Сегодня 22 января 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → церн

Учёные впервые квантово запутали топ-кварки — исполинов среди всех обнаруженных элементарных частиц

Топ-кварки или t-кварки, были обнаружены всего 30 лет назад. Они чрезвычайно массивны по сравнению с остальными элементарными частицами Стандартной модели. Это делает их уникальными и загадочными, открывая перспективы для новых открытий в области физики — неизвестных взаимодействий или частиц. Раскрывая секреты топ-кварков, учёные впервые смогли квантово запутать их пары, что произошло на Большом адронном коллайдере без экстремального охлаждения среды.

 Художественное представление пары запутанных топ-кварков. Источник изображения: CERN

Художественное представление пары запутанных топ-кварков. Источник изображения: CERN

До сих пор исследователи создавали квантовую запутанность лёгких частиц в условиях низких энергий. Обычно это были фотоны. Квантовая запутанность означает, что мы можем узнать некоторые квантовые свойства одной частицы (например, фотона) по детектируемым свойствам другой частицы из запутанной пары, даже если первая находится на краю Вселенной. При этом никакой передачи информации или энергии не происходит. Нам просто становятся известны определённые квантовые характеристики фотона из запутанной пары.

Топ-кварки — это частицы совершенно другого масштаба по массе и энергии. Они были открыты последними из шести типов кварков. Масса топ-кварка в 184 раза превышает массу протона и, например, значительно больше массы атома вольфрама. Запутать пару топ-кварков — значит выйти на энергетический уровень выше 10 ТэВ (тераэлектронвольт). В случае фотонов или других лёгких частиц (фотоны не имеют массы) для предотвращения разрушения квантовых состояний и запутанности экспериментальные системы охлаждаются до абсолютного нуля, чтобы минимизировать все внутренние колебания. Это известная проблема квантовых вычислений, которые страдают от короткого времени когерентности.

Для запутывания пар топ-кварков этого не потребовалось. Авторы исследования из коллаборации ATLAS создали необходимые для этого условия в процессе эксперимента на коллайдере БАК. Статья о работе вышла в журнале Nature. Похожую работу независимо также проделали учёные из коллаборации CMS, но их работа пока есть лишь на сайте препринтов arXiv.orgc.

Топ-кварки, благодаря своим свойствам, оказались удобным объектом для изучения запутанности с использованием относительно простых средств, по сравнению с другими случаями, и при этом на совершенно новом уровне энергий. Хотя стоит признать, что Большой адронный коллайдер трудно назвать «подручным инструментом», это вряд ли позволит в ближайшее время перевести эксперименты с топ-кварками в практическую плоскость квантовых вычислений или криптографии. Тем не менее, изучение квантовой запутанности на столь высокой энергетической ступени — это не просто шаг вперёд, это прорыв!

В ЦЕРНе научились имитировать джеты сверхмассивных чёрных дыр — получились как настоящие

Джеты — струи плазмы — сверхмассивных чёрных дыр хорошо различимы во многих спектрах от гамма-диапазона до видимого. Но это не означает, что учёные в полной мере представляют микрофизику струй. Что на самом деле происходит в облаке летящей с околосветовой скоростью плазмы — это всё ещё загадка, ответ на которую пытаются дать теория и моделирование. Попытку воспроизвести плазменную струю чёрной дыры на Земле совершили физики ЦЕРНа. И у них получилось.

 Художественное представление джета чёрной дыры. Источник изображения: NASA/JPL-Caltech

Художественное представление джета чёрной дыры. Источник изображения: NASA/JPL-Caltech

Для эксперимента учёные воспользовались установкой HiRadMat для бомбардировки материалов высокоэнергетическими пучками протонов. С её помощью обычно исследуются перспективные материалы или компоненты ускорителя. На этот раз учёные были намерены получить струю плазмы в виде электрон-позитронных пар. Считается, что именно такая плазма преобладает в джетах сверхмассивных чёрных дыр. Для этого пучок протонов в количестве 300 млрд частиц с синхротрона направили на мишени из графита и тантала. Удар по мишеням запустил каскад взаимодействий частиц, в результате которого возникло достаточное количество электрон-позитронных пар для поддержания стабильного состояния плазмы.

Энергии протонов было достаточно, чтобы из ядер углерода в графите были высвобождены субатомные частицы пионы. Пионы в свою очередь быстро распадались на гамма-лучи высокой энергии. Затем эти гамма-лучи взаимодействовали с электрическим полем тантала, которое производило пары электронов и позитронов. В ходе тестового запуска было произведено 10 трлн электрон-позитронных пар — этого более чем достаточно, чтобы искусственно созданное облако частиц начало вести себя как настоящая плазма.

 Источник изображения: University of Rochester Laboratory for Laser Energetics illustration / Heather Palmer

Источник изображения: University of Rochester Laboratory for Laser Energetics illustration / Heather Palmer

«Основная идея этих экспериментов заключается в воспроизведении в лаборатории микрофизики астрофизических явлений, таких как струи из чёрных дыр и нейтронных звезд, — рассказали исследователи. — То, что мы знаем об этих явлениях, получено почти исключительно из астрономических наблюдений и компьютерного моделирования, но телескопы не могут по-настоящему исследовать микрофизику, а моделирование требует приближений. Лабораторные эксперименты, подобные этим, являются связующим звеном между этими двумя подходами».

