Сегодня 26 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → вселенная
Быстрый переход

«Джеймс Уэбб» запечатлел тайны рождения звёзд, как это было на заре Вселенной

В соседней с нами галактике Большое Магелланово Облако есть места, где звездообразование идёт с колоссальной скоростью, которая могла повсеместно наблюдаться вскоре после рождения Вселенной. Учёные получили возможность наблюдать фактически повторение древнего явления буквально вблизи нашего галактического дома — Млечного Пути. Но без космической обсерватории «Джеймс Уэбб» такое было бы невозможно. Только она может видеть сквозь облака пыли и газа.

 Источник изображения: NASA

Туманность N79. Лучи — это артефакты от главного зеркала телескопа. (нажмите, чтобы увеличить). Источник изображения: NASA

Астрономы направили зеркало «Уэбба» на массивный звездообразующий комплекс N79 в галактике Большое Магелланово Облако. Благодаря наблюдению с помощью четырёх фильтров в среднем инфракрасном диапазоне с отбором длин волн 7,7 мкм (на изображении выделены синим цветом), 10 мкм (голубым), 15 мкм (жёлтым) и 21 мкм (красным) удалось получить снимок значительной глубины. «Уэбб» смог различить тонкие структуры за плотным слоем облаков из пыли и газа, которые предстали прозрачными или полупрозрачными в инфракрасном диапазоне.

В нашей галактике подобных масштабных образований нет, да и химический состав межзвёздного вещества совсем другой. Поэтому звездообразование совершенно скудное и не дающее полноты данных для изучения эволюции звёзд. Комплексы звездообразования подобные показанному на изображении N79 имеют совершенно другой химический состав, который почти идентичен тому, каким обладали такие области примерно через один млрд лет после Большого взрыва. «Уэбб» может заглянуть в те времена, но подробности на таком расстоянии разглядеть он не поможет. Другое дело туманность N79. До неё всего-то около 160 тыс. световых лет.

В богатой ионизированным межзвездным атомарным водородом туманности N79 так много протозвёзд, протозвёздных и протопланетных дисков, звёзд на ранней стадии эволюции разной степени зрелости, что мы можем изучать эволюцию звёзд как под микроскопом для массы сред, состояний и условий. Потом учёные сравнят полученные в N79 данные и данные из ранней Вселенной. Это поможет нам лучше понять процессы при её зарождении и лучше понять всё, что происходит во Вселенной.

Подтвердилось открытие самой древней чёрной дыры во Вселенной — она не укладывается в наши представления о природе

Работа с докладом об открытии самой древней чёрной дыры во Вселенной прошла рецензирование и была опубликована в журнале Nature. Благодаря космической обсерватории им. Джеймса Уэбба в далёкой и древней галактике GN-z11 удалось обнаружить центральную чёрную дыру рекордной для тех времён массы. Остаётся гадать, как и почему это произошло и, похоже, для этого придётся изменить ряд космологических теорий.

 Галактика GN-z11 в представлнии художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 в представлении художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 была обнаружена ещё в наблюдениях орбитального телескопа «Хаббл» в 2016 году. Этот объект находится от нас на удалении 13,4 млрд световых лет, то есть существовал во времена, отстоящие от Большого взрыва всего на 440 млн лет. Запуск инфракрасной обсерватории «Джеймс Уэбб» обещал множество открытий в ранней Вселенной, ведь свет из тех времён настолько растягивается в процессе движения фотонов через бездну времени и пространства, что банально уходит из видимого диапазона в инфракрасный.

Спектральный анализ света от GN-z11 показал присутствие в нём сверхразогретых ионов углерода и неона. Это указывало на признаки аккреции — обычного разогрева вещества перед падением на чёрную дыру. Эмиссия в линиях спектра была настолько интенсивной, что чёрная дыра своим излучением буквально затмевала галактику-хозяина. И немудрено, хотя галактика GN-z11 была в 100 раз меньше Млечного Пути, чёрная дыра в её центре потянула на 1,6 млн солнечных масс, тогда как чёрная дыра в центре нашей галактики имеет 4 млн солнечных масс.

Теперь, когда учёные убедились в существовании чёрной дыры подобной невообразимой для тех времён массы, придётся переписывать модели и космологические теории эволюции этих объектов и самой Вселенной. Похоже, «Уэбб» на этом не остановится, что позволит собрать достаточно материала для создания новых моделей появления и роста чёрных дыр и описания процессов в ранней Вселенной.

 Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Например, если опираться на современные теории, чёрная дыра в центре GN-z11 должна была питаться веществом в пять раз быстрее, чем мы считали. В противном случае она не набрала бы детектируемую массу к 440 млн лет после Большого взрыва. Также она должна была зародиться не в результате коллапса гигантской звезды, а непосредственно из коллапса межзвёздного газа, возникшего после рождения Вселенной. Будем ожидать, что собранного «Уэббом» материала хватит для составления новых космологических гипотез, которые затем превратятся в стройные теории.

Учёные нашли останки звезды «Барбенгеймер» — она нарушила известные законы физики при взрыве

Группа астрономов из Чикагского университета обнаружила в нашей галактике следы сверхновой, взорвавшейся с нарушением известных законов физики. Это была древняя звезда, родившаяся на заре времён. По всем правилам она должна была закончить жизнь чёрной дырой, но вместо этого её разметало взрывом сверхновой по Вселенной.

 Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Взрыв звезды Barbenheimer в представлении художника. Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Учёные назвали неизвестную звезду «Барбенгеймер» (Barbenheimer), увековечив тем самым популярный мем. Как невозможно сочетать рассказанные в фильмах «Барби» и «Оппенгеймер» истории, так и звезда Barbenheimer состоит из сплошных невозможных состояний.

