Опрос
|
реклама
Быстрый переход
В ранней Вселенной обнаружена чёрная дыра, поглощающая материю сверх всяких разумных пределов
05.11.2024 [21:44],
Геннадий Детинич
В последние годы в ранней Вселенной открыто много сверхмассивных чёрных дыр (СЧД), которые не должны были успеть стать настолько большими ко времени наблюдения. Для них существует чисто физический предел по скорости поглощения массы, который они обычно не могут превзойти. Тем удивительнее было найти чёрную дыру, которая по скорости поглощения вещества превысила теоретический предел в 40 раз. Открытие сделала группа астрономов из США (из обсерваторий Gemini и NSF NOIRLab). Используя для своих целей космическую обсерваторию им. Джеймса Уэбба они наблюдали некоторое количество галактик в ранней Вселенной по следам наблюдений рентгеновской обсерватории «Чандра». Эти галактики были тусклыми в оптике, но яркими в рентгене, что свидетельствует об активности чёрных дыр в их центрах. Внимание учёных привлекла галактика LID-568. Точное расположение этого объекта помог установить спектрометр «Уэбба». Галактика LID-568 оказалась на расстоянии 1,5 млрд лет после Большого взрыва. Проведенные оценки показали, что в центре галактики находится активная сверхмассивная чёрная дыра массой 7,2 млн солнечных масс. Это сравнительно небольшая масса для СЧД. Удивило другое. Так называемый предел Эддингтона для этой чёрной дыры был превышен в 40 раз! Когда на СЧД падает вещество, оно закручивается вокруг неё по спирали. Все чёрные дыры во Вселенной вращаются, поскольку возникли из вращающихся объектов. Чёрная дыра создаёт при этом вокруг себя вращение пространства-времени, заставляя всё падающее на неё также вращаться по сжимающейся спирали (сила гравитации действует в этой области также вбок, а не только в сторону центра). Сила гравитации и трение, наиболее сильные ближе к чёрной дыре, разогревают вещество в диске аккреции до свечения во всех диапазонах электромагнитного излучения. Это излучение создаёт изнутри давление на падающее на СЧД вещество и не даёт ему падать на чёрную дыру сверх определённой скорости. Этот порог и есть предел Эддингтона (в общем случае он введён для звёзд, удерживающих свои внешние оболочки от падения на ядро), хотя этот порог на относительно короткое время может превышаться и тогда проявляется сверхэддингтоновский эффект, когда темп аккреции значительно превышает эддингтоновский предел. Похоже, учёные наткнулись на СЧД LID-568 в тот редкий момент, когда она потребляла вещество в режиме сверхэддингтоновского предела. Поэтому дальнейшие наблюдения за этим объектом могут принести массу открытий в эволюции чёрных дыр. Для учёных стало загадкой, как СЧД в ранней Вселенной смогли отъесться до настолько больших регистрируемых масс. К такому могла привести ситуация, когда первые чёрные дыры возникали непосредственно из коллапса облаков материи либо из невероятно огромных первых звёзд (ни одно, ни другое не наблюдалось). Превышение эддингтоновского предела также может дать ответ на невероятную скорость откорма СЧД. Открытие галактики LID-568 в этом плане стало настоящей находкой. Телескоп «Джеймс Уэбб» обнаружил в ранней Вселенной невозможные квазары
23.10.2024 [14:14],
Геннадий Детинич
Квазары — это активные ядра галактик, представляющие собой сверхмассивные чёрные дыры, которые непрерывно поглощают падающее на них вещество. Как же удивились учёные, когда в ранней Вселенной космический телескоп «Джеймс Уэбб» обнаружил квазары без регистрируемого окружения из вещества. Такое просто невозможно, чтобы сияние квазаров через миллиарды лет наблюдалось и возникло в полной пустоте. «Вопреки предыдущему мнению, мы обнаруживаем, что в среднем эти квазары не обязательно находятся в областях ранней Вселенной с наибольшей плотностью. Некоторые из них, кажется, находятся неизвестно где, — поделилась в заявлении доцент физики Массачусетского технологического института Анна-Кристина Эйлерс (Anna-Christina Eilers). — Трудно объяснить, как эти квазары могли вырасти такими большими, если