ЦЕРН намерен построить «суперколлайдер» Future Circular Collider, но не все учёные с этим согласны

Несмотря на климатическую повестку, Европейская организация по ядерным исследованиям (CERN) настаивает на необходимости построить в Европе более мощный кольцевой коллайдер. Возможности Большого адронного коллайдера себя почти исчерпали. Чтобы продвинуться в изучении тайн мироздания, необходимо сталкивать частицы с намного большими энергиями. Но ряд европейских учёных требуют остановиться и направить финансы на решение насущных проблем.

 Сравнение БАК () и FCC. Источник изображения: CERN

Сравнение БАК (LHC) и Future Circular Collider (FCC). Источник изображения: CERN

По мере продвижения в процессе технико-экономического обоснования проекта будущего коллайдера Future Circular Collider (FCC) его стоимость понемногу растёт. На нынешнем этапе проект оценивается примерно в $17 млрд. Если он будет утверждён, то платить придётся из бюджета ЕС и Великобритании. Причём для этого придётся экономить на определённых научных программах и довольно долго — не одно десятилетие. Поэтому учёных понять можно. Они живут и работают сейчас, и что произойдёт в 2050 году, когда заработает первая очередь FCC и, тем более, в 2070 году, когда планируют запустить вторую очередь — это волнует немногих.

Бывший главный научный советник правительства Великобритании, профессор сэр Дэвид Кинг (David King), назвал расходы на FCC «безрассудными», призвав перенаправить эти средства на решение неотложных глобальных проблем, таких как чрезвычайная ситуация с климатом. Ему вторит немецкий физик и популяризатор наук Сабина Хоссенфельдер (Sabine Hossenfelder), которая не верит в способность FCC добавить что-то новое к уже известной физике элементарных частиц.

Генеральный директор ЦЕРН, профессор Фабиола Джанотти (Fabiola Gianotti), в защиту проекта назвала коллайдер «прекрасной машиной», которая поможет человечеству добиться значительных успехов в понимании фундаментальной физики и внутреннего устройства Вселенной.

Большой адронный коллайдер начал работать с 2008 году. В 2012 году он, наконец, помог обнаружить неуловимую раньше частицу, бозон Хиггса, что формально завершило построение Стандартной модели в физике элементарных частиц. Диаметр кольца БАК составляет 27 км. Диаметр кольца коллайдера FCC будет 91 км. Это на несколько порядков увеличит энергию столкновений частиц, обещая обнаруживать неизвестные ранее взаимодействия между частицами и новые частицы. Даже тот самый бозон Хиггса будет производиться в большем объёме, что поможет лучше изучить его характеристики. Собственно будущий коллайдер уже называют «хиггсовской фабрикой».

Решение ЦЕРН создать FCC последовало после тщательных консультаций с участием физиков со всего мира. Целью процесса было оценить реакцию стран-членов, включая Великобританию, которая как и другие участники проекта оплатит счета за это монументальное научное начинание. Параллельно разрабатываются ещё четыре проекта перспективных коллайдеров, три из которых относятся к линейным. В ЦЕРН подсчитали, что только проект FCC окажется самым предпочтительным с точки зрения климатической повестки. Он будет меньше всего вырабатывать CO2 в пересчёте на каждый полученный на нём бозон Хиггса.

Утверждение плана строительства FCC ожидается в 2025 году. Строительство тоннеля под кольцо коллайдера начнётся в 2033 году. Электрон-позитронный коллайдер начнёт работать в 2048 году. Ещё 20 лет спустя по кольцу FCC запустят более тяжёлые частицы — протоны, что ещё сильнее повысит энергию столкновений.

Cоздан сверхкомпактный ускоритель частиц с энергией в 10 миллиардов электрон-вольт

Учёные из Техасского университета в Остине создали «Усовершенствованный лазерный ускоритель кильватерного поля», который имеет очень компактные размеры, но при этом генерирует высокоэнергетический пучок электронов — до 10 ГэВ или 10 миллиардов электрон-вольт. Это настоящий прорыв в области ускорителей частиц.

Источник изображения: Bjorn «Manuel» Hegelich

Учёные продолжают изучать возможности применения этой технологии, включая потенциал ускорителей частиц в полупроводниковой технологии, медицинской визуализации и терапии, исследованиях в области материалов, энергетики и медицины.

Недавно группа учёных разработала компактный ускоритель частиц, получивший название «усовершенствованный лазерный ускоритель кильватерного поля». Устройство при длине менее 20 метров генерирует электронный пучок с энергией 10 миллиардов электрон-вольт, утверждается в заявлении Техасского университета в Остине. Сам лазер работает в 10-сантиметровой камере, что значительно меньше традиционных ускорителей частиц, которым требуются километры пространства.

