Опрос
|
реклама
Быстрый переход
«Джеймс Уэбб» прислал потрясающий снимок «космического торнадо» — в одном кадре слились будущее и прошлое
25.03.2025 [12:06],
Геннадий Детинич
Космическая обсерватория им. Джеймса Уэбба вновь продемонстрировала свои выдающиеся возможности передового инструмента. С её помощью получен самый детализированный снимок новой области звёздообразования, наполненный динамикой движения облаков пыли и газа под воздействием излучения новорождённых светил. Совершенно случайно в кадр попала древняя галактика, создав эффект «глаза торнадо» и символически объединив прошлое и будущее — старые звёзды с молодыми. Телескоп «Уэбб» запечатлел область Herbig-Haro 49/50 в нашей галактике. В нижнем левом углу изображения находится новорождённая звезда Cederblad 110 IRS4 (CED 110 IRS4). Ранее эту область снимал телескоп NASA «Спитцер», однако его изображение содержало мало деталей, а также демонстрировало «размытый объект» на кончике «торнадо». Снимок «Уэбба» в ближнем и среднем инфракрасном диапазоне позволил рассмотреть множество важных деталей в структуре облаков пыли и газа. При этом «размытый объект» оказался спиральной галактикой, удачно попавшей в кадр в необычной перспективе. ![]() Слева изображение «Спитцера», справа — «Уэбба» «”Уэбб” запечатлел эти два не связанных между собой объекта в удачный момент, — пояснила команда телескопа. — На протяжении тысяч лет край HH 49/50 будет расширяться и в конечном итоге закроет собой далёкую галактику». На полученном снимке оранжевым цветом обозначен молекулярный водород, а красным — монооксид углерода. Эти газы нагреваются под воздействием энергии струй соседней новорождённой звезды, приводя облака в движение. Кажущийся хаос подчиняется электромагнитному полю звезды и её излучению — всё это позволяет учёным наблюдать процесс, который во многом напоминает рождение нашей Солнечной системы. Учёные засекли удивительно высокую концентрацию кислорода в самой древней из найденных галактик во Вселенной
21.03.2025 [11:27],
Геннадий Детинич
Наблюдения последних лет часто ставят астрономов в тупик, доказывая ошибочность понимания эволюции ранней Вселенной. Звёзды и галактики в первый миллиард лет после Большого взрыва развивались неожиданно быстро, что невозможно объяснить принятыми в космологии моделями. В этот ряд попало и новое открытие — неожиданно большая концентрация кислорода в самой древней из найденных во Вселенной галактик. ![]() Художественное представление галактики JADES-GS-z14-0. Источник изображения: ESO Галактика JADES-GS-z14-0 была открыта космической инфракрасной обсерваторией «Джеймс Уэбб». К лету 2024 года открытие было подтверждено по спектральным данным. Оказалось, что этот неожиданно крупный и яркий объект обнаружен всего через 290 млн лет после Большого взрыва. Это само по себе вызвало недоумение, поскольку современные модели не предполагают такого быстрого развития звёзд и галактик. Очевидно, что земная наука что-то упускает в оценке эволюции Вселенной. ![]() Галактика JADES-GS-z14-0 не могла не вызвать растущего интереса учёных — это как обнаружить подростка в ясельной группе, поясняют исследователи. Поэтому для углублённого анализа химического состава этой «галактики-переростка» был использован радиотелескоп Atacama Large Millimeter/submillimeter Array в Чили. Наблюдения в радиоволновом диапазоне позволяют уловить спектры излучения холодных атомов, в отличие от инфракрасного и видимого излучения, которые фиксируют значительно более высокие уровни энергии. Сигналы, полученные от галактики JADES-GS-z14-0, ошеломили исследователей. Уровень молекулярного кислорода в ней в десять раз превысил допустимый в моделях эволюции звёзд. Кислород и другие элементы, тяжелее водорода и гелия, образуются в недрах звёзд в результате ядерного синтеза. В межзвёздное пространство они попадают после смерти таких звёзд во время взрывов сверхновых. Иными словами, это крайне медленный процесс. Поэтому запредельный уровень кислорода в JADES-GS-z14-0 всего через 290 млн лет после Большого взрыва остаётся загадкой, на которую у учёных пока нет ответа. Для его поиска потребуются новые масштабные наблюдения. Учёные показали как выглядела Вселенная до появления первых звёзд
20.03.2025 [13:47],
Геннадий Детинич
Учёные завершили обработку данных, собранных за последние годы наблюдений за небом Атакамским космологическим телескопом (ACT) в Чили. Этот телескоп пришёл на смену космической обсерватории «Планк», первой создавшей карту реликтового излучения Вселенной. Новые изображения повысили чёткость картины распределения плазмы и газа в «детские» годы развития Вселенной — примерно через 380 тыс. лет после Большого взрыва. ![]() Источник изображений: ACT Collaboration «Мы видим “первые шаги” Вселенной на пути к созданию самых ранних звёзд и галактик. И это не просто свет и тьма — это поляризация света в высоком разрешении», — пояснила директор телескопа ACT и профессор Принстонского университета Сюзанна Стэггс (Suzanne Staggs). Определение поляризации реликтового микроволнового излучения позволяет с высокой детализацией изучить распространение ионизированного водорода и гелия в первые минуты жизни Вселенной по космологическим меркам. Из этих веществ позже сформировались первые звёзды, а затем и галактики. Полученная информация также даёт представление о распределении тёмной материи, которая собирала видимое вещество вокруг своих сгустков и, фактически, способствовала формированию всего, что мы наблюдаем. Отдельно учёные подчеркнули сохранение так называемой напряжённости Хаббла — расхождения в измерении скорости расширения Вселенной по реликтовому излучению (в ранней Вселенной) и по наблюдениям звёзд и галактик в наши дни. Это расхождение не исчезло, а новые данные ACT в реликтовом микроволновом диапазоне в целом соответствуют показаниям, полученным ранее с «Планка». ![]() Атакамский космологический телескоп был построен в 2007 году на вершине горы Серро-Токо в чилийской пустыне Атакама и завершил работу в 2022 году. Представленные недавно данные относятся к последним годам его наблюдений в период с 2017 по 2022 годы. Анализ полученной информации продлится много лет, предоставляя учёным обширный материал для новых открытий. Сезон охоты за тёмной материей и не только открыт — опубликован первый пакет данных с телескопа «Евклид»