кажется, что им нечем питаться». Современная космология предполагает, что космическая паутина из нитей тёмной материи и её сгустков в узлах способствовала концентрации обычного вещества и его превращению в звёзды, галактики и всё остальное. Сделанные с помощью обсерватории им. Джеймса Уэбба открытия вносят неопределённость в эти гипотезы и теории. «Уэбб» смог заглянуть на глубину до 13 и более миллиардов лет назад, когда материя во Вселенной образовала первые галактики, а эти галактики, а также сверхмассивные чёрные дыры в их центрах, оказались неожиданно большими. Согласно стандартной модели, они просто не успели бы эволюционировать до регистрируемых размеров. Мало было этих проблем, как вскрылись новые. Учёные изучили пять самых ранних из открытых квазаров на этапе 600–700 млн лет после Большого взрыва. Исследователей волновал вопрос — чем они питаются, если стали такими большими уже на ранних этапах своей эволюции? Оказалось, что некоторые квазары вообще не имеют регистрируемого вещества в пределах своего «ареала обитания». Их яркость и аккрецию вещества вообще ничем нельзя объяснить. На целом ряде длин волн учёные не обнаружили признаков материи. Логично было бы ожидать, что квазары в ранней Вселенной обнаруживаются в областях узлов тёмной материи, где много, например, видимых галактик. Но рядом с некоторыми из наблюдаемых квазаров было всего 2 галактики, а рядом с другими — 50 и более. Это говорит о том, что супермассивные чёрные дыры (квазары) выросли на неизвестном науке механизме эволюции, который ещё предстоит открыть. Не исключено, что новые наблюдения помогут зарегистрировать рядом с квазарами холодные скопления газа и пыли, но это всё равно плохо укладывается в современные космологические представления. Охота за тёмной материей началась: опубликован первый процент космического атласа телескопа «Евклид»
16.10.2024 [11:06],
Геннадий Детинич
Европейское космическое агентство (ESA) опубликовало первый фрагмент космического атласа, полученного с помощью космической обсерватории «Евклид» (Euclid). Изображение соответствует всего одному проценту будущего каталога, в который в деталях войдут все видимые на глубину 10 млрд световых лет галактики, а на нём уже содержится 100 млн объектов — звёзд и галактик, 14 млн их которых уже можно использовать для поиска тёмной материи и тёмной энергии. «Евклид» собирает свет в оптическом и инфракрасном диапазонах. Поэтому он заглядывает сквозь облака газа и пыли, в деталях получая изображения галактик на огромную глубину. Форма и размеры галактик дадут представление о скоплениях и форме облаков и сгустков тёмной материи, которые, собственно, позволили сначала появиться звёздам, а потом и галактикам. Также на основе новых данных учёные получат лучшее представление о динамике расширения Вселенной на протяжении последних 10 млрд лет, что станет шагом к сбору данных о тёмной энергии, которая заставляет Вселенную ускоренно расширяться. Представленный фрагмент будущего атласа «Евклида» содержит данные 260 наблюдений, сделанных в период с 25 марта по 8 апреля 2024 года. Всего за две недели «Евклид» охватил 132 квадратных градуса южной части неба, что более чем в 500 раз превышает площадь неба, покрываемую полной Луной. В марте 2025 года будут опубликованы первые 53 квадратных градуса обзора. Данные обзора за первый год наблюдений опубликуют в 2026 году. Сбор данных продлится до 2030 года и охватит примерно треть неба. Но уже сейчас в данных «Евклида» достаточно информации, чтобы по его наблюдениям можно было начать работать. Астрономы засекли 55 убегающих звёзд в окрестностях нашей галактики — такие объекты сильно влияют на эволюцию Вселенной
11.10.2024 [13:51],
Геннадий Детинич