Следует подчеркнуть, что Barbenheimer взорвалась достаточно давно. О её существовании и последствиях жизни на завершающем этапе учёные узнали по косвенным наблюдениям и благодаря моделированию. Так опытные сыщики узнают об особенностях преступления по оставленным на месте происшествия уликам. Останки Barbenheimer были обнаружены в спектре звезды J0931 + 0038. Это красный гигант сравнительно небольшой массы, который обнаружился в гало нашей галактики (не в плоскости Млечного Пути, а гораздо выше).

Химический состав J0931 + 0038 оказался настолько странным, что учёным пришлось моделировать условия её образования. Наиболее вероятной оказалась ситуация, когда звезда J0931 + 0038 образовалась из облака межзвёздного газа с неожиданным составом химических элементов. Расчёты показали, что прародительницей J0931 + 0038 должна была быть гигантская древняя звезда с массой от 50 до 80 солнечных масс. Парадокс в том, что звёзды подобной массы коллапсируют в чёрные дыры, а не разлетаются облаком синтезированных в их недрах веществ по окрестностям.

Если бы «Барбенгеймер» существовала, практически всё синтезированное в ней вещество должно было сжаться до возникновения чёрной дыры. Однако она стала настоящей сверхновой, сбросив оболочку, ставшей со временем колыбелью для рождения звезды J0931 + 0038. Отдельные факты наблюдаемого явления учёные ещё могут как-то объяснить, но всё вместе представляет загадку, которую ещё предстоит отгадать.

Астрономы случайно нашли галактику, в которой нет ни одной звезды

Группа астрофизиков из Национальной радиоастрономической обсерватории Грин-Бэнк случайно обнаружила нечто необычное — спиральную галактику, в которой не обнаружилось ни одной звезды. Это может быть первым открытием первичной галактики во Вселенной — облака газа, неизменного с начала времён нашей Вселенной.

 Источник изображения: STScI/NSF/GBO/P.Vosteen

Красным обозначена удаляющаяся от нас область газа, синим — двигающаяся к нам. Источник изображения: STScI/NSF/GBO/P.Vosteen

Никто специально не собирался смотреть на тот участок неба, куда случайно был направлен радиотелескоп Грин-Бэнк. Планировалось совместное наблюдение совсем другого участка неба в паре с французским радиотелескопом Nançay. Обе группы работали по программе наблюдения галактик низкой поверхностной яркости (LSB galaxy, low-surface-brightness galaxy). Это обычно карликовые галактики с редкими звёздами. Такие объекты на 95 % состоят из тёмной материи и межзвёздного газа в них намного больше, чем видимых звёзд. Тем самым радиотелескоп был готов улавливать данные о межзвёздном газе в наблюдаемой точке, но произошло это как выстрел наугад.

Полученные данные ошеломили учёных. Они увидели объект, получивший индекс J0613+52, размерами и формами напоминающий классическую спиральную галактику как наш Млечный Путь или другие. Однако в нём не было обнаружено ни одной звезды. Облако газа вело себя как галактика и вращалось вокруг своего центра, что показало измерение доплеровского смещения. Одна его область двигалась в нашу сторону, другая — двигалась прочь от нас.

Объект вёл себя так, как если бы из Млечного Пути вдруг пропали все звёзды. Возможно, плотность газа в галактике J0613+52 оказалась недостаточной для запуска процессов звездообразования, а внешних провоцирующих этот процесс событий не произошло. Учёные не исключают, что они просто не увидели звёзд в J0613+52, но оставляют за собой право надеяться, что это может быть первое открытие в нашей части Вселенной первичной галактики, такой, какой она была 13,8 млрд лет назад.

Дальнейшее наблюдение за J0613+52 может быть сопряжено с трудностями, поскольку она видна только в радиоволновом диапазоне. Но это же заставляет задуматься о поиске похожих объектов на других участках неба с помощью радиотелескопов. Учёные нашли нечто потенциально удивительное и теперь не упустят возможности разузнать о нём больше.

«Джеймс Уэбб» впервые в истории засёк признаки полярного сияния над несостоявшейся звездой

Новое исследование несостоявшихся звёзд — коричневых карликов — позволило впервые обнаружить признаки невиданного ранее феномена. На одном из объектов проявились признаки полярного сияния, что невозможно было предположить даже в принципе. На соседних с звёздами планетах сияния ионосферы — это обычное явление. Но чтобы оно возникло без постороннего воздействия — с таким учёные ещё не встречались.

 Источник изображения: NASA, ESA, CSA, Leah Hustak (STScI)

Полярное сияние над коричневым карликом в представлении художника. Источник изображения: NASA, ESA, CSA, Leah Hustak (STScI)

Об открытии сообщила команда учёных во главе с астрономом Американского музея естественной истории Джеки Фарти (Jackie Faherty). С помощью космической обсерватории «Джеймс Уэбб» учёные исследовали 12 коричневых карликов. Среди них были объекты W1935 и W2220 — это два очень похожих коричневых карлика, которые оказались близкими клонами друг друга. Они были идентичны по температуре и яркости, а также по химическому составу, включая содержание воды, аммиака, монооксида углерода (угарный газ) и двуокиси углерода (углекислый газ). Но было и отличие: в инфракрасном диапазоне метан в составе W1935 излучал свет, а W2220 — поглощал.

Изучение газовых гигантов в нашей Солнечной системе показало, что свечение метана в полярных областях сопровождается полярными сияниями. Но на планеты внутри системы воздействует излучение центральной звезды. Энергичные частицы покидают звезду и попадают в магнитные поля планет, а те отводят их в полярные области, где происходит взаимодействие с атомами ионосферы, которое сопровождается разогревом верхних слоёв и, как проявление всего этого, полярными сияниями.