19.03.2025 [22:23],
Геннадий Детинич
18 марта 2025 года Европейское космическое агентство опубликовало первый пакет данных наблюдений космической обсерватории «Евклид», получившей прозвище охотника за тёмной материей. Данные включают три глубоких обзора неба, проведённые за первую неделю наблюдений, общей площадью 63,1 квадратного градуса. Учёные назвали их «золотой жилой» для начала охоты за тайнами Вселенной, включая главные — поиск тёмной материи и разгадку тайны тёмной энергии. ![]() Жёлтые мазки на данных по Млечном Пути — это первые глубокие обзоры «Евклида». Ниже фото обзоров. Источник изображения: ESA Запущенный в космос в июле 2023 года, «Евклид» (Euclid) начал научную работу в феврале 2024 года. Первая публикация включила данные, собранные за первую неделю наблюдений: это три глубоких обзора небольших участков неба общей площадью 63,1 квадратного градуса. Это всего 0,4 % от будущего полного обзора, который охватит треть всего неба и продлится до 2030 года. Однако даже этих, казалось бы, скромных данных хватит на множество серьёзных открытий в астрономии. Глубокие обзоры трёх первых участков неба — двух в южной части нашей галактики и одного в северной — вобрали в себя 380 000 классифицированных галактик, 500 новых кандидатов в гравитационные линзы и множество других космических объектов, таких как скопления галактик и активные ядра галактик. ![]() Впервые для поиска наиболее перспективных объектов для дальнейшего наблюдения был использован искусственный интеллект, что резко сократило время отбора кандидатов и, соответственно, время проведения научных работ. Отобранные ИИ кандидаты затем передавались гражданским учёным — волонтёрам, которые на добровольной основе классифицировали объекты, экономя тем самым время и ресурсы профессиональных исследователей. Первые элементы будущего атласа «Евклида» уже послужили основой для публикации десятков научных работ, включая исследование, посвящённое обнаружению идеального кольца Эйнштейна. Это явление возникает в результате гравитационного линзирования, когда удалённый объект и массивная галактика или скопление галактик, действующие как гравитационная линза, находятся на одной линии с наблюдателем (в данном случае с «Евклидом»). ![]() «Евклид» стал первым космическим телескопом, поставившим обнаружение гравитационных линз на поток. Почти все из 500 найденных им гравитационных линз оказались новыми. К концу наблюдений ожидается, что обсерватория обнаружит 100 000 гравитационных линз — в 100 раз больше, чем известно сегодня. Обсерватория заглядывает в глубины Вселенной на 10,5 млрд лет назад во времени. На всей этой дистанции она выявляет особенности строения галактик. Форма или морфология галактик — расположение и вид рукавов, типы скоплений звёзд и другие детали — позволяют оценить распределение тёмной материи вокруг каждой из них. В то же время скопления и расположение галактик в системе космической паутины определяются внешним влиянием тёмной материи. ![]() Оба этих фактора — внутренний и внешний — формируют вид галактик и их взаимное размещение. Сегодня мы не можем с уверенностью сказать, что такое тёмная материя. Однако скрупулёзно собранные «Евклидом» данные обещают помочь в разгадке этой тайны. Невидимое проявится через его глобальное воздействие на видимое вещество. ![]() Фрагмент одного из участков с увеличением в 70 раз Похожая ситуация складывается и с тёмной энергией. Какая-то сила заставляет несвязанные гравитацией галактики разлетаться друг от друга с ускорением. Что именно их расталкивает — остаётся загадкой. «Евклид» также поможет установить самые строгие ограничения на эту невидимую силу, создав наиболее точный набор данных о множестве галактик на огромной глубине. ![]() Пример ряда классифицированных галактик из первого обзора Работа с первыми данными обсерватории уже началась. В 2026 году ожидается публикация отчёта за первый год работы «Евклида», который включит 2 Пбайт данных. Сегодняшний обзор на этом фоне может показаться скромным — всего 35 Тбайт, но это информация лишь за одну неделю наблюдений. Над каждым из уже пройденных участков неба «Евклид» пройдёт от 30 до 50 раз, каждый раз повышая разрешение и улучшая качество снимков. К 2030 году это будет самый полный и подробный каталог галактик, равных которому нет и, вероятно, ещё долго не будет. Самый большой в мире фотоаппарат с разрешением 3200 Мп готов к использованию — им будут снимать небо
16.03.2025 [10:58],
Дмитрий Федоров