Новая работа астрономов на базе наблюдений европейского астрометрического спутника «Гайя» (Gaia) вскрыла недооценку влияния на эволюцию Вселенной блуждающих звёзд. Исследование было направлено на оценку возможностей «Гайи» создавать 3D-карту не только Млечного Пути, но также соседних карликовых галактик за её пределами. Изучение звёзд в Большом Магеллановом Облаке обнаружило 55 «беглянок» и их существенный вклад в ионизацию окружающего газа. Исследователи наблюдали за одной из самых больших соседних зон звездообразования — туманностью Тарантул и, конкретно, изучали звёзды в относительно молодом скоплении R136. Это скопление интересно тем, что в нём обнаружена самая массивная из известных на сегодня звёзд (R136a1), масса которой превышает 200 масс Солнца. Самому скоплению примерно 2 млн лет. От Земли оно удалено на 158 тыс. световых лет. Собранные «Гайей» данные говорят, что из этого скопления прочь улетают как минимум 55 звёзд-гигантов. Астрономы выделили две волны беглянок. Первая начинает отсчёт примерно через 200 тыс. лет после начала массового рождения звёзд в скоплении, а вторая — через 1,8 млн лет. Первая волна звёзд направлена во все стороны от центра скопления, что говорит об одном механизме запуска, тогда как вторая сформировала чётко направленный вектор в одном (северном) направлении. Учёные полагают, что первая волна звёзд получила ускорение, выбросившее их из родного скопления, в первые тысячи лет после рождения, когда в их орбитах был хаос. Вторую волну мог запустить эффект от слияния скопления R136 с другим скоплением, что произошло уже на этапе зрелости. По факту переоценки оказалось, что родное скопление покинули до трети самых массивных звёзд — это больше, чем предсказывают модели. Беглянки внесли измеряемый вклад в ионизацию газа как в туманности, так и за её пределами (уж на сколько успели отлететь): от 10 % внутри от числа самых ярких звёзд и до 20 % снаружи. До сих пор при прогнозировании эволюции Вселенной вклад звёзд-беглянок в реионизацию газа в первый миллиард лет после Большого взрыва никак не учитывался. Между тем этот фактор мог оказать существенное влияние на скорость развития звёзд, галактик и самой Вселенной. Учёные нашли самую древнюю галактику-близняшку Млечного Пути — она сломала представления о Вселенной
08.10.2024 [13:19],
Геннадий Детинич
Учёные Южной европейской обсерватории (ESO) с помощью радиотелескопа ALMA сделали удивительное открытие, которое бросает вызов нашему пониманию эволюции галактик. Всего в 700 млн лет от Большого взрыва они обнаружили галактику, своей структурой напоминающей наш Млечный Путь. Это самая далёкая спиральная галактика с вращающимся диском за всю историю наблюдений. Её там просто не должно было быть. Современная теория эволюции звёзд и галактик полагает, что из хаоса слияний этих объектов чёткая и упорядоченная структура с вращающимся диском получится лишь после нескольких миллиардов лет эволюции. Посмотрите на Млечный Путь! Этой галактике потребовалось 13,8 млрд лет, чтобы достичь гармонии в геометрии и движении. Благодаря телескопу «Джеймс Уэбб» открытия стали нарушать гармонию теорий. Например, год назад стало известно о «близняшке» Млечного Пути, обнаруженной через 2 млрд лет после Большого Взрыва. Новое открытие вскрыло ещё более вопиющую странность. Сформированная зрелая галактика с вращающимся диском обнаружена ещё на 1,3 млрд лет раньше. Странная галактика получила название REBELS-25. Строго говоря, она обнаружена в данных ALMA (Атакамская большая антенная решётка миллиметрового диапазона) не сегодня. Но с момента обнаружения REBELS-25 учёные собрали достаточно доказательств, чтобы убедиться в своей правоте: REBELS-25 — это то, чем она кажется. Дополнительные исследования собрали доказательства, что эта галактика представляет собой самый удалённый вращающийся диск и развитую структуру с перемычкой из звёзд в центре и спиралевидными рукавами. Эта колоссальная структура не могла и не должна была стать такой, как мы её видим ко времени её наблюдения. «Наблюдение галактики, имеющей такое сходство с нашим собственным Млечным Путём, в которой преобладает вращение, бросает вызов нашему пониманию того, как быстро галактики ранней Вселенной эволюционируют в упорядоченные галактики современного космоса», — сказала Люси Роуленд (Lucie Rowland), докторант Лейденского университета и первый автор исследования. Чёрных дыр в ранней Вселенной оказалось больше ожидаемого