 Уэбб засёк эмиссию метана в атмосфере коричневого карлика, что указывает на возможное полярное сияние

«Уэбб» засёк эмиссию метана в атмосфере коричневого карлика, что указывает на возможное полярное сияние

Однако коричневый карлик — это звезда, которой не хватило массы для запуска термоядерной реакции. Он сам по себе в системе и ничто не должно влиять на его атмосферу и ионосферу. Там не должно быть признаков полярных сияний, что подтверждает наблюдение объекта W2220. Напротив, ионосфера W1935 оказалась разогретой без видимой причины, что заставило заподозрить на нём полярные сияния.

Какие процессы заставили метан нагреться в верхних слоях коричневого карлика W1935, учёные не знают, но намерены выяснить это в будущих наблюдениях за такими объектами. Возможно феномен полярных сияний имеет также иную природу, чем ту, которую мы наблюдаем в нашей системе. Обсерватория «Джеймс Уэбб» предоставляет возможность таких наблюдений, каждый раз доказывая, что из затраченных на её запуск $10 млрд каждый цент окупится сторицей.

Учёные воссоздали поведение неуловимого магнитного монополя с помощью алмазов и ржавчины

Предсказанный в 1931 году Полем Дираком магнитный монополь — гипотетическая частица с одним единственным магнитным полем — до сих пор не получил наблюдательного подтверждения. Столетие поиска магнитного монополя не дали никакого результата. В то же время подтверждение его существования открыло бы дорогу к проработке «теории всего» — единой физико-математической теории функционирования нашей Вселенной.

 Источник изображения: Anthony Tan / Michael Hoegen

Источник изображения: Anthony Tan / Michael Hoegen

«Если бы монополи действительно существовали, и мы смогли бы их изолировать, это было бы похоже на поиск недостающего фрагмента головоломки, который считался утерянным», — пояснил физик Мете Ататюр (Mete Atatüre) из Кембриджского университета, один из авторов новой работы по поискам признаков магнитного монополя.

В этой работе, опубликованной в журнале Nature Materials, международная группа исследователей во главе с учёными из Кембриджского университета в Великобритании наблюдала монопольное поведение магнитных полей при прохождении через гематит, материал, похожий на обычную ржавчину.

Сразу уточним, что это не наблюдение за поведением гипотетической частицы. Это попытка оценить закономерности, которые можно было бы выявить в процессе наблюдения настоящего магнитного монополя. На практике учёные обнаружили и изучили связь между спиновыми паттернами в антиферромагнитных материалах под воздействием точечного приложения магнитного поля, которое имитировало магнитный заряд монополя.

«Проблемой всегда было прямое отображение этих структур в антиферромагнетиках из-за их более слабого магнитного притяжения, но теперь мы можем сделать это с помощью забавного сочетания алмазов и ржавчины», — сказал физик Энтони Тан (Anthony Tan) из Кембриджского университета.

 Источник изображения: Nature Materials, 2023

Источник изображения: Nature Materials, 2023

Использовать слово ржавчина в сочетании с алмазами учёные считают забавным. Но это лишь гематит — широко распространённый минерал железа Fe2O3, обычная железная руда. Это антиферромагнетик с нейтральным магнитным полем в обычном состоянии. Упорядоченная и нейтральная структура магнитных доменов в этом материале легко локализуется на очень и очень маленьких масштабах. Для вывода её из равновесия использовалась тончайшая алмазная игла, точнее — алмазная квантовая магнитометрия. С помощью детектирования ориентации спина электронов в игле можно измерять слабые магнитные поля в образце не нарушая их.

По сути, учёные создали имитацию воздействия гипотетической частицы на магнитную решётку образца и смогли увидеть это воздействие прибором. Это открывает путь к новым методам поиска неуловимой частицы, обнаружение которой невозможно переоценить для современной физики.

В дальнейшем результаты этого исследования могут быть использованы для разработки компьютерных технологий, которые будут быстрее, чем те, что мы имеем сегодня, и более бережны к окружающей среде (за счет более низкого энергопотребления), за что нужно будет благодарить особые свойства антиферромагнитных материалов.

«Мы показали, как алмазная квантовая магнитометрия может быть использована для разгадки таинственного проявления магнетизма в двумерных квантовых материалах, что может открыть новые области исследований в этой сфере», — пояснил Тан.

«Джеймс Уэбб» разглядел в огромной древней галактике шесть галактик меньшего размера

Космическая обсерватория им. Джеймса Уэбба совершила одно из самых значительных разоблачений в астрономии последних лет. Обнаруженная в 2013 году крупнейшая древняя галактика HFLS3 возрастом всего 880 млн лет оказалась не тем, о чём заявили учёные. Как показало наблюдение с помощью «Уэбба», HFLS3 — это столкновение шести молодых галактик на заре времён.

 Источник изображения: ESA/C. Carreau

«Галактика» HFLS3 в представлении художника. Источник изображения: ESA/C. Carreau

Ранняя Вселенная была временем бурных событий. В первые 2 млрд лет после Большого взрыва — примерно 13,8 млрд лет назад — звездообразование заметно активизировалось, и галактики вспыхивали в темноте, сталкивались и росли. Но попробуйте разглядеть детали из нашего времени! Немудрено, что несовершенство научных приборов не всегда позволяет понять, что происходило в конкретных областях пространства в определённое время.

Открытие «галактики» HFLS3 в 2013 году поразило учёных. Объект был обнаружен в данных космического телескопа «Гершель». Он находился в самом начале рождения Вселенной в эпоху реионизации, порождая звёзды с поразительной скоростью — около 3000 масс Солнца в год. Для сравнения, наша галактика Млечный Путь производит звёзды в темпе до 8 масс Солнца в год. И это при том, что HFLS3 и Млечный Путь имели примерно одинаковую массу.