На этой неделе в Обсерватории имени Веры Рубин (Vera C. Rubin Observatory) в Чили завершена установка революционной 3200-мегапиксельной камеры (LSST). Высокотехнологичное устройство массой 2 994 килограмма оснащено сенсором, состоящим из 189 высокочувствительных ПЗС-детекторов. Оно разработано для создания беспрецедентно детализированных снимков Вселенной. В ближайшие недели специалисты проведут завершающую калибровку оптической системы, после чего камера сделает первые тестовые снимки, предваряющие начало полномасштабных научных наблюдений за Вселенной. ![]() Источник изображений: RubinObs/NOIRLab/SLAC/NSF/DOE/AURA/B. Quint Окончательная сборка камеры LSST завершилась в апреле прошлого года в Национальной ускорительной лаборатории SLAC в Калифорнии. После детального тестирования и сложного процесса транспортировки её доставили в Чили, где инженеры провели финальную установку и калибровку. Устройство включает 189 ПЗС-детекторов, организованных в 21 отдельный модуль, в каждом из которых расположены 9 сенсоров. Работая в составе телескопа, оснащённого 8,4-метровым главным зеркалом и 3,5-метровым вторичным, камера обеспечит исключительную детализацию изображений. Концепция LSST была впервые предложена в 2003 году, когда учёные начали разрабатывать эскизы телескопа нового поколения. В 2007 году проект получил финансирование от Чарльза Симони (Charles Simonyi) и Билла Гейтса (Bill Gates), что позволило приступить к его реализации. В 2010 году Национальный научный фонд США (NSF) и Министерство энергетики США (DOE) выделили дополнительные средства. Установка камеры LSST стала завершающим этапом перед началом полноценного научного наблюдения за Вселенной. Камера LSST — крупнейшая цифровая астрономическая система, созданная на сегодняшний день. Её 3200-мегапиксельный сенсор формирует изображения невероятной детализации: каждая фотография содержит столько информации, что её можно отобразить на 400 телевизорах с разрешением 4K UHD (3840 × 2160 пикселей). Работая в тандеме с телескопом Симони (Simonyi Survey Telescope), камера будет охватывать область неба, эквивалентную 40 полным Лунам, и обновлять карту южного звёздного неба с периодичностью раз в три дня. ![]() Основная задача LSST — детальное изучение динамических процессов во Вселенной. Камера будет фиксировать перемещение астероидов, регистрировать вспышки сверхновых звёзд и способствовать изучению структуры тёмной материи и природы тёмной энергии. Благодаря высокой чувствительности детекторов и колоссальному объёму собираемых данных учёные смогут отслеживать эволюцию галактик, выявлять закономерности формирования звёздных систем и глубже понимать процессы, происходящие в окружающем нас космическом пространстве. ![]() Процесс установки LSST требовал исключительной точности. По словам Фредди Муньоса (Freddy Muñoz), руководителя механической группы Обсерватории Веры Рубин, монтаж камеры потребовал ювелирной точности в пределах миллиметров, а также безупречной координации между инженерами и учёными. Сложность работы заключалась не только в размере камеры, но и в необходимости точного позиционирования её компонентов для обеспечения корректного взаимодействия с оптическими элементами телескопа. ![]() Менеджер проекта LSST Camera Трэвис Лэнг (Travis Lange) подчеркнул, что создание камеры стало одним из самых сложных технических вызовов в современной астрономии. В процессе разработки принимали участие ведущие специалисты в области оптики, механики, электроники и программирования, которые объединили усилия для реализации амбициозного проекта. Камера, помимо исключительных технических характеристик, является вершиной инженерной мысли, ставшей возможной благодаря десятилетиям научных достижений. ![]() Теперь, когда камера LSST успешно установлена, специалисты Обсерватории Веры Рубин приступают к её тестированию. В ближайшие недели будет сделана серия первых 3200-мегапиксельных снимков, после чего начнётся полномасштабное наблюдение за южным небом. Ожидается, что в течение следующего десятилетия камера LSST соберёт данные, которые изменят представление учёных о структуре и эволюции Вселенной. Астрономы приблизились к обнаружению самых первых звёзд во Вселенной
08.03.2025 [21:15],
Геннадий Детинич
Было время, когда ещё не было звёзд. Вскоре после Большого взрыва в бесконечном море водорода и гелия, из-за чудовищной плотности газа, стали появляться первые светила. Эти звёзды назвали населением III (Population III). Их ещё никто не видел, но новые инструменты, в частности «Джеймс Уэбб», дают надежду обнаружить такие объекты на заре Вселенной. Недавно астрономы приблизились к этому, открыв лучшего на сегодняшний день кандидата среди звёзд населения III. ![]() Источник изображения: ИИ-генерация Grok 3/3DNews Считается, что первые звёзды во Вселенной, или звёзды населения III, были очень массивными — намного больше современных звёзд-гигантов. А чем больше звезда, тем быстрее она сгорает и разбрасывает останки по пространству, успевая синтезировать в недрах более тяжёлые элементы, чем первоначальные водород и гелий. Именно поэтому мы не видим первых звёзд — их век был мимолётным, но они оставили следы своего пребывания в виде определённых химических элементов. Большая международная группа учёных под руководством Сейджи Фудзимото (Seiji Fujimoto) из Техасского университета в Остине (University of Texas at Austin) направила в The Astrophysical Journal статью, которую также выложила в свободный доступ на сайт препринтов arXiv. В работе исследователи рассказали о перспективном методе поиска первых звёзд и об обнаружении лучшей на сегодняшний день галактики-кандидата, вероятно содержащей звёзды населения III. Эта галактика, получившая название GLIMPSE-16403, пока не является доказанным носителем звёзд населения III. Однако само появление такого кандидата говорит о том, что обнаружение первых звёзд во Вселенной — лишь вопрос времени. «Эта работа прокладывает чёткий путь к открытию первых галактик населения III, — пишут исследователи. — Какова бы ни была судьба нынешних кандидатов, методы, разработанные в этом исследовании, позволят искать галактики населения III в эпоху JWST [обсерватории "Джеймс Уэбб"]». Фудзимото и его коллеги решили ускорить поиск, сосредоточив внимание на небольших участках неба в поисках химических «отпечатков» первых звёзд. Учёные сосредоточились на галактиках с мощными спектрами излучения водорода и гелия при минимальном содержании других элементов. В результате они нашли двух кандидатов. Один оказался ненадёжным, но другой, GLIMPSE-16403, появившийся примерно через 825 млн лет после Большого взрыва, соответствовал всем критериям, определённым для галактик населения III. Это открытие делает GLIMPSE-16403 лучшим кандидатом для поиска звёзд, которые зажгли первый свет во Вселенной. Чтобы определить природу звёзд в GLIMPSE-16403, потребуется дополнительная работа, которая может оказаться непростой: нужен детальный спектральный анализ, а его трудно получить на столь огромном расстоянии в пространстве-времени. Тем не менее, это невероятно захватывающее открытие, которое делает обнаружение звёзд населения III, как представляется, неизбежным. Обнаружена косвенная связь между взрывом сверхновой и эволюции жизни на Земле