05.10.2024 [15:28],
Геннадий Детинич
Новая работа астрономов проливает свет на загадку массового образования сверхмассивных чёрных дыр в ранней Вселенной. В нормальных условиях их скорость поглощения вещества не позволила бы им вырасти до наблюдаемых размеров. Альтернативные гипотезы также не объясняют это явление. По крайней мере, новая перепись сверхмассивных чёрных дыр в ранней Вселенной показала гораздо больше таких объектов, чем считалось ранее. В новом исследовании с помощью наблюдений «Хаббла» (в отдельной работе это подтвердили наблюдения «Уэбба») астрономы искали сверхмассивные дыры (СЧД) и признаки их существования в первый миллиард лет после Большого взрыва. Так далеко (или так рано) сверхмассивные дыры обнаруживают себя лишь в виде квазаров — активных ядер галактик или, по сути, активно питающихся сверхмассивных чёрных дыр в их центрах. Проблема в том, что так можно обнаружить далеко не все СЧД. Чёрные дыры могут питаться падающим на них веществом порциями и долгое время оставаться невидимыми на таких расстояниях, ведь в отсутствии аккреции они ничего не излучают. Именно это и обнаружили учёные, о чём они сообщили в статье в Astrophysical Journal Letters. Оказалось, что в ранней Вселенной было намного больше гораздо менее ярких чёрных дыр, чем предполагали предыдущие оценки. Важно, что это может помочь понять, как они образовались, и почему многие из них кажутся более массивными, чем ожидалось. В новой работе учёные пришли к выводу, что в ранней Вселенной во много раз больше чёрных дыр большой массы, чем считалось ранее. Стандартная космологическая модель не допускает образования такого количества массивных зародышей чёрных дыр из коллапса облаков вещества. На это просто не хватило бы скоплений тёмной материи, которая обеспечила бы схлопывание вещества до рождения наблюдаемого количества массивных чёрных дыр или их зародышей. Тем самым учёные приходят к выводу, что механизм множественного образования сверхмассивных чёрных дыр в ранней Вселенной мог быть также другим. Альтернативный или добавочный механизм появления зародышей сверхмассивных чёрных дыр учёные предлагают искать в некоторых первичных звёздах. Обычно звезда определённой массы после превращения в сверхновую схлопнула бы своё ядро до превращения в чёрную дыру. Но если в ядро первичной звезды попала бы тёмная материя, то это задержало бы возникновение ядерного синтеза на обычном этапе и позволило бы звезде набрать в тысячи раз большую массу. В итоге её ядро всё равно бы сжалось под действием гравитации и стало чёрной дырой. Но это была бы уже изначально массивная чёрная дыра, динамика питания которой уже хорошо ложится на известную нам эволюцию этих объектов. В теории астрономы могут обнаружить подобные «тёмные» звёзды и даже застать их в процессе взрыва сверхновых, но это потребует усилий и скоординированных действий многих учёных. Слизевики помогли разгадать тайну космической паутины
25.09.2024 [10:49],
Геннадий Детинич
Многолетняя адаптация для моделирования самых больших вселенских структур — так называемой космической паутины — алгоритма развития слизевика привела к несомненному успеху. Слизевики оказались настолько близки в развитии колоний к космической паутине, что это буквально открыло учёным глаза, обещая помочь разобраться с эволюцией Вселенной на всех этапах её развития. О своей работе учёные рассказали в свежем выпуске журнала Astrophysics. Они задались целью найти более точный алгоритм для моделирования космической паутины. Космическая паутина соткана из вещества и тёмной материи. Она формировалась и развивала свои структуры с самого начала зарождения Вселенной и продолжает делать это сейчас. Наиболее зрелые её части — это нити из тёмной материи, обычно вещества, галактик и скоплений галактик, соединяющие узлы из гигантских галактических скоплений, вещества и тёмной материи. Нити и узлы окружены огромными пустотами — войдами, где практически