Происходящее в HFLS3 невозможно было объяснить с помощью современных теорий в космологии. Последующие наблюдения «Гершеля» и привлечение к этому другого космического телескопа — «Хаббла» позволили заподозрить, что HFLS3 — это не то, чем кажется. Больше ясности внёс телескоп «Джеймс Уэбб», когда наблюдал этот участок неба осенью 2022 года.

Команда астрофизиков под руководством учёного Гарета Джонса (Gareth Jones) из Оксфордского университета проанализировала данные по наблюдению HFLS3 и подготовила научную работу, которая ещё не прошла рецензирование для печати в журнале Astronomy & Astrophysics и доступна на сайте arXiv.

 Как на самом деле выглядит «галактика»изображения: Astronomy & Astrophysics.

Как на самом деле выглядит «галактика» HFLS3 в данных «Уэбба». изображения: Astronomy & Astrophysics.

Учёные обнаружили, что HFLS3 состоит из трёх пар маленьких галактик, вращающихся в своеобразном космическом танце, который ведёт их к неизбежному столкновению в пространстве протяжённостью всего 36 000 световых лет. Это столкновение должно было произойти в течение миллиарда лет после наблюдения, что может считаться довольно коротким промежутком времени для такого грандиозного явления, как столкновение галактик.

Галактики в парах настолько близки друг к другу, что их гравитационное взаимодействие перемешивает их звездообразующий материал, заставляя его вспыхивать при звездообразовании, что также объясняет чрезвычайно высокую скорость, с которой рождаются новые звёзды. И это открытие предлагает захватывающий кадр того, как галактики взаимодействовали и росли в период, известный как Космический рассвет.

«HFLS3, вероятно, не является экстремальной вспышкой звездообразования, а вместо этого представляет собой одну из самых плотных групп взаимодействующих звездообразующих галактик за первый миллиард лет существования Вселенной. Недавние и продолжающиеся наблюдения с высоким разрешением ... помогут лучше охарактеризовать эту уникальную область», — поделились учёные своим анализом в статье.

В далёкой-далёкой галактике взорвалась сверхновая «На бис!»

Иногда о крайне редком событии говорят, как о втором попадании снаряда в одну и ту же воронку. Примерно так можно описать сделанное телескопом «Джеймс Уэбб» открытие. Он сумел отыскать в одной и той же гравитационно линзированной галактике вторую сверхновую. Наблюдение за обеими позволит уточнить постоянную Хаббла и, возможно, станет ещё одним шагом в сторону разрешения величайшей загадки в астрофизике.

 Источник изображения: NASA

Слева — три изображения сверхновой «Реквием», справа — два изображения сверхновой «На бис!». Источник изображения: NASA

В ноябре 2023 года космический телескоп NASA им. Джеймса Уэбба наблюдал массивное скопление галактик под названием MACS J0138.0-2155. Благодаря эффекту гравитационного линзирования, предсказанному ещё Альбертом Эйнштейном, далекая галактика под названием MRG-M0138 позади скопления предстала на изображении сильно деформированной из-за мощной гравитации промежуточного скопления галактик.

Помимо искажения и увеличения далекой галактики, эффект гравитационного линзирования «размножил» изображения MACS J0138, позволив получить пять различных изображений галактики. Деформация пространства-времени вокруг скопления MACS J0138.0-2155 далеко не идеальной формы и свет от фоновой галактики шёл по пяти различным маршрутам с разной длительностью. Поскольку линзированная галактика отстоит на 10 млрд световых лет, запаздывание света в ряде случаев было значительным.

Но самое замечательное, что астрономы обнаружили во время наблюдения вспышку сверхновой! Более того, это была сверхновая типа Iа. А сверхновые этого типа являются в астрофизике «стандартными свечами». Это термоядерные взрывы белых карликов. Эти процессы хорошо описаны и раз за разом повторяются с очень и очень высокой точностью. На ядро белого карлика падает водород до начала запуска ядерной реакции синтеза. Энергия вспышки известна и позволяет оценить расстояние до сверхновой.

Удивительным стало то, что за семь лет до этого в галактике MACS J0138 телескопом «Хаббл» точно также была обнаружена другая сверхновая типа Iа. Тем самым «Уэбб» впервые наблюдал вторую линзированную сверхновую в одной и той же галактике. И тоже от «стандартной свечи»! И если наблюдение «Хаббла» было неполным и не позволило собрать данные для определения постоянной Хаббла, то теперь астрономы сделали всё возможное, чтобы собрать как можно больше информации о событии. Всего таких событий (линзированных сверхновых типа Ia) зарегистрировано около дюжины, и новое открытие станет ценным вкладом в наблюдения о расширяющейся Вселенной.

Предыдущая сверхновая получила название «Реквием». Она отобразилась на трёх участках неба и появится в гравитационной линзе ещё два раза: в 2037 и 2041 годах. Вторую обнаруженную сверхновую назвали «На бис!» (Encore). Ещё раз свет от неё придёт в 2035 году.

«Теперь мы обнаружили гравитационной линзой вторую сверхновую в той же галактике, что и "Реквием", которую мы назвали сверхновая "На бис!". Она была обнаружена по счастливой случайности, и сейчас мы активно следим за текущей сверхновой по специальной программе наблюдений "Уэбба". Используя эти изображения "Уэбба" на основе многократного изображения сверхновой, мы измерим и подтвердим постоянную Хаббла. Подтверждено, что Encore является стандартной свечой или сверхновой типа Ia, что делает Encore и Requiem, безусловно, самой удаленной парой "братьев и сестёр" сверхновых стандартной свечи, когда-либо обнаруженных», — сообщают учёные.