Работа ускорителя опирается на инновационный механизм, в котором вспомогательный лазер воздействует на гелий. Газ подвергается нагреву до тех пор, пока не переходит в плазму, которая, в свою очередь, порождает волны. Эти волны обладают способностью перемещать электроны с высокой скоростью и энергией, формируя высокоэнергетический электронный луч. Таким образом получается уместить ускоритель в одном помещении, а не строить огромные системы километрового масштаба. Данный ускоритель был впервые описан ещё в 1979 году исследовательской группой из Техасского университета под руководством Бьорна «Мануэля» Хегелича (Bjorn «Manuel» Hegelich), физика и генерального директора TAU Systems. Однако недавно в конструкцию был внесен ключевой элемент: использование металлических наночастиц. Эти наночастицы вводятся в плазму и играют решающую роль в увеличении энергии электронов в плазменной волне. В результате электронный луч становится не только более мощным, но и более концентрированным и эффективным. Бьорн «Мануэль» Хегелич, ссылаясь на размер камеры, в которой был получен пучок, отметил: «Теперь мы можем достичь таких энергий на расстоянии в 10 сантиметров».

Исследователи использовали в своих экспериментах Техасский петаваттный лазер, самый мощный импульсный лазер в мире, который излучал сверхинтенсивный световой импульс каждый час. Один импульс петаваттного лазера примерно в 1000 раз превышает установленную в США электрическую мощность, но длится всего 150 фемтосекунд — примерно миллиардную долю от продолжительности удара молнии.

Учёные намерены использовать эту технологию для оценки устойчивости космической электроники к радиации, получения трёхмерных визуализаций новых полупроводниковых чипов, а также для создания новых методов лечения рака и передовой медицинской визуализации. Кроме того, этот ускоритель может быть использован для работы другого устройства, называемого рентгеновским лазером на свободных электронах, который может снимать замедленные видеоролики процессов в атомном или молекулярном масштабе. Примеры таких процессов включают взаимодействие между лекарствами и клетками, изменения внутри батарей, которые могут привести к воспламенению, а также химические реакции, происходящие в солнечных батареях, и трансформацию вирусных белков при заражении клеток.

Команда проекта намерена сделать систему ещё более компактной. Они хотят создать лазер, который помещается на столешнице и способен выдавать импульсы множество раз в секунду. Это значительно повысит компактность всего ускорителя и расширит возможности его применения в гораздо более широком диапазоне по сравнению с обычными ускорителями.


window-new
Soft
Hard
Тренды 🔥
Хардкорный режим, скачки и три сюжетных дополнения: Warhorse рассказала, как будет поддерживать Kingdom Come: Deliverance 2 после релиза 6 ч.
HPE проводит расследование в связи с заявлением хакеров о взломе её систем 6 ч.
«Мы создали CRPG нашей мечты»: продажи Warhammer 40,000: Rogue Trader превысили миллион копий 7 ч.
Создатели Lineage и Guild Wars отменили MMORPG во вселенной Horizon Zero Dawn и Horizon Forbidden West 7 ч.
Instagram начал переманивать блогеров из TikTok денежными бонусами до $50 тысяч в месяц 8 ч.
Eternal Strands, Starbound, Far Cry New Dawn и ещё шесть игр: Microsoft рассказала о ближайших новинках Game Pass 9 ч.
ИИ превзойдёт человеческий разум в течение двух-трёх лет, уверен глава Anthropic 10 ч.
Keep Driving вышла на финишную прямую — новый трейлер и дата релиза ностальгической RPG о путешествии по стране на своей первой машине 10 ч.
Google стала на шаг ближе к ИИ, который думает как человек — представлена архитектура Titans 12 ч.
У «Ростелекома» произошла утечка данных — клиентам рекомендовано сменить пароли 12 ч.
GeForce RTX 5000 Kingpin не будет — легендарный оверклокер рассказал о планах на будущее, в которых есть место не только Nvidia 4 ч.
Слухи: OpenAI, Oracle и Softbank вложат $100 млрд в ИИ-инфраструктуру США, а в перспективе — до $500 млрд 4 ч.
Новая статья: Обзор смартфона OPPO Find X8: очень удобный флагман 4 ч.
К мемкоинам приведут настоящих инвесторов — поданы заявки на крипто-ETF в Dogecoin и TRUMP 5 ч.
Fujifilm представила гибридную камеру мгновенной печати Instax Wide Evo с широкоугольным объективом 9 ч.
Новый Apple iPhone SE получит вырез Dynamic Island вместо чёлки 11 ч.
К 2035 году США смогут получать до 84 ГВт из источников возобновляемой энергии на федеральных землях 11 ч.
Maxsun выпустила новые видеокарты на чипах Nvidia Kepler десятилетней давности 11 ч.
«Транснефть» направила повторный иск к Cisco на 56 млн рублей 11 ч.
Sparkle представила видеокарту Arc B580 Titan Luna с белой печатной платой и подпоркой 11 ч.