отсутствует как обычная, так и тёмная материя. Группа учёных из Института астрофизики им. Макса Планка обратила внимание, что рост такого живого организма, как слизевик очень сильно напоминает структуру космической паутины. Это сложная колония бактерий, которая отчасти ведёт себя как гриб или плесень. Она питается, создаёт структуру и растёт, по сути, эволюционируя. Учёные адаптировали алгоритм роста слизевика для моделирования эволюции космической паутины и поразились, насколько точно он повторяет результаты наблюдений. Точность оказалась намного выше, чем в случае обычных для такого случая методов моделирования в физике. Уже с учётом новых моделей стало возможным сделать вывод, что в прошлом эволюция галактик сильнее зависела от близости к крупным образованиям во Вселенной — галактики при этом активнее росли. В ближней Вселенной или на недавних по шкале времени отрезках всё происходило с точностью до наоборот: чем ближе крупные структуры были к растущим галактикам, тем медленнее последние росли. Новый инструмент на основе алгоритма роста колоний слизевиков обещает с большей точностью изучить этапы эволюции Вселенной и космической паутины в ней, опираясь на точные измерения количества газа и пыли в пространстве, которыми могли бы питаться слизевики нити космической паутины. Обнаружены крупнейшие в истории наблюдений джеты от чёрных дыр — они в 140 раз больше нашей галактики
19.09.2024 [11:13],
Геннадий Детинич
Известно, что потоки улетающего от чёрных дыр вещества и энергии (джеты) способны быстро лишить галактику-хозяйку питания для зарождения новых звёзд и дальнейшего роста. Но теперь сделано открытие, которое заставляет заподозрить джеты во влиянии на вселенские процессы. Учёные обнаружили джеты длиной в 23 млн световых лет — от таких струй изменится архитектура целых локальных участков Вселенной, а это уже инструмент для эволюции мироздания. Найденный астрономами Калифорнийского технологического института объект из пары джетов от активной галактики простирается примерно на 7 Мпк (мегапарсек). Это примерно как пять раз слетать туда и обратно в соседнюю с нами галактику Андромеда. Выброс вынес колоссальную энергию из сверхмассивной чёрной дыры в центре галактики-хозяйки, сравнимую с энергией, выделяемой при столкновении галактических скоплений (1055 Дж). В целом учёным повезло с обнаружением этого объекта. Он выявлен на пределе чувствительности наших приборов и если бы возник чуть раньше или был чуть слабее, то явление осталось бы незамеченным. За свои размеры объект получил имя гиганта Порфириона (Porphyrion) из древнегреческой мифологии. Его джеты раскинулись на 6,4 Мпк. Истинные размеры джетов учёные оценили на уровне чуть более 7 Мпк, поскольку есть признаки того, что мы наблюдаем за ними под небольшим углом в нашу сторону. Сам объект был обнаружен в данных наблюдений радиотелескопа LOFAR за Северным полушарием. Их пропустили через систему машинного обучения и ручной отбор внештатных учёных. Всего было обнаружено свыше 11 тыс. джетов, которые были протяжённее одного Мпк. Данные по Порфириону были проверены с помощью другого радиотелескопа — uGMRT и дополнены наблюдениями обсерватории Кека. Измерения и спектральный анализ показали, что вероятная галактика — источник джетов — находится на удалении 6,3 млрд лет от Большого взрыва. Струи вещества обычно выбрасываются из полюсов чёрной дыры, где их направляет и ускоряет её электромагнитное поле. Это естественный ускоритель частиц, который в данном случае разогнал вещество джетов (плазму) до скорости 0,012 от световой. Чтобы достичь наблюдаемых размеров струям пришлось путешествовать по Вселенной около 500 млн лет. Поскольку джеты сохранили форму и направление, учёные делают вывод, что, во-первых, породившая их чёрная дыра не меняла ось своего вращения и, во-вторых, что галактика-хозяйка окружена войдами (пустотами). Джеты не встречали на своём пути достаточно много вещества — газа и пыли — чтобы рассеяться. Это также означает, что галактика-хозяйка находилась в нити