Учёные придумали, как превратить чистую энергию в материю с помощью одних только лазеров

Один из постулатов квантовой физики говорит, что материя может возникать с помощью одного только света (фотонов). На практике проверка этого требует колоссальных энергий и ещё ни разу не проверялось в лаборатории. Группа учёных из США и Японии нашла условия, при которых такой эксперимент становится возможным с использованием современных лазеров.

 Источник изображения: SciTechDaily.com

Источник изображения: SciTechDaily.com

Следует сказать, что косвенно синтез материи из энергии света был реализован в лаборатории и не один раз за последние два–три года. Учёные разгоняли ионы золота и других тяжёлых металлов до релятивистских скоростей. На такой скорости ионы были окружены облаками фотонов, что вело к столкновениям между фотонами при сближении ионов металлов. В этих столкновениях рождались частицы и античастицы (обычно электроны и позитроны). Иначе говоря, фотон-фотонные взаимодействия порождали материю, что прекрасно регистрировалось научными приборами.

Повторить подобный эксперимент с одними только лазерными лучами — воспроизвести чистый эксперимент перехода энергии в материю — это подняться на другой уровень науки. Как это сделать, рассказала группа исследователей из Университета Осаки и Калифорнийского университета в Сан-Диего. Они использовали моделирование, чтобы продемонстрировать, как можно экспериментально производить материю исключительно из света, что в будущем может помочь проверить давние теории об эволюции Вселенной.

«Наше моделирование демонстрирует, что при взаимодействии с интенсивными электромагнитными полями лазера плотная плазма может самоорганизовываться, образуя фотон-фотонный коллайдер, — объяснил доктор Сугимото (Sugimoto), ведущий автор исследования, ранее опубликованного в журнале Physical Review Letters. — Этот коллайдер содержит плотную популяцию гамма-лучей, в десять раз более плотных, чем плотность электронов в плазме, и энергия которых в миллион раз превышает энергию фотонов в лазере».

При столкновениях фотона с фотоном в коллайдере образуются электрон–позитронные пары, а позитроны ускоряются электрическим полем плазмы, создаваемым лазером. В результате получается позитронный пучок.

«Это первое моделирование ускорения позитронов в рамках линейного процесса Брейта–Уилера в релятивистских условиях, — сказал профессор Арефьев, соавтор исследования. — Мы считаем, что наше предложение экспериментально осуществимо, и с нетерпением ждем реализации в реальном мире». Доктор Вячеслав Лукин, директор программ Национального научного фонда США, который поддержал работу, добавил: «Это исследование показывает потенциальный способ исследовать тайны Вселенной в лабораторных условиях. Будущие возможности сегодняшних и будущих мощных лазерных установок стали еще более интригующими».

 Физика процесса. Источник изображения: Yasuhiko Sentoku

Физика процесса. Источник изображения: Yasuhiko Sentoku

Суть процесса в том, что облучаемая доступными сегодня лазерами плазма в состоянии близком к критическому, способна самоорганизоваться и не только произвести позитроны (и электроны), но также ускорить их до ультрарелятивистских энергий. Лазерный импульс накапливает электроны на своем переднем крае, создавая сильное продольное электрическое поле плазмы. Поле создает движущийся гамма-коллайдер (своеобразный фронт волны, где происходят столкновения гамма-квантов), который генерирует позитроны с помощью линейного процесса Брейта-Уилера — аннигиляции двух гамма-квантов в электрон-позитронную пару. В то же время ускорителем для позитронов служит плазменное поле, а не лазер, как показано на иллюстрации выше.

Именно открытие позитронного ускорения обещает возможность создать установку для первого в истории преобразования чистой энергии в материю. Для этого будет достаточно использовать доступные лазеры с интенсивностью 1022 Вт/см2. Моделирование показало, что позитронный пучок приобретёт энергию уровня гигаэлектрон-вольт с углом расхождения около 10 ° с зарядом 0,1 pC (106 электронов в импульсе). Ранее считавшееся фантастикой станет реальностью, но совсем не так, как в кино. Репликаторы из этого вряд ли получатся. Но подтверждение Стандартной модели и, не исключено, новая физика — это достойная награда за открытие.

Самые впечатляющие снимки космоса от телескопа «Джеймс Уэбб» за 2023 год

Космический телескоп «Джеймс Уэбб» был запущен на Рождество 2021 года, после чего обсерватория стоимостью $10 млрд за 30 дней достигла пункта назначения в точке Лагранжа L2 на расстоянии 1,6 млн км от Земли. Телескоп потратил несколько месяцев на запуск оборудования и установку экрана, который защищает его от солнечной радиации. 2023-й стал первым полным годом работы космического телескопа и принёс большие плоды: были получены тысячи изображений, которые не просто радуют глаз.

 Источник изображений: NASA

Источник изображений: NASA

Полученные снимки и данные наглядно показывают учёным, как рождаются и умирают звёзды, как сталкиваются и сливаются галактики, как создаются массивные скопления галактик и почему некоторые звёзды умирают всего через несколько тысяч лет вместо положенных 10 миллиардов.

«Джеймс Уэбб» был спроектирован, построен и запущен для открытия неизведанного. Его рождественский подарок миру можно увидеть на фотографиях ниже. По расчётам создателей, телескоп должен проработать около 20 лет, а значит в будущем человечество получит ещё десятки тысяч невероятных изображений космоса, имеющих как научную, так и эстетическую ценность.

На расстоянии около 1500 световых лет от Земли находится показанная на фото ниже пара звёздных близнецов Хербиг-Аро 46/47, которым едва исполнилось несколько тысяч лет. Это младенчество по космическим меркам, так как звезде размером с Солнце требуется в среднем 50 миллионов лет, чтобы достичь «совершеннолетия». Молодые звезды используют окружающие их облака звёздной пыли и газа для своего роста. Когда поглощение идёт слишком быстро, пыль и газ вырываются с обеих сторон формации, придавая молодой звёздной паре деформированный вид.

Пара ярких звёздных образований, расположенных на расстоянии 1600 световых лет от Земли — туманность Ориона и скопление Трапеции — являются домом для 700 молодых звёзд на разных стадиях развития. Четыре из них легко увидеть в простой любительский четырёхдюймовый телескоп. Самая заметная из них в 20 000 раз ярче Солнца.

Звезда Вольфа-Райе находится на расстоянии 15 000 световых лет от Солнечной системы и представляет собой очень редкий вид — в галактике Млечный Путь, насчитывающей не менее 100 миллиардов звёзд, таких всего 220. Вольф-Райе горит горячо и быстро, её температура в 20–40 раз выше нашего Солнца. Поэтому она быстро теряет водородную оболочку и обнажает гелиевое ядро, и всего через несколько сотен тысяч лет растворится в космической пыли. Для сравнения — продолжительность «жизни» Солнца около 10 миллиардов лет.

В отличие от звезды Вольфа-Райе, знаменитая туманность Кольцо, сфотографированная «Джеймсом Уэббом» на расстоянии 2000 световых лет от Земли, угасает неторопливо и с достоинством. Туманность была открыта в 1779 году французским астрономом Антуаном Даркье де Пеллепуа (Antoine Darquier de Pellepoix). Под внешними слоями ионизированного газа, скрывается характерная голубая внутренняя часть, состоящая из водорода и кислорода, которые ещё не унесены звёздным ветром.

Карликовая галактика NGC 6822 оправдывает своё название: она насчитывает всего 10 миллионов звёзд по сравнению со 100 миллиардами в Млечном Пути. Но малое количество звёзд NGC 6822 компенсирует зрелищностью, которую демонстрирует нам космический телескоп. Обнаруженная в 1884 году американским астрономом Э. Э. Барнардом (E.E Barnard), NGC 6822 имеет огромный пылевой хвост размером 200 световых лет в поперечнике. Плотное скопление звёзд в её составе светится в 100 000 раз ярче Солнца.

Спиральная галактика М51, которая находится на расстоянии 27 миллионов световых лет от Земли и изяществом рукавов и компактностью структуры. У M51 имеется галактика-компаньон NGC 5195. Обе галактики вовлечены в нечто вроде гравитационного перетягивания каната, в котором NGC 5195 побеждает. Постоянное гравитационное воздействие NGC 5195 объясняет плотно переплетённую структуру рукавов M51 и приливные силы, приводящие к созданию новых звёзд в рукавах.

В нижнем левом квадранте туманности Ориона «Джеймс Уэбб» сфокусировался на структуре, известной как Бар Ориона, названной так из-за своей диагональной формы, напоминающей гребень. Этот гребень сформирован мощным излучением окружающих его горячих молодых звёзд.

Звёздное скопление IC 348 — ребёнок по меркам космоса, ему всего пять миллионов лет, а расположено оно примерно в 1000 световых годах от Земли. Состоящая примерно из 700 звёзд, IC 348 имеет структуру, похожую на тонкие завесы, созданные космической пылью, отражающей звёздный свет. Заметная петля в правой части изображения, вероятно, создана порывами солнечного ветра.

Гигантская галактика Скопление Пандоры, формально известная как Abell 2744, представляет собой объединение четырёх звёздных скоплений. Галактика Скопление Пандоры удалена от Земли на расстояние 3,5 миллиарда световых лет и имеет ошеломляющий диаметр в 350 миллионов световых лет. Массивная совокупная гравитация скопления изгибает и увеличивает свет объектов на переднем плане, что позволяет астрономам использовать его в качестве гравитационной линзы.

«Джеймс Уэбб» был построен главным образом для наблюдения за самыми старыми и удалёнными объектами во Вселенной, находящимися на расстоянии до 13,4 миллиардов световых лет от Солнечной системы. Но это не мешает телескопу иногда заглядывать на собственный «задний двор», что демонстрирует это потрясающее изображение Сатурна и некоторых из его 146 спутников.

Ро Змееносца — это облачный комплекс молодых и горячих звёзд, расположенный всего в 460 световых годах от Земли. Неспокойный характер Ро Змееносца характеризуется струями газа, вырывающимися из молодых звезд. Большинство звёзд в этом скоплении по размеру сопоставимы с Солнцем, кроме значительно более крупной звезды S1. Она горит настолько ярко, что вырезает вокруг себя огромную полость образующимся вокруг неё звёздным ветром.

«Хаббл» сфотографировал звёздное скопление в виде снежного кома в соседней галактике

Если кому-то на Земле в этот час не хватает снега, можно отдохнуть взглядом на свежей фотографии космического телескопа «Хаббл». На снимке позирует звёздное скопление NGC 2210 из соседней с нашей галактики Большое Магелланово Облако. Также оно является самым молодым из всех обнаруженных там скоплений, что представляет особый интерес для учёных. Это тот случай, когда эстетика и наука идут рука об руку.

 Источник изображения: NASA

Источник изображения: NASA

Впервые шаровое скопление NGC 2210 было обнаружено Джоном Гершелем в 1835 году. Полное изображение скопления собрал космический телескоп «Хаббл». Точная датировка скопления была осуществлена во время наблюдения неба в 2017 году. Оно оказалось на 2,2 млрд лет младше Вселенной. В то же время скопление NGC 2210 остаётся самым молодым звёздным скоплением из обнаруженных в Большом Магеллановом Облаке. Возраст старейших из них всего на несколько сотен миллионов лет меньше возраста Вселенной.