21.02.2025 [16:25],
Геннадий Детинич
Сегодня Солнце и мы с ним находимся в так называемом Местном пузыре Вселенной, где мало других звёзд. Тут тихо и уютно, и мало что может произойти такого, что угрожало бы жизни на Земле. Но так было не всегда. Несколько миллионов лет назад недалеко от нас взрывались сверхновые, что грозило жизни на планете ионизированным излучением, разрушающим ДНК и ведущим к мутациям. ![]() Дзета Змееносца, убегающая звезда, выброшенная взрывом сверхновой в группе Скорпиона-Центавра. Источник изображения: NASA За свою жизнь Солнце и Солнечная система не раз пролетали сквозь облака пыли и газа, оставленные после себя вспышками сверхновых. Эти следы обнаруживаются в земных отложениях, например, на дне водоёмов. В частности, там можно найти такой радиоактивный изотоп, как железо-60. Период его полураспада известен, и это даёт возможность вычислить время, когда Земля подвергалась радиоактивному воздействию со стороны сверхновых. Эволюция биологической жизни происходит и без ионизированного излучения. Но радиация, как известно, приводит к быстрым мутациям и многократно разнообразит и ускоряет изменения в ДНК и выше по цепочке. Прямой связи между вспышками сверхновых и эволюцией биологической жизни на Земле нет, хотя косвенные тому подтверждения недавно удалось обнаружить. Ещё в 2016 году была опубликована статья, в которой группа физиков описала обнаружение двух всплесков содержания железа-60 в отложениях на морском дне. Эти всплески были датированы с высокой точностью: один — примерно 6,5–8,7 млн лет назад, другой — примерно 1,5–3,2 млн лет назад. Команда учёных из Калифорнийского университета в Санта-Крузе (UCSC) попыталась вычислить, где могли произойти вспышки сверхновых, которые могли оставить свой след на Земле в те времена. Они «отмотали» развитие Вселенной назад и определили, что виновниками событий могли быть две сверхновые. Кроме того, более ранний всплеск появления железа-60 на Земле произошёл, когда наша система пересекала границы Местного пузыря. Эти условные границы содержали изотопы, возникшие при более ранних взрывах сверхновых, вещество из которых буквально выдуло из центра пузыря к его тогдашним границам. Более свежая концентрация железа-60 на нашей планете могла образоваться от одной из двух сверхновых: либо в группе молодых звёзд Скорпион-Центавра на расстоянии около 460 световых лет, либо в группе Тукана-Часы на расстоянии 230 световых лет. Как показывает исследование, наиболее вероятен первый вариант. После вспышки Земля могла подвергаться облучению в течение примерно 100 000 лет. И всё это время на планете шли бы ускоренные мутации, что наверняка отразилось бы на эволюции живых организмов. Если взрыв произошёл в группе Скорпиона-Центавра, доза могла бы составить дополнительно 30 мЗв в год в течение первых 10 000 лет; для группы Тукана-Часы доза составила бы 100 мЗв. При этом порог радиации, при котором происходит разрушение ДНК, может составлять около 5 мЗв в год, что примерно в два раза выше естественного радиационного фона на планете. Так что доза 30 мЗв в год определённо выглядит достаточной, чтобы вспышка сверхновой могла оказать влияние на биоразнообразие Земли. Сделанное открытие перекликается с ещё одной работой. Учёные обнаружили, что в озере Танганьика на высокогорье в Восточной Африке в период от 2 до 3 миллионов лет назад произошёл всплеск разнообразия вирусов, поражающих рыб. Это именно тот отрезок времени, когда Земля в последний раз была под воздействием излучения, исходящего от места взрыва сверхновой. Прямой связи между этими событиями не обнаружено, но совпадение может быть не случайным. Детектор на дне Средиземного моря поймал нейтрино с рекордно высокой энергией — у него внегалактическое происхождение
13.02.2025 [09:52],
Геннадий Детинич
Строящаяся в Европе подводная нейтринная обсерватория KM3NeT сообщила о получении первого уникального результата. Датчики объекта зарегистрировали нейтрино рекордно высокой энергии — на порядок, а то и больше, чем всё, что фиксировалось ранее. Изучение сигналов детекторов показало, что это «супернейтрино» имело внегалактическое происхождение. Точной привязки к конкретным объектам нет, но есть некоторые подсказки. ![]() Детектор частиц перед погружением на дно моря. Источник изображения: Patrick Dumas/CNRS Регистрация нейтрино крайне затруднена. Эти частицы слабо взаимодействуют с веществом — настолько незначительно, что одно время их даже рассматривали в качестве кандидатов на роль тёмной материи. Чтобы нейтрино с вероятностью 50 % вступило в связь с одним атомом, ему необходимо пролететь стену свинца толщиной в один световой год. Причём чем выше энергия нейтрино, тем меньше шансов его обнаружить. Единственная причина, по которой эти частицы всё же фиксируются, — их невообразимо большое количество. После фотонов нейтрино являются второй по массовости частицей во Вселенной. В данном случае статистика — наше всё. Рекордное по энергии нейтрино было детектировано датчиками KM3NeT 13 февраля 2023 года. Статья в Nature опубликована 12 февраля 2025 года. Всё это время учёные разбирались с сигналом, чтобы не допустить ошибки. Сегодня можно восстановить примерный ход событий. Нейтрино родилось за пределами нашей галактики. Реконструкция данных позволила определить область неба, откуда оно прилетело. Там сейчас наблюдаются 12 блазаров — активных ядер галактик (чёрных дыр), джеты которых направлены практически прямо на Землю. Нейтрино столь высоких энергий могут возникать как в ходе наиболее ярких процессов в таких объектах, так и во время путешествия космических лучей джетов к Земле. На Землю загадочное нейтрино обрушилось под пологим углом и, пройдя через толщу земной коры, вступило в реакцию с веществом. В результате взаимодействия нейтрино распалось, породив, в том числе, мюон высоких энергий. Этот энергичный (и короткоживущий) мюон продолжил движение и, пройдя через массив датчиков нейтринной обсерватории KM3NeT, был зарегистрирован значительной их частью. Первые датчики даже оказались перегружены неожиданно высокой энергией мюона. ![]() Источник изображения: Nature 2025 Энергия мюона составила от 60 до 230 ПэВ (петаэлектронвольт). Энергия породившего его нейтрино должна была находиться в диапазоне от 120 до 220 ПэВ или даже превышать этот предел. До сих пор самые энергичные зарегистрированные нейтрино не превышали 10 ПэВ. Прилетевшее из космоса «нейтринище» минимум на порядок превзошло все ранее известные результаты по этим частицам и оказалось в 10 000 раз мощнее, чем можно получить на современных земных ускорителях. Это открытие подчёркивает важность строящейся обсерватории KM3NeT. Сейчас она готова лишь на 10 %, но уже привнесла в науку невероятно продуктивный опыт. В окончательном виде обсерватория будет состоять из двух массивов датчиков: на глубине 2,5 км у берегов Сицилии (ORCA) и 3,5 км у берегов Франции (ARCA). Её запуск в полную силу позволит значительно ускорить исследования в области нейтрино, что станет мощным инструментом для изучения тайн Вселенной. Моделирование показало, что зарождение жизни было возможно уже в очень ранней Вселенной
25.01.2025 [23:39],
Геннадий Детинич
Если кто-то воспринимает библейскую легенду о Всемирном потопе как литературное преувеличение, то учёные пошли дальше и вычислили, что вода во Вселенной была в избытке уже через 100–200 млн лет после Большого взрыва. Более того, ранняя Вселенная образно «утопала» в воде, что заставляет рассматривать заманчивую возможность зарождения первой биологической жизни на самых ранних этапах её эволюции. ![]() Художественное представление о первых звёздах во Вселенной. Источник изображения: NOIRLab/NSF/AURA Как известно, молекула воды представляет собой два соединённых атома водорода и один атом кислорода. Свободного водорода во Вселенной всегда было в избытке — он присутствовал с самых первых моментов после Большого взрыва. Кислород, как считается, появился в звёздах в ходе термоядерных реакций синтеза. Он стал вырабатываться в звёздах и разлетался по Вселенной после их смерти во время взрывов сверхновых. Тем самым можно полагать, что кислород постепенно увеличивал своё присутствие в космосе, что также вело к постепенному увеличению воды во Вселенной. Группа учёных для журнала Nature Astronomy подготовила рецензируемое исследование, в котором утверждается, что всё было совсем не так. По крайней мере, на заре Вселенной. Согласно общепринятой теории, первые звёзды не содержали ничего, кроме водорода и гелия, и обладали низкой металличностью. В астрофизике металлами считают все элементы, тяжелее гелия, и кислород тоже считается металлом. Поэтому в теории кислород вырабатывали звёзды второго поколения (населения II) и звёзды населения I (как наше Солнце). Звёзды населения III — самые первые звёзды (по населению ведётся обратный отсчёт) — не должны были вырабатывать кислород. Однако в новой работе это утверждение опровергается. Исследователи предположили (точно этого не знает никто, поскольку звёзды населения III — самые первые во Вселенной — ещё никем не наблюдались), что первые звёзды были двух основных классов: маленькие с массой около 13 солнечных масс и большие с массой 200 солнечных масс. Маленькие звёзды образовывались как обычные из звёздных питомников (газа, пыли и гравитации) и обладали малой металличностью. А большие звёзды формировались напрямую из первичных облаков материи. Малые звёзды взрывались как обычные сверхновые, но большие взрывались как парно-нестабильные сверхновые, что вело к интересным результатам. Моделирование показывает, что большие звёзды при смерти должны были значительно обогатить окружающую среду кислородом и, как следствие, водой. Доля воды в молекулярных облаках, оставшихся после таких взрывов, должна в 10–30 раз превышать долю воды в диффузных молекулярных облаках в Млечном Пути, которые учёные наблюдают сегодня. Это даёт основание сделать вывод, что через 100–200 миллионов лет после Большого взрыва в молекулярных облаках было достаточно воды и других элементов для формирования биологической жизни. Увы, ответить на вопрос, появилась ли жизнь уже тогда, учёные вряд ли смогут. Но даже если жизнь тогда начала появляться, уровень ионизации во Вселенной был настолько высоким, что известные нам живые организмы не смогли бы выжить в такой среде. Нормальные условия для зарождения жизни создали звёзды последующих поколений. Но остаётся вероятность, что молекулы воды в чашке утреннего кофе намного древнее, чем было принято считать. Учёные засекли аномальное повышение скорости расширения Вселенной
22.01.2025 [18:54],
Геннадий Детинич