тёмной материи, которая как паутиной пронизывает и связывает всю Вселенную и является матрицей для формирования галактик. С учётом небывалой протяжённости обнаруженных джетов, они могли стать переносчиком массы и энергии в соседние нити и, тем самым, были способны повлиять на основы формирования ткани самой Вселенной. Не исключено, что мы просто не видим всех подобных явлений, особенно на ранних этапах формирования мироздания, когда Вселенная явно была плотнее. Если таких объектов много и они возникают достаточно часто, вероятно придётся их учитывать для моделирования эволюции галактик и Вселенной. Но для этого пока не хватает данных, так что наблюдения будут продолжены. Учёные обнаружили гравитационную линзу рекордной силы — она поможет открыть тайны Вселенной
18.09.2024 [21:16],
Геннадий Детинич
Учёные из Национальной лаборатории им. Лоуренса в Беркли заявили об открытии гравитационной линзы рекордной силы. Они обнаружили редчайшее расположение ряда галактик и скоплений, выстроенных в одну линию на расстоянии до 12 млрд световых лет от Земли. Это как найти в стоге сена семь выстроенных в ряд иголок, объяснили масштаб открытия исследователи. Уникальная линза обещает помочь в раскрытии тайн космологии, которые пока не поддаются науке. Самое интересное, что открытие сделано не случайно, а в результате целенаправленного поиска. Учёные создали компьютерную модель специально для поиска уникальных гравитационных линз. В модель загрузили данные множества предыдущих наблюдений неба и затем провели ручной отбор наиболее многообещающих кандидатов. Фактически «иголки в стоге сена» искал суперкомпьютер, с чем он блестяще справился. Созданная учёными модель также позволит анализировать данные, собранные при наблюдениях через этот «вселенский телескоп», что является сложной задачей. Из-за искажения пространства-времени одна и та же галактика через гравитационную линзу может быть представлена двумя, тремя и даже большим числом образов, что не всегда очевидно. А найденная «суперлинза» искажает пространство-время последовательно шесть раз! На фотографии «карусельной линзы» (carousel lens), сделанной через телескоп «Хаббл», как назвали её учёные, можно видеть центральную линзу, образованную ближайшим к Земле скоплением галактик, обозначенных буквой L (их четыре). До них 5 млрд световых лет. За этим скоплением, почти на идеальной прямой по линии зрения от Земли, расположены семь галактик в пяти группах на глубине до 12 млрд световых лет. Каждая из них имеет несколько копий, размноженных из-за искажения пространства-времени на пути света (они обозначены буквами с порядковыми номерами). Почти идеальная прямая, проходящая через все семь галактик и скопление на переднем плане, проявляется в виде концентрических окружностей на изображении, по которым размазаны дубликаты галактик — каждая по своей окружности. Это уже не линза, а целый гравитационный объектив. Но чудо случайности на этом не заканчивается. Обратите внимание на галактику под номером 4, четыре образа которой почти идеально расположены крестом вокруг центрального скопления. Это так называемый Крест Эйнштейна. Значительное разнесение четырёх копий этой галактики вокруг почти пустого пространства в центре указывает на присутствие тёмной материи. «Это беспрецедентное открытие, и созданная вычислительная модель демонстрирует весьма многообещающую перспективу для измерения свойств космоса, включая свойства темной материи и темной энергии», — уверены авторы работы. «Джеймс Уэбб» уличил чёрную дыру в уморении голодом галактики -хозяйки
17.09.2024 [10:10],
Геннадий Детинич
