фоне выявленных в процессе строительства объекта проблем планируемый запуск термоядерного реактора будет отложен на месяцы и даже годы. Это означает, что 2025 год перестаёт быть датой получения первой плазмы в реакторе, хотя дейтерий-тритиевая реакция всё ещё ожидается в районе 2035 года. Как мы сообщали ещё в ноябре, представители ИТЭР озвучили две серьёзные проблемы, выявленные на объекте. Во-первых, сектора вакуумной камеры, в которой будет циркулировать раскалённая до более 150 млн °C плазма, оказались с отклонениями по размерам, что делает невозможным качественную сварку корпуса камеры. Таких секторов девять: пять из них создаются в ЕС, а четыре в Южной Корее. Все сектора изготовлены или работы близки к завершению, что исключает возможность внести в проект нужные изменения. Камера в сборе представляет собой объект с внешним диаметром 19,4 м высотой 11,4 м и весом 5200 т. Сектора по одному опускаются в шахту реактора и по очереди привариваются друг к другу. Сварочные работы осуществляет робот и поэтому отклонение в геометрии поставило автоматику в тупик. Как это исправлять пока непонятно. Вторая проблема — это коррозия и последовавшие за этим трещины в трубках теплового экрана камеры. Предполагается, что экраны придётся изготавливать заново. Более того, замену экранов в шахте произвести, скорее всего, не удастся, и уже опущенные в шахту секции камеры придётся поднимать наверх для ремонта. Все эти работы на месяцы и даже годы отодвинут первый рабочий запуск реактора. Ранее глава ИТЭР не был столь категоричен в выводах. Также эти проблемы снова увеличат бюджет проекта, который и так вырос в четыре раза по отношению к первоначальной сумме 5 млрд евро. На чём-то придётся экономить. Предложения по этому вопросу будут готовы после детального анализа ситуации, что произойдёт ближе к концу текущего года. Российские участники проекта ИТЭР настроены не так пессимистично. В интервью агентству РИА Новости директор Частного учреждения «ИТЭР-Центр» (Госкорпорация «Росатом») Анатолий Красильников сказал, что программу научных исследований можно будет уплотнить, и даже если первый запуск реактора состоится позже 2025 года, главная цель проекта — запуск дейтерий-тритиевой реакции — всё ещё ожидается в планируемые ранее сроки, а это середина 30-х годов. «Это нормально для столь крупного и уникального объекта. Технические трудности возникали и раньше, — указывает он. — Причина возможного переноса, о котором говорит гендиректор ИТЭР, прежде всего не в критических дефектах конструкции, а в том, что ученые хотят расширить научную программу. Значит, подготовка к испытательному запуску займет больше времени. Фактически первой плазмой будет не то, что под этим подразумевали». В любом случае, решение будет принимать Совет ИТЭР. Ближайшее заседание ожидается весной. Россия продолжает принимать участие в проекте и в этом плане санкции её не затрагивают. США объявили о прорыве в термоядерной энергетике — реакция синтеза дала в 1,5 раза больше энергии, чем ушло на её запуск
13.12.2022 [21:09],
Андрей Созинов
Американские учёные из Ливерморской национальной лаборатории им. Э. Лоуренса (LLNL) действительно смогли достичь термоядерного воспламенения — самоподдерживающейся реакции термоядерного синтеза, в ходе которой на выходе получается больше энергии, чем было потрачено на её запуск. Об этом сегодня официально сообщили Министерство энергетики США и Национальное управление по ядерной безопасности (NNSA), назвав это научным подвигом, к которому шли десятилетиями. О том, что специалисты National Ignition Facility (NIF) при Ливерморской лаборатории, смогли достичь реакции термоядерного синтеза с положительным выходом энергии, стало известно ещё на днях. Теперь же данные официально подтвердились: 5 декабря команда исследователей провела первый в истории эксперимент по управляемому термоядерному синтезу, в результате которого было произведено больше энергии, чем потрачено лазерной энергии для запуска реакции. В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено. Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов. Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований. Тем не менее, значимость первого удачного эксперимента по термоядерному воспламенению огромна — возможно, в итоге он станет отправной точкой в революции в мировой энергетике. Термоядерная энергия может стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и избавить людей от вредных выбросов в атмосферу. «Это знаменательное достижение для исследователей и сотрудников NIF, которые посвятили свою карьеру тому, чтобы термоядерное зажигание стало реальностью, и эта веха, несомненно, повлечет за собой ещё больше открытий, — сказала министр энергетики США Дженнифер М. Грэнхольм (Jennifer M. Granholm). Её также поддержал директор LLNL доктор Ким Будил (Kim Budil): «Термоядерное воспламенение в лаборатории — одна из самых значительных научных задач, когда-либо решаемых человечеством, и ее достижение — это триумф науки, техники и, прежде всего, людей». Запуск термоядерного реактора ИТЭР в 2025 году стал маловероятен — система охлаждения пошла трещинами
23.11.2022 [17:20],
Геннадий Детинич
На днях на заседании Совета ИТЭР были озвучены опасения о серьёзных задержках по проекту термоядерного реактора ИТЭР. В ходе сборки активной зоны термоядерного реактора выявлены трещины на трубопроводах системы охлаждения. На корпусе вакуумной камеры в составе теплового экрана около 23 км труб, от надёжности которых зависит работа всего реактора. Устранить неисправность на месте нельзя. Масштаб проблем уточняется. В яме реактора собрано четыре из девяти секций вакуумной камеры активной зоны, по которой должна циркулировать нагретая до более чем 150 млн °C плазма. Четыре секции должна была изготовить Южная Корея (Hyundai Heavy Industries) и пять ЕС. В принципе работы по изготовлению секций практически завершены. Первую секцию опустили в шахту в мае этого года, затем вторую, третью и четвёртую, которые последовательно сваривали друг с другом, включая совмещение системы трубопроводов для охлаждения. Признаки дефектов в системе трубопроводов были обнаружены ещё в ноябре 2021 года, когда гелиевые испытания выявили утечку на элементе теплового экрана вакуумного сосуда (сектора), поставленного на площадку в 2020 году. Экспертиза установила, что причиной дефекта стало напряжение металла, «вызванное изгибом и сваркой труб с панелями теплового экрана, усугублённое медленной химической реакцией из-за наличия остатков хлора в некоторых небольших областях вблизи сварных швов труб». Были из этого сделаны выводы или нет, но в процессе сварки четвёртого сектора трещины в трубах системы охлаждения стали видны невооружённым глазом. Согласно выводам экспертов, исправить дефект в шахте реактора нельзя. Сегменты необходимо разбирать, поднимать из шахты и ремонтировать наверху либо заказывать новые изделия полностью. Обнаруженные дефекты самым серьёзным образом повлияют как на график работ, так и на стоимость проекта. Генеральный директор ИТЭР Пьетро Барабаски сказал: «Если и есть что-то хорошее в этой ситуации, так это то, что она происходит в тот момент, когда мы можем её исправить. Опыт, который мы приобретаем в работе с первыми в своем роде компонентами ИТЭР, пригодятся другим, когда они будут запускать свои собственные термоядерные проекты. Природа и миссия ИТЭР, как уникальной и амбициозной исследовательской инфраструктуры, таковы, что в процессе строительства ему придётся пройти через целый ряд проблем и неудач. Поэтому наша задача и долг — своевременно информировать об этом научное сообщество, чтобы оно приняло меры предосторожности при работе с однотипными сборками». Цель ИТЭР — работать на мощности 500 МВт в течение как минимум 400 секунд непрерывно с 50 МВт потребляемой мощности для нагрева плазмы. По всей видимости, в процессе эксплуатации может потребоваться дополнительно 300 МВт электроэнергии. Электричество в ИТЭР вырабатываться не будет. Согласно последним планам после ряда переносов первая плазма должна была быть получена в 2025 году. Судя по всему, эти сроки будут пересмотрены в сторону серьёзного увеличения. Ожидается, что новые планы проведения работ будут объявлены весной 2023 года, когда новый директор ИТЭР, назначенный в сентябре этого года, полностью войдёт в курс на новой должности. |