В нашей галактике Млечный Путь, спутником которого является Большое Магелланово Облако, тоже есть старые звёздные скопления. Для учёных это шанс сравнить эволюцию этих объектов, которые начали появляться одновременно в разных галактиках (в разных местах Вселенной). Каждое такое скопление содержит от сотен тысяч до миллионов звёзд. Это очень стабильные образования, чему они обязаны гравитационному взаимодействию.

«Хаббл» рассмотрел галактику с «запрещённым» светом

Космический телескоп «Хаббл» представил снимок далёкой галактики MCG-01-24-014, расположенной на удалении 275 млн световых лет от Земли. Эта галактика относится к редким сейфертовским галактикам с «мини»-квазаром в её центре. Одна её крошечная центральная область пылает как весь Млечный Путь. А за такими процессами всегда полезно следить, ведь там происходят явления, которые невозможно воссоздать в земных лабораториях.

 Источник изображения: NASA

Источник изображения: NASA

В своё время академик Яков Борисович Зельдович сказал, что Вселенная — это ускоритель для бедных. Но это верно лишь отчасти. В безднах космоса создаются такие условия, которые на Земле нельзя создать ни за какие деньги. Частицы разгоняются до колоссальных энергий, и это открывает нам глаза на новые грани классической и квантовой физики.

Наблюдаемая «Хабблом» галактика MCG-01-24-014 относится ко второму типу сейфертовских галактик. Особенность этого типа в том, что ширина разрешённых и запрещённых линий в спектре её излучения примерно равна и равна разрешённым линиям в спектре сейфертовских галактик первого типа. В то же время у сейфертовских галактик первого типа ширина запрещённых зон относительно мала и это соответствует тому опыту, который частично воспроизводим на Земле. В остальном это на вид обычная спиральная галактика. По крайней мере, в оптическом диапазоне.

Согласно выведенным учёными законам квантовой физики, вероятность появления запрещённых линий в спектре не имеет абсолютного запрета, но крайне мала. Это подтверждено на опытах с доступной нам энергией. Но в космосе и, конкретно, на примере спектров галактик типа MCG-01-24-014 повсеместно происходит нечто маловероятное — запрещённые линии в спектрах имеют ту же ширину, что и разрешённые.

Ядра галактик типа MCG-01-24-014 имеют в центре активное галактическое ядро. В общем случае — это активная чёрная дыра, которая постоянно поглощает множество вещества и в результате этого падающее на неё вещество излучает энергию в широком электромагнитном спектре. И этот спектр отлично улавливается нашими приборами. Более того, он показывает возможность процессов и явлений, осуществимость которых едва можно себе представить, включая «запрещённый» свет, который можно изучить и сделать из его наблюдения фундаментальные выводы о природе нашего мира.

NASA вдохнуло чуть волшебства в заурядный снимок неба и получилась космическая ёлка

NASA представило «Кластер рождественской ёлки» — снимок участка неба с молодым звёздным скоплением. Правильные цвета и ориентация, а также подогнанная анимация переменных звёзд, превратили заурядный, в общем-то, снимок в изображение мигающей праздничными огоньками рождественской ёлки.

 Нажмите, чтобы увеличить. Источник изображения: NASA

Нажмите, чтобы увеличить. Источник изображения: NASA

Для создания изображения специалисты NASA использовали данные наблюдений рентгеновской обсерватории «Чандра», оптической обсерватории WIYN и данные инфракрасного обзора неба 2MASS, полученные в период с 1997 по 2001 год. Чтобы «ёлка» смотрела верхушкой вверх, изображение повернули на угол 160 ° относительно принятой среди астрономов ориентации, а чтобы туманность приобрела черты одноимённого дерева, её окрасили в зелёный цвет.

Белые звёзды на фоне неба и «ёлки» были взяты из инфракрасного обзора неба 25-летней давности. Мигающая ёлочная гирлянда из голубых и белых звёзд на картинке — это искусственно синхронизированные вспышки в рентгеновском диапазоне, полученные космической обсерваторией «Чандра».

На самом деле звёзды вспыхивают в рентгеновском диапазоне не синхронно и с другой периодичностью. У каждой из них на то есть разные причины. Все они в скоплении NGC 2264 молодые и горячие возрастом от 1 до 5 млн лет (нашему Солнцу около 5 млрд лет). Одни звёзды продолжают поглощать падающее на них вещество, другие быстро вращаются, чередуя перед нами яркие и тёмные участки на своей поверхности, третьи испускают импульсы в процессе активности магнитных полей, четвёртые то пробиваются, то прячутся за облаками межзвёздной пыли. На праздничном изображении NASA все эти явления сведены к простому миганию — простые и понятные символы. Что ещё надо для создания предновогоднего настроения?

«Джеймс Уэбб» обнаружил кандидата в самые древние чёрные дыры

Каждый новый научный инструмент обеспечивает непрерывный поток удивительной информации, но только некоторые из них способны кардинально изменить наши знания о мире, в котором мы живём. Таким уникальным инструментом стала инфракрасная космическая обсерватория им. Джеймса Уэбба. Только с её помощью удалось заглянуть ещё дальше в глубины Вселенной, где многое ещё только рождалось.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Одной из загадок мироздания для учёных остаётся зарождение и эволюция чёрных дыр. Положение с ними усугубляет то, что они не обнаруживаются напрямую, поскольку из чёрных дыр не может вырваться никакое электромагнитное излучение. Наблюдать такие объекты можно только косвенно, например, по целому спектру активности во внутренней области аккреционного диска, где вещество начинает быстро падать на чёрную дыру.

Одно из наблюдений «Уэбба» в ближнем и среднем инфракрасном диапазоне показало присутствие похожей активности в частотном спектре, исходящем от галактики GN-z11, свет которой обсерватория наблюдала на этапе через 440 млн лет после Большого взрыва. Согласно проведённому учёными моделированию, сигнал мог порождаться сверхмассивной дырой примерно в 1,6 млн солнечных масс. Это очень большой объект для того времени. Современные теории эволюции чёрных дыр с трудом могут объяснить появление такого объекта в указанное время.