Теория предполагает, что чёрные дыры в центрах галактик способны «задуть свечу их жизни» — лишить вещества для образования новых звёзд. Космическая обсерватория им. Джеймса Уэбба помогла воочию увидеть такой процесс — сверхмассивная чёрная дыра почти мгновенно в масштабах жизни Вселенной уморила голодом галактику-хозяина. Астрономы из Университета Кембриджа заинтересовались далёкой массивной галактикой GS-10578, большинство звёзд в которой образовались в период с 12,5 до 11,5 млрд лет назад. Благодаря инфракрасной чувствительности «Уэбба» такое наблюдение стало впервые возможным с невероятной детализацией. Галактика GS-10578 имеет массу около 200 млрд солнечных масс. Для юности Вселенной это примерно эквивалентно массе Млечного Пути — нашей родной галактики (масса Млечного Пути составляет 1,2–1,9 трлн солнечных масс). Удивительным стало открытие, что по масштабам Вселенной образование звёзд в GS-10578 прекратилось очень быстро. Галактика быстро разрослась до гигантских для того времени размеров и «умерла». Почему? Инфракрасная чувствительность «Уэбба» помогла обнаружить улетающий из галактики со скоростью более 1000 км/с холодный газ. Это скорость, позволяющая веществу преодолеть гравитационное притяжение галактики GS-10578, тем самым лишая её «пищи» для зарождения новых звёзд. Облака холодного газа не проявляют себя в спектре наблюдений «Уэбба», но он смог определить их скопления и скорость улёта по ослаблению света фоновых звёзд в галактике. Ранее такие измерения (холодного газа) можно было проводить только с помощью радиотелескопов, поэтому «Уэбб» действительно удивил. Полученные данные учёные намерены уточнить с помощью массива антенных решёток радиотелескопа Atacama Large Millimeter/Submillimeter Array (ALMA). Как минимум, ALMA сможет заглянуть внутрь галактики и попытается обнаружить хоть какое-то холодное топливо для процесса рождения новых звёзд. «Основываясь на более ранних наблюдениях, мы знали, что эта галактика находится в затухающем состоянии: в ней образуется не так много звёзд, учитывая её размер, и мы ожидали, что существует связь между чёрной дырой и окончанием звездообразования, — поясняют авторы работы. — Однако до появления «Уэбба» мы не могли изучить эту галактику достаточно подробно, чтобы подтвердить эту связь, и мы не знали, является ли это подавленное состояние временным или постоянным». Физика происходящего процесса проста. Вещество падает на чёрную дыру и вызывает выбросы энергии и вещества в сторону от неё. От чёрной дыры постоянно «дует» поток частиц, унося молекулярные газы и пыль от центра галактики и, как мы видим, даже прочь от неё. «Мы нашли виновника, — продолжают учёные. — Чёрная дыра убивает эту галактику и удерживает её в состоянии покоя, перекрывая источник "пищи", необходимой галактике для образования новых звёзд». «Джеймс Уэбб» показал россыпь молодых звёзд на окраине нашей галактики
13.09.2024 [15:43],
Дмитрий Федоров
Космический телескоп NASA «Джеймс Уэбб» (James Webb) провёл детальное исследование окраин нашей галактики. Впервые были получены детальные снимки звёздных скоплений в молекулярных облаках Дигеля 1 и 2, демонстрирующие очень молодые звёзды нулевого класса, находящиеся на самой ранней стадии эволюции, молекулярные потоки и джеты, а также характерные структуры туманностей. Исследуемая область галактики расположена на расстоянии более 58 000 световых лет от галактического центра, что более чем в два раза превышает расстояние от Земли (26 000 световых лет) до центра Млечного Пути. Для наблюдений использовались два ключевых инструмента телескопа: камера ближнего (NIRCam) и среднего инфракрасного диапазона (MIRI), обеспечившие беспрецедентную детализацию изображений. Хотя облака Дигеля находятся в пределах нашей галактики, они относительно бедны элементами тяжелее водорода и гелия, что делает их похожими на карликовые галактики и наш собственный Млечный Путь в начале формирования. Поэтому команда учёных воспользовалась возможностью использовать телескоп, чтобы запечатлеть активность, происходящую в четырёх скоплениях молодых звёзд в облаках Дигеля 1 и 2: 1A, 1B, 2N и 2S. Наиболее информативные результаты были получены при наблюдении за облаком Дигеля 2S, где телескоп зафиксировал активный кластер молодых звёзд, испускающих протяжённые джеты вдоль своих полюсов. Если раньше учёные предполагали, что внутри облака может существовать субкластер, то возможности телескопа позволили это подтвердