На днях вышло сразу 19 статей, посвящённых наиболее полному анализу шестилетнего обзора Dark Energy Survey (DES) по изучению свойств тёмной энергии — гипотетической силы, которая с ускорением расширяет нашу Вселенную. С 2013 по 2019 год четырьмя способами изучалось распределение галактик и скоплений на глубину до 10 млрд световых лет, и теперь у учёных есть что сказать об этом. Как водится, мнения разделились.
Источник изображения: CTIO/NOIRLab
Согласно космологической модели λCDM (лямбда-CDM), наиболее полно описывающей современные представления о структуре и природе нашей Вселенной, 68 % энергии во Вселенной приходится на тёмную энергию, ещё 28 % на тёмную материю и только 5 % на видимую материю, включая нас с вами (в сущности, мы тоже энергия, что следует из всем известного уравнения E=mc2). Энергия равна массе через константу — скорость света в квадрате.
В обзоре DES, охватившем участок примерно в 1/8 неба, расстояния между галактиками и скоплениями галактик, а также удалённость этих объектов оценивались по четырём методикам: по распределению барионных акустических колебаний, по «стандартным свечам» — сверхновым типа Ia, по распределению галактик и по эффектам слабого гравитационного линзирования. Задача стояла выяснить, как скорость расширения Вселенной менялась с течением времени.
Тем самым учёные получили наборы данных, которые в совокупности обещают дать наиболее полное представление о поведении тёмной энергии. Основной вопрос, который анализ этого массива данных должен был решить, является ли тёмная энергия постоянной величиной во времени (как в стандартной космологической модели λCDM) или её свойства со временем изменяются, что отражено в расширенной модели ωCDM?
Источник изображения: DES
Как выяснилось, результаты наблюдений в целом согласуются со стандартной моделью λCDM, согласно которой тёмная энергия сохраняет постоянную плотность на всём протяжении наблюдаемого участка Вселенной. Но полученные данные также вписываются в рамки модели ωCDM, допускающей изменение плотности тёмной энергии со временем. При этом наблюдается некоторое несоответствие в том, как галактики группируются в более поздние эпохи. Это несоответствие заметно как в случае предсказаний в рамках λCDM, так и ωCDM.
Авторы отмечают, что несовпадение наблюдений с предсказаниями ниже 5 «сигма» и они не могут претендовать на достоверное открытие. И всё же это может быть зацепка для перехода к новой физике или для окончательного разъяснения сущности тёмной энергии. Полученный результат даёт пищу для проверки других гипотез строения Вселенной, включая возможный пересмотр теории гравитации. Но это будет уже другая история.
Источник:


MWC 2018
2018
Computex
IFA 2018