Очевидно, что для зарождения и последующего развития чёрной дыры до подобных размеров необходимо было сочетание ряда условий. Например, для коллапса облака «первичной» материи вскоре после Большого взрыва в первичную чёрную дыру требовалось достаточного объёма тяжёлых элементов в нём, наличие рядом источника ультрафиолетового излучения для подогрева и ряд других условий. Затем новорожденная чёрная дыра должна была активно питаться окружающим веществом, чтобы быстро вырасти до указанных размеров, на что тоже есть ограничения.

Если найденный кандидат в самые древние чёрные дыры действительно окажется тем, о чём думают учёные, это позволит задать или расширить рамки для вывода новых моделей эволюции данных объектов. Пока же статья об открытии остаётся на сайте препринтов arХiv.org и ещё не прошла рецензирования для печати в одном из ведущих научных журналов.

«Музыка» звёзд раскроет тайну расстояния до каждой из них

Что скрывается за светящейся точкой на небе, нельзя узнать без информации о расстоянии до неё. Это может быть планета, звезда или галактика. Узнать наше место во Вселенной можно лишь измеряя, что и как далеко находится от нас и куда движется. Это одна из главных целей в астрономии, и недавно учёные научились ещё точнее измерять расстояния до звёзд удивительным образом — слушая звучание каждой из них.

 Астрометрический спутник Gaia в представлении художника. Источник изображения: ЕКА

Астрометрический спутник Gaia в представлении художника. Источник изображения: ЕКА

Процессы в звёздах, как и процессы в планетах, сопровождаются сотрясанием массы. Для Земли это обычные землетрясения, а для звёзд — звездотрясения, которые изучает астросейсмология. Тепловая энергия процессов в звёздах преобразуется в кинетическую энергию сотрясания недр звёзд и, в конечном итоге, наблюдается в виде пульсаций яркости, что также находит отражение в спектральных и частотных пульсациях.

Чем массивнее звезда, тем ниже пульсации, которые буквально можно переводить в воспринимаемый человеком частотный диапазон и слушать как музыку. Эту «музыку» можно улавливать на космических расстояниях. Сопоставляя видимый с Земли блеск звезды и её звучание можно сделать вывод о её истинных размерах и светимости, и построить диаграмму затухания блеска, что подскажет расстояние до изучаемого объекта.

Астрономы из Федеральной политехнической школы Лозанны взяли огромную выборку из более чем 12 тыс. переменных звёзд красных гигантов и проверили на ней свой метод. Перед собой они поставили задачу проверить точность измерения расстояний до звёзд, полученных европейским астрометрическим спутником «Гайя» (Gaia). На сегодня Gaia измерила расстояния до 2 млрд звёзд в ближайшей Вселенной, но чем дальше до звезды, тем менее точными будут измерения. Новый метод с прослушиванием «музыки» звёзд должен был уточнить данные «Гайи» и доказать возможность более точного измерения расстояний до ещё более удалённых звёзд.

Предложенный швейцарскими учёными метод доказал свою состоятельность. Им удалось определить расстояния до множества звёзд на дальности до 15 тыс. световых лет. Методика будет улучшена и опробована на всех участках неба, что поможет в будущих исследованиях экзопланет и не только.


window-new
Soft
Hard
Тренды 🔥
AMD выпустила драйвер с поддержкой игры Manor Lords и исправлением множества ошибок 4 ч.
Telegram обновился: рекомендованные каналы, дни рождения, трансляция геопозиции и аватарки при пересылке 8 ч.
В Steam и на консолях вышел боевик Another Crab's Treasure в духе Dark Souls, но про краба-отшельника — игроки в восторге 8 ч.
TikTok не рассматривает продажу американского бизнеса — соцсеть просто закроется в США 9 ч.
Blizzard отменила BlizzCon 2024, но с пустыми руками фанатов не оставит 9 ч.
Состоялся релиз «Кибер Инфраструктуры» версии 5.5 с VDI, DRS и рядом других улучшений 10 ч.
Объявлены обладатели международной премии Workspace Digital Awards-2024 11 ч.
ИИ-стартап Synthesia разработал по-настоящему эмоциональные аватары, которые так и просятся в дипфейки 11 ч.
Intel выпустила драйвер с поддержкой Manor Lords 12 ч.
Один из лучших модов для Doom II скоро получит ремейк на Unreal Engine 5 — страница Total Chaos появилась в Steam 12 ч.
Выручка Intel выросла на 9 %, но прогноз на текущий квартал вызвал падение курса акций на 7,75 % 3 ч.
Honor представила смартфон Honor 200 Lite с Dimensity 6080 и 108-Мп камерой 4 ч.
TSMC представила техпроцесс N4C — благодаря ему 4-нм чипы станут дешевле 7 ч.
Wacom представила первый интерактивный OLED-дисплей — 13-дюймовый Movink стоимостью $750 7 ч.
Новая статья: Обзор Ryzen 7 8700G: на что способна интегрированная графика для игр в 1080p 8 ч.
Apple избавилась от директора по маркетингу Vision Pro — с продажами гарнитуры и правда не всё в порядке 11 ч.
Китай отправил на космическую станцию пилотируемый корабль «Шэньчжоу-18» с тремя тайконавтами 11 ч.
В Китае испытали нейроинтерфейс Neucyber, который составит конкуренцию Neuralink 11 ч.
Cooler Master представила корпус MasterBox 600 с поддержкой плат с разъёмами на обороте 11 ч.
Китайские компании во главе с Huawei выпустят собственные чипы памяти HBM к 2026 году 12 ч.