Новые данные о ближайших галактиках показали локальное повышение постоянной Хаббла — величины, которая указывает на скорость разлёта галактик во Вселенной и её расширение. С постоянной Хаббла и так не всё в порядке, поскольку она имеет одно значение на заре Вселенной и другое — в нашей области пространства. Для объяснения этого введено понятие напряжённости Хаббла. Последняя работа учёных показывает, что это различие может быть ещё сильнее, а Вселенная расширяется быстрее, чем предполагалось. ![]() Скопление Кома. Источник изображения: CTIO/NOIRLab/DOE/NSF/AURA Во Вселенной достаточно сложно определить расстояние до изучаемого объекта. При этом все измерения необходимо соотносить с уравнениями Эйнштейна о поведении пространства-времени. Однако учёные нашли способы обхода этих трудностей, используя своеобразные маяки в виде сверхновых, красных гигантов, цефеид и других звёзд, яркость и спектры которых одинаковы в любой точке Вселенной. На основании данных о звёздах-маяках постоянная Хаббла составляет 73,24 ± 1,74 (км/с)/Мпк. Но есть ещё реликтовое излучение и основанная на нём модель LambdaCDM, которые дают значение постоянной Хаббла 66,93 ± 0,62 (км/с)/Мпк. Разница между этими измерениями и расчётами называется напряжённостью Хаббла. Около года назад свой первый обзор неба завершил инструмент DESI (Dark Energy Spectroscopic Instrument). Он собирает спектры галактик (и квазаров) на глубину до 11 млрд лет, чтобы оценить истинные расстояния между галактиками и попытаться создать фундаментальные физические ограничения для изучения тёмной энергии. Эти же данные подходят для других исследований — от подтверждения ОТО Эйнштейна до поиска проблем с постоянной Хаббла. Группа учёных из Университета Дьюка (Duke University) под руководством физика Дэна Сколника (Dan Scolnic) использовала данные первого года наблюдений DESI для оценки расстояния до скопления Волос Вероники (скопления Кома), удалённого от нас примерно на 320 млн световых лет. Воспользовавшись данными по 13 сверхновым типа Ia, команда вычислила, что скопление находится на расстоянии 321 млн световых лет, что может быть самой точной на сегодняшний день оценкой. Это дало значение постоянной Хаббла, равное 76,5 ± 2,2 (км/с)/Мпк. Нетрудно заметить, что это выше предыдущих оценок для нашей области пространства. Поскольку оценка постоянной Хаббла сделана для одного звёздного скопления, учёные назвали обнаруженную аномалию в напряжённости Хаббла локальной, но не исключили, что постоянная Хаббла может быть напряжена ещё сильнее, чем принято считать. Это усиливает кризис в космологии и заставляет думать, что с нашими теориями и моделями может быть что-то не так. Учёные отказали частицам тёмной материи в возможности быть сверхтяжёлыми
21.01.2025 [13:13],
Геннадий Детинич
Получение первых экспериментальных доказательств существования бозона Хиггса около десяти лет назад позволило сделать новый шаг в понимании устройства Вселенной. Бозон Хиггса перестал быть гипотезой, и на этом основании можно продолжить строить наши знания об окружающем нас мире. Например, попытаться обнаружить гипотетическую частицу тёмной материи, для которой бозон Хиггса может оказаться единственным мостиком между видимым и невидимым веществом. ![]() Художественное представление о тёмной материи. Источник изображения: Axel Mellinger, Central Michigan University Так, на сайте препринтов arXiv появилась статья, которая отказывает гипотетическим частицам тёмной материи в возможности быть слишком тяжёлыми. Учёные обоснованно доказывают невозможность такого развития событий, опираясь на недавнее открытие бозона Хиггса. До получения твёрдых свидетельств его существования особого смысла в дальнейшем поиске не было, но теперь этот путь открыт. До сих пор учёные искали частицы тёмной материи в диапазоне масс 10–1000 ГэВ (гигаэлектронвольт). Это укладывалось в рамки Стандартной модели элементарных частиц и помещало частицу тёмной материи в один ряд по массе с топ-кварками и W-бозонами — самыми тяжёлыми из известных элементарных частиц. Открытие в 2012 году на Большом адронном коллайдере бозона Хиггса с массой около 125 ГэВ позволило наложить фундаментальные ограничения на массу предполагаемых частиц тёмной материи. Большинство моделей предполагает (и это согласуется с рамками Стандартной модели), что в процессе взаимодействия с частицами бозон Хиггса придаёт им массу и изменяет собственную. Это означает, что слишком тяжёлые частицы тёмной материи оказали бы настолько разрушительное воздействие на бозон Хиггса, что это разрушило бы все наши устоявшиеся представления об устройстве Вселенной. Сверхтяжёлые частицы тёмной материи можно было бы допустить лишь в случае их полной изоляции от взаимодействия с бозоном Хиггса и, следовательно, с видимым веществом, а также при наличии какого-либо экзотического механизма взаимодействия. Всё это заставляет отклонить путь поиска сверхтяжёлых частиц тёмной материи как маловероятный и направить поиски в сторону лёгких кандидатов, например, аксионов. Тёмная материя стала необходимой для объяснения загадок Вселенной — ускоренного вращения звёзд вокруг центров галактик и движения галактик в скоплениях вокруг общего центра масс. Очевидно, что вокруг нас происходит нечто необъяснимое с позиций современных знаний об устройстве мира. Учёные подозревают, что в мире существует материя, которая очень слабо и редко взаимодействует с видимой материей исключительно гравитацией. Она заставляет обычное вещество собираться быстрее и влияет на эволюцию Вселенной. С поиском тяжёлых кандидатов на эту роль не сложилось, поэтому учёные теперь сосредотачиваются на поиске лёгких частиц. Обнаружен загадочный источник радиосигналов из области Вселенной, где ничего нет
16.01.2025 [20:52],
Геннадий Детинич
Строящийся поэтапно новейший радиотелескоп ASKAP в Австралии засёк странный во всех отношениях источник радиосигналов, которому пока нет объяснения. Радиоимпульс приходит на Землю с интервалом 6,5 часов. Это настолько длительный период, что его нельзя объяснить современной теорией таких периодических источников, как пульсары, магнетары или белые карлики. И эту тайну ещё предстоит открыть. ![]() Художественное представление загадочного радиоисточника. Источник изображения: James Josephides Источник ASKAP J1839-0756 находится в направлении, где нет видимых или ранее зарегистрированных астрономических объектов. Например, это мог бы быть белый карлик — ядро умершей и остывающей звезды. С определённой натяжкой этим можно было бы объяснить столь длительный интервал между радиоимпульсами, но пока привязки к подобным объектам не найдено. Нейтронные звёзды, которые ассоциируются с периодическими радиосигналами, вращаются очень быстро — по несколько раз в секунду. Согласно теории, они прекращают испускать радиосигнал при замедлении скорости вращения примерно до одного оборота в минуту. Сами радиоимпульсы возникают из-за отклонения оси магнитных полюсов, из которых исходит сигнал, по отношению к оси вращения нейтронной звезды. Поэтому магнитный полюс совершает оборот и с определённым интервалом времени «светит» в сторону Земли. Если магнитный полюс никогда не направлен на нашу планету, мы не можем обнаружить такой источник. Если исключить из списка подозреваемых пульсары, другим кандидатом может быть магнетар. Проблема в том, что магнетары также не могут вращаться слишком медленно. Кроме того, должны быть соблюдены определённые условия, чтобы они излучали радиосигнал. Астрономы обнаружили один магнетар, излучающий сигнал каждые 6,67 часа, но это импульсы в рентгеновском диапазоне. Радиосигналов от него не зарегистрировано. Наконец, подозреваемым в источнике медленного радиосигнала может быть белый карлик. Эти объекты обычно вращаются намного медленнее нейтронных звёзд и, в принципе, при наличии сильных магнитных полей могут излучать в радиодиапазоне. Однако и здесь должны быть подходящие условия, например, это должна быть двойная система. У обнаруженного медленного радиоисточника есть ещё одна редкая особенность. Его магнитный полюс ориентирован почти точно в сторону Земли. Это означает, что радиотелескопы регистрируют два импульса — по одному от каждого его полюса. После первого сигнала примерно через 3,2 часа приходит чуть более слабый второй. В подобной ориентации обнаружено лишь около 3 % всех радиоисточников. Определённо, учёным повезло с объектом ASKAP J1839-0756. Его можно изучать буквально со всех сторон, и его непонятный статус только подогревает интерес. Поиск разгадки этого явления, безусловно, расширит наше представление о Вселенной. Мощнейший в истории гамма-всплеск может пролить свет на новую физику — аксионы и тайну тёмной материи
09.01.2025 [19:16],
Геннадий Детинич
Чем больше учёные изучают данные гамма-всплеска GRB 221009A, который называют буквально «ярчайшим за всё время» или BOAT, тем интереснее становятся их выводы. Новая работа итальянских астрономов, опубликованная в продолжение доклада марта прошлого года, связывает это событие с теорией струн и возможным объяснением тёмной материи частицами-аксионами или подобными им. Если эта гипотеза подтвердится, это станет прорывом в космологии и новой физикой. ![]() Джет в представлении художника. Источник изображения: NASA Goddard Space Flight Center Вспышка GRB 221009A, напомним, зафиксирована в октябре 2022 года. Она ослепила все гамма-телескопы за исключением одного китайского, который в это время находился на техобслуживании и отключил почти все датчики. Более выгодное положение заняли наземные телескопы высокоэнергетических частиц, отслеживавшие вторичный поток частиц в атмосфере Земли, вызванный первичным потоком. Одним из таких телескопов был китайский LHAASO (Большая высотная обсерватория воздушных потоков). Именно анализ данных LHAASO привёл итальянских учёных к возможному открытию. Группа исследователей под руководством профессора Джорджио Галанти (Giorgio Galanti) из Национального института астрофизики Италии (INAF) обнаружила несоответствия в данных наблюдений. Обсерватория зафиксировала энергию фотонов гамма-излучения до 18 ТэВ (тераэлектронвольт). По мнению исследователей, такую энергию невозможно объяснить в рамках современной физики. Согласно современным космологическим моделям, высокоэнергичные фотоны от источника GRB 221009A, находящегося на удалении 2,4 млрд световых лет от Земли, должны были взаимодействовать с фотонами диффузного внегалактического фонового излучения. Это взаимодействие должно было снизить их энергию до 10 ТэВ и ниже. Однако данные наблюдений говорят об обратном, что вынудило учёных рассмотреть альтернативные модели для объяснения явления. В частности, высокая энергия фотонов, зарегистрированных обсерваторией, указывает на большую прозрачность Вселенной как внутри галактик, так и между ними. Это возможно в рамках теории струн при взаимодействии фотонов с аксионоподобными частицами (ALPs, axion-like particles), что исследователи обосновали в своей работе, опубликованной на сайте arXiv 30 декабря 2024 года. Аксионы или подобные им частицы рассматриваются как кандидаты на роль тёмной материи — неуловимой субстанции, взаимодействующей с обычной материей исключительно через гравитационное взаимодействие, которое крайне слабо. Согласно расчётам, около 85 % всей материи во Вселенной представлено тёмной материей, существование которой пока удаётся определить лишь косвенно. Регистрация фотонов с экстремально высокой энергией также может служить косвенным подтверждением существования аксионов или их разновидностей семейства ALPs. Однако это требует независимого изучения и дальнейших исследований другими научными группами. Учёные впервые разглядели десятки звёзд в далёкой галактике
07.01.2025 [22:36],
Геннадий Детинич
Обычно учёные даже не надеются разглядеть отдельные звёзды в далёких галактиках. Между тем, изучение звёзд на ранних этапах развития Вселенной необходимо для понимания эволюции галактик и Вселенной в целом. И тогда спасает случай, эффект гравитационного линзирования и появление более совершенных телескопов, таких как «Джеймс Уэбб». И звёзды сошлись. ![]() Источник изображений: NASA Астрономам из Университета Аризоны (University of Arizona) посчастливилось обнаружить одновременно десятки звёзд в галактике на таком отрезке времени, когда Вселенная была вдвое моложе — возрастом всего 6,5 млрд лет. В обычных условиях такая галактика выглядела бы на астрономических снимках, как тусклое пятно. Благодаря гравитационном линзированию в ней удалось разглядеть 40 отдельных звёзд и получить о них достаточное представление. Открытие произошло благодаря двум наблюдениям «Уэбба» за сверхскоплением галактик Abell 370 на удалении примерно 4 млрд лет от Земли. На линии прямой видимости между Землёй и скоплением далеко за ним расположилась галактика «Дуга Дракона» (Dragon Arc). Изучение снимков скопления, сделанных «Уэббом» с разницей примерно в один год, помогло выявить четыре десятка звёзд, которые оказались родом из далёкой галактики. Одни из обнаруженных далёких звёзд были ярче на одном снимке, другие — на втором. Анализ показал, что звёзды увеличивались как всей массой скопления Abell 370, эффект от чего назвали гравитационным макролинзированием, так и от отдельных звёзд в скоплении, которые не входили ни в какие тамошние галактики (летали свободно). Именно эти звёзды производили эффект гравитационного микролинзирования, меняя увеличение (и яркость) далёких звёзд за короткий промежуток времени — за недели и даже дни. И если скопление увеличивало галактику «Дуга Дракона» и отдельные звёзды в ней примерно в 100 раз, то отдельные звёзды в скоплении увеличивали свет далёких звёзд ещё примерно в 10 раз. ![]() Сочетание редких условий и проницательность, а также упорство учёных дали поразительный результат — 40 наблюдаемых звёзд в галактике на удалении 6,5 млрд световых лет от Земли. Все они оказались красными гигантами на исходе своей жизни, как относительно недалёкая от нас яркая звезда Бетельгейзе. Примечательно, что «Уэбб» стал тем прибором, который впервые так далеко смог увидеть относительно холодные звёзды, ведь раньше самыми далеко обнаруживаемыми звёздами были яркие голубые гиганты. С помощью «Уэбба» астрономия взяла ещё одну планку и расширила для земной науки наблюдаемую Вселенную. Углерод в наших телах бывал за пределами нашей галактики, но потом вернулся
04.01.2025 [15:31],
Геннадий Детинич
Исследование учёных из Университета Вашингтона позволяет предположить, что атомы в наших телах побывали не только в межзвёздном пространстве, но и в межгалактическом. Впервые спектральные измерения показали, что в гало галактик присутствуют огромные резервуары углерода, который поступает внутрь галактик и выходит наружу, циркулируя таким образом миллиарды лет и участвуя в эволюции галактических объектов. ![]() Источник изображения: NASA Считается, что элементы тяжелее водорода и гелия — включая углерод, кислород и железо — рождаются в звёздах и распространяются по галактикам и за их пределы после взрывов сверхновых. Новое исследование указывает на то, что такие элементы могут длительное время оставаться в гало галактик, многократно возвращаясь в галактические диски и участвуя в процессах звездообразования, формирования планет и других объектов, включая нас с вами и биологические организмы в целом. В 2011 году было доказано, что галактики с продолжающимся звездообразованием окружены запасами кислорода. Гало вещества распространяется на расстояние до 400 тыс. световых лет, что в три-четыре раза превышает размеры самих галактик. Новое исследование показывает, что помимо кислорода в этих резервуарах содержится также огромное количество углерода — элемента, особенно интересного с точки зрения возможности существования биологической жизни. Учёные использовали свет девяти далёких квазаров для анализа среды вокруг 11 галактик с продолжающимся звездообразованием. Данные о поглощении световых волн средой были получены с помощью спектрографа Cosmic Origins на космическом телескопе «Хаббл». Окологалактическая среда оказалась насыщена углеродом. Исследователи считают это ключом к пониманию эволюции галактик, в частности того, почему они так долго сохраняют способность к звездообразованию. Вещество, выброшенное из звёзд во время взрывов сверхновых, не улетучивается сразу во Вселенную, а длительное время остаётся в гало галактик и возвращается в галактические диски, где участвует в формировании новых звёзд и планет. «Представьте окологалактическую среду как гигантскую железнодорожную станцию: она постоянно выталкивает материал наружу и втягивает его обратно, — поясняют учёные. — Тяжёлые элементы, из которых состоят звёзды, выбрасываются из их галактики-хозяина в окологалактическую среду в результате взрывов сверхновых. Затем эти элементы могут быть втянуты обратно, продолжая цикл формирования звёзд и планет». Изучение динамики круговорота вещества в окологалактических средах важно для понимания того, как и с какой скоростью галактики превращаются в пустыни, где звездообразование прекращается. Это также позволяет глубже понять продолжительность этапов эволюции галактик. «Для эволюции галактик и природы в целом наличие резервуара углерода, доступного для формирования новых звёзд, является захватывающим открытием, — пишут авторы исследования. — Тот же углерод, из которого состоят наши тела, скорее всего, провёл значительное время за пределами галактики!» |