Сегодня 07 октября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → чёрная дыра

Сверхмассивная чёрная дыра средней активности неожиданно начала испускать сверхбыстрый ветер

В показаниях космического рентгеновского телескопа ESA XMM-Newton учёные обнаружили странные данные, которые не соответствовали всем предыдущим наблюдениям. Сверхмассивная чёрная дыра (СЧД) в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко.

 Художетсвенное представление чёрной дыры в центре галактики, испускающей ветер из заряженных частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

В редких случаях чрезвычайной активности сверхмассивная чёрная дыра в центре галактики испускает настолько сильный ветер — выброшенные электромагнитными полями частицы вещества из аккреционного диска, что он буквально выдувает межзвёздные газ и пыль за пределы галактики. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина.

Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода.

Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Однако регистрируемое рентгеновским телескопом ESA XMM-Newton излучение от Mrk 817 было более чем умеренным. Контрольная проверка с помощью другой рентгеновской установки — NuSTAR NASA — подтвердило верность полученных данных. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным.

Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга.

«Очень редко можно наблюдать сверхбыстрые ветры, и еще реже обнаруживать ветры, энергии которых достаточно, чтобы изменить характер галактики-хозяина. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters.

Приливное разрушение звёзд чёрными дырами случается повсеместно, выяснили учёные

Практически все сто с небольшим известных науке случаев приливного разрушения звёзд чёрными дырами зафиксированы в галактиках с недавно закончившимися процессами звездообразования. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример, как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно.

 Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру.

Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта. Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах.

Астрономы из Массачусетского технологического института предложили искать события приливного разрушения звёзд чёрными дырами в инфракрасном диапазоне. Официальное сообщение о первом открытии такого события в инфракрасном спектре поступило в апреле 2023 года. Метод был признан рабочим и взят на вооружение. И это привело к лавине открытий.

 Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Поиск данных в наблюдениях инфракрасного телескопа NASA NEOWISE и последующий анализ кандидатов с помощью данных ряда наземных телескопов позволил обнаружить 18 ранее неизвестных событий приливного разрушения звёзд чёрными дырами. Шесть из них были позже отброшены, поскольку были связаны с активностью чёрных дыр в центрах галактик. Однако 12 событий были идентифицированы с высокой достоверностью, и все они были открыты впервые.

Более того, все 12 новых событий приливного разрушения звёзд, зафиксированных в данных инфракрасных наблюдений, выявлены там, где раньше их не находили — в сильно запылённых галактиках. Похоже, раньше мы просто не могли уловить такие явления, поскольку пыль блокирует оптический и рентгеновский диапазоны. В инфракрасном же диапазоне никто до этого не искал подобные явления.

 Источник изображения: The Astrophysical Journal, 2024

Галактики с кандидатами в события приливного разрушения звёзд в исследовании. Источник изображения: The Astrophysical Journal, 2024

По всему получается, что приливные разрушения звёзд могут происходить фактически в галактиках любых типов и на любых стадиях их развития. Во-первых, это позволяет забыть о проблеме несоответствия количества этих событий в теории и в процессе наблюдения (их наблюдалось меньше, чем предсказано, чему теперь нашли объяснение). Во-вторых, теперь у учёных появится больше данных для всестороннего изучения физики приливного разрушения звёзд, что обогатит науку новыми знаниями о процессах во Вселенной.

На краю нашей галактики нашли загадочный объект, природа которого выходит за рамки знаний человечества

Группа астрономов из Манчестерского университета обнаружила на краю нашей галактики объект, который учёные затруднились идентифицировать. Находка является тусклой и не видна в обычные телескопы. Найти загадочное нечто удалось по наблюдению за пульсаром, на орбите которого объект расположен. Проблема в том, что масса неизвестного объекта выходит за рамки наших знаний о нейтронных звёздах и чёрных дырах. И одни и другие с такой массой ещё не встречались.

 Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Почему это важно? Если загадочный объект окажется нейтронной звездой, то это откроет путь к новой физике. Его масса лежит в пределах 2,09–2,71 солнечных масс. Теоретически нейтронная звезда не может быть тяжелее 2,3 масс Солнца, но в верхней части диапазона открытий таких объектов либо нет, либо они малодостоверные. Насколько мы понимаем физику процесса, более тяжёлые нейтронные звёзды коллапсируют в чёрные дыры. Если же такие звёзды существуют, то там происходят такие процессы, о которых мы не знаем, вплоть до существования каких-то иных элементарных частиц.

С другой стороны, мы ещё не открывали чёрных дыр массой менее 5 солнечных и с подтверждением открытий в нижней части диапазона массы этих объектов тоже не всё однозначно. Поэтому если загадочный объект окажется чёрной дырой, то это будет легчайшая чёрная дыра за всё время наблюдений. Это не разрушит основы физики, но даст пищу для множества научных теорий.

Учёные не сомневаются в достоверности параметров открытого ими объекта. Он обнаружен на орбите пульсара PSR J0514-4002E, излучающего сверхкороткие радиоимпульсы (миллисекундной длительности), и это позволило с высочайшей точностью рассчитать массу системы и массу каждого из объектов: пульсара и пока непонятно чего.

 Симуляция возможной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Симуляция вероятной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Система расположена в звёздном скоплении NGC 1851 примерно в 54 тыс. световых годах от центра галактики Млечный Путь. Сбором данных занимался массив радиотелескопа MeerKAT в Южной Африке. Неизвестное тело совершает один орбитальный оборот за 7,44 суток. Учёные намерены приложить все усилия, чтобы узнать его природу. Вне зависимости от идентификации объекта, открытие обещает оказаться значимым для науки.

Опубликовано более чёткое прямое фото чёрной дыры — снимок показал динамику аккреционного диска

Чёрные дыры теперь не просто позируют на фотографиях, они участвуют в фотосессиях. Коллаборация Event Horizon Telescope (EHT) опубликовала новые изображения M87* — сверхмассивной чёрной дыры в центре галактики Мессье 87 — используя данные наблюдений, сделанных в апреле 2018 года. На очереди публикация снимков 2021 и 2022 года, а также подготовка к съёмке в 2024 году. Эйнштейн был бы в восторге.

 Изображения чёрной дыры M87* с разницей в одн год. Источник изображения:

Изображения чёрной дыры M87* с разницей в один год. Источник изображения: Event Horizon Telescope

Первое в истории изображение чёрной дыры — объекта M87* — было обнародовано в 2019 году. Данные собирались «Телескопом горизонта событий» в апреле 2017 года. Несколько разбросанных по всей Земле радиотелескопов синхронно наблюдали за объектом в процессе так называемой высокочастотной радиоинтерферометрии. Сеть радиотелескопов превратилась в виртуальный радиоинструмент размерами почти с Землю. Это дало впечатляющее разрешение, что позволило уловить электромагнитные волны от энергетических процессов в аккреционном диске чёрной дыры, удалённой от нас на 55 млн световых лет.

С оптическими телескопами такое провернуть невозможно. Синхронизация по визуальным объектам требует невообразимого объёма данных, тогда как радиоданные легко синхронизируются и свозятся для обработки в единый центр на обычных цифровых носителях. Например, на жёстких дисках. Именно так были получены первые изображения чёрной дыры. Точнее, её тени на фоне аккреционного диска.

В апреле 2018 года коллаборация «Телескопа горизонта событий» провела новый сеанс наблюдений за M87*. Были получены ещё более чёткие и обширные данные, за что надо благодарить, во-первых, новый радиотелескоп в сети — добавилась тарелка в Гренландии и, во-вторых, наблюдение в четырёх частотных диапазонах около 230 ГГц вместо двух, как раньше.

Новое наблюдение позволило закрепить достижение — факт получения отчётливых прямых изображений чёрных дыр. Также учёные убедились, что радиусы тени чёрной дыры и линзированного аккреционного диска за год не изменились, что предсказывало учение Эйнштейна. Наблюдаемой чёрной дыре особенно нечего поглощать в месте её размещения и её рост будет практически незаметным на фоне существования человечества, а не то, что год спустя.

Тем не менее, новые данные позволяют судить о процессах в диске аккреции вещества. Например, яркая область за год сместилась против часовой стрелки примерно на 30°. Также детальное изучение данных раскрывает динамику магнитных полей вблизи объекта, плазмы и энергии. Учёные рассчитывают увидеть джеты этой дыры, пока на изображениях видны только признаки выброса струй энергии.

Кроме того, учёные понемногу оттачивают алгоритмы для анализа изображений чёрных дыр, которые предстают перед нами в своём истинном обличье, если так можно сказать об объектах, в принципе невидимых для наших приборов. Всё что у нас есть — это тень чёрной дыры (втянутые за горизонт событий фотоны) и искажённое чудовищной гравитацией линзированное изображение аккреционного диска.

Подтвердилось открытие самой древней чёрной дыры во Вселенной — она не укладывается в наши представления о природе

Работа с докладом об открытии самой древней чёрной дыры во Вселенной прошла рецензирование и была опубликована в журнале Nature. Благодаря космической обсерватории им. Джеймса Уэбба в далёкой и древней галактике GN-z11 удалось обнаружить центральную чёрную дыру рекордной для тех времён массы. Остаётся гадать, как и почему это произошло и, похоже, для этого придётся изменить ряд космологических теорий.

 Галактика GN-z11 в представлнии художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 в представлении художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 была обнаружена ещё в наблюдениях орбитального телескопа «Хаббл» в 2016 году. Этот объект находится от нас на удалении 13,4 млрд световых лет, то есть существовал во времена, отстоящие от Большого взрыва всего на 440 млн лет. Запуск инфракрасной обсерватории «Джеймс Уэбб» обещал множество открытий в ранней Вселенной, ведь свет из тех времён настолько растягивается в процессе движения фотонов через бездну времени и пространства, что банально уходит из видимого диапазона в инфракрасный.

Спектральный анализ света от GN-z11 показал присутствие в нём сверхразогретых ионов углерода и неона. Это указывало на признаки аккреции — обычного разогрева вещества перед падением на чёрную дыру. Эмиссия в линиях спектра была настолько интенсивной, что чёрная дыра своим излучением буквально затмевала галактику-хозяина. И немудрено, хотя галактика GN-z11 была в 100 раз меньше Млечного Пути, чёрная дыра в её центре потянула на 1,6 млн солнечных масс, тогда как чёрная дыра в центре нашей галактики имеет 4 млн солнечных масс.

Теперь, когда учёные убедились в существовании чёрной дыры подобной невообразимой для тех времён массы, придётся переписывать модели и космологические теории эволюции этих объектов и самой Вселенной. Похоже, «Уэбб» на этом не остановится, что позволит собрать достаточно материала для создания новых моделей появления и роста чёрных дыр и описания процессов в ранней Вселенной.

 Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Например, если опираться на современные теории, чёрная дыра в центре GN-z11 должна была питаться веществом в пять раз быстрее, чем мы считали. В противном случае она не набрала бы детектируемую массу к 440 млн лет после Большого взрыва. Также она должна была зародиться не в результате коллапса гигантской звезды, а непосредственно из коллапса межзвёздного газа, возникшего после рождения Вселенной. Будем ожидать, что собранного «Уэббом» материала хватит для составления новых космологических гипотез, которые затем превратятся в стройные теории.

Научная подработка: навигационные спутники могут стать детекторами чёрных дыр и тёмной материи

Спутники систем навигации представляют собой сложнейшие приборы по координации синхронизированного с атомными часами времени и расстояний с учётом релятивистских явлений. Они способны и обязаны компенсировать любые гравитационные воздействия на их орбиты. Это уже готовые датчики гравитационных аномалий, сообщили европейские учёные и предложили превратить их в охотников за чёрными дырами и тёмной материей.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Мы впервые предложили использовать замеры гравиметрических научных приборов и параметры орбит спутников глобальных навигационных систем для поиска аномалий, порождённых скоплениями тёмной материи и примордиальными [первичными] чёрными дырами, которые сближаются с Землёй на достаточно близкое расстояние. Работа этого подхода уже была проверена на базе одного из спутников навигационной системы Galileo», — пишут исследователи, которых цитирует информагентство ТАСС.

Первичные чёрные дыры слишком малы, чтобы их гравитационные волны могли уловить современные лазерно-интерферометрические гравитационно-волновые обсерватории. Считается, что они образовались из неоднородностей первичной материи вскоре после Большого взрыва. Многие из них уже испарились за счёт излучения Хокинга, но самые большие могут ещё оставаться во Вселенной. Это объекты планетарной массы, и в случае пересечения Солнечной системы в относительной близости Земли навигационные спутники отреагировали бы на их присутствие, как и на присутствие сгустков тёмной материи.

Группа европейских физиков под руководством профессора Брюссельского свободного университета (Бельгия) Себастьяна Клессе разработала методику косвенного использования развёрнутых на орбите навигационных спутниковых группировок для поиска примордиальных чёрных дыр в окрестностях Земли, включая поиск скоплений тёмной материи.

Очевидным образом прохождение небольшой чёрной дыры или сгустка тёмной материи рядом с Землёй окажет измеряемое воздействие на движение околоземных искусственных спутников, например, их ускорение и большую полуось орбиты. В сочетании с наземным оборудованием и спутниками по изучению земной гравитации это позволит примерно определить массу и положение гравитационных аномалий, если таковые произойдут, и сделать вывод о вероятной природе вызвавших их объектов.

Согласно предварительным расчётам, один спутник навигационной системы Galileo сможет уловить такую гравитационную аномалию на удалении около 1,5 а.е. от Земли (от Земли до Солнца в среднем 1 а.е.). Но чем больше спутников будет задействовано, тем дальше будут отодвигаться границы чувствительности.

Нечто подобное 10 лет назад проделали российские астрономы. Тогда они использовали данные орбитальных движений Солнца, планет и некоторых астероидов, чтобы попытаться обнаружить гравитационные аномалии в Солнечной системе. Наблюдение за навигационными спутниками в течение 30 лет способно на порядок улучшить определение подобных аномалий и принести весомый научный результат. Более того, если в окрестностях Земли будет обнаружена первичная чёрная дыра у учёных уже есть идея превратить её в аккумулятор энергии. Но это уже другая история.

У чёрной дыры в центре нашей галактики нашли неизвестную, но регулярную активность

Два мексиканских учёных на основании общедоступных данных от гамма-телескопа «Ферми» обнаружили активность возле сверхмассивной чёрной дыры в центре нашей галактики. Чёрная дыра Стрелец А* в центре Млечного Пути считается спокойной. Она не пожирает массы вещества вокруг себя, и поэтому множественных выбросов из её области нет. Однако кое-что от неё прилетает, и учёные отыскали вероятный источник загадочных вспышек.

 Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Несколько лет назад учёные обнаружили периодические вспышки в рентгеновском диапазоне, которые приходили к нам со стороны чёрной дыры Стрелец А*. Астрофизики Густаво Магальянес-Гихон (Gustavo Magallanes-Guijón) и Серхио Мендоса (Sergio Mendoza) из Национального автономного университета Мексики решили детальнее разобраться в этом вопросе и обратились к открытым данным орбитального гамма-телескопа Ферми. Учёные проанализировали 180 дней записей телескопа в период с 22 июня по 19 декабря 2022 года. О результатах анализа они сообщили в статье на сайте препринтов arХiv.

Анализ заключался в обработке и поиске закономерностей, особенно тех, которые проявляются периодически. В результате они нашли одну из них. Оказалось, что из окрестностей Стрельца А* с достоверностью 3 сигма (для «железного» подтверждения открытия требуется достоверность не менее 5σ) каждые 76,32 мин приходит гамма-сигнал. С большой вероятностью вокруг чёрной дыры в центре Млечного Пути вращается сгусток газа на расстоянии примерно как Меркурий от Солнца со скоростью около 30 % от скорости света.

Учёные считают, что облако газа будет излучать также в других диапазонах, и оно точно связано с ранее обнаруженными периодическими вспышками в рентгеновском диапазоне. Из самой чёрной дыры не вылетает никакое излучение, но в области поглощения вещества в диске аккреции процессы протекают очень и очень активно и сопровождаются выбросами энергии. Возможно в будущем Стрелец А* ещё зажжёт, но пока только подмигивает.


window-new
Soft
Hard
Тренды 🔥
Windows скоро станет умнее — Microsoft видит будущее ОС в ИИ и NPU 4 ч.
OpenAI запустила AgentKit — инструмент для создания ИИ-агентов за считанные минуты 4 ч.
ChatGPT научился запускать Spotify, Canva и множество других приложений прямо в чате 5 ч.
Copilot тормозит при запуске нескольких приложений Microsoft Office — и Microsoft не знает, почему 5 ч.
ChatGPT достиг 800 млн пользователей в неделю — плюс 60 % всего за полгода 5 ч.
Календарь релизов — 6–12 октября: Battlefield 6, Little Nightmares 3, 2XKO и Dying Breed 6 ч.
Анонсирован ремастер культового квеста Broken Sword 2: The Smoking Mirror — спустя год после выхода обновлённой первой части 6 ч.
Адский ритм-шутер Metal: Hellsinger останется последней игрой The Outsiders — Funcom закрывает студию, но разработчики не сдаются 7 ч.
Google представила ИИ-агента CodeMender — он самостоятельно устраняет уязвимости ПО 7 ч.
Ubisoft анонсировала дату выхода «мясистого» бесплатного дополнения к Assassin's Creed Mirage — геймплей и подробности Valley of Memory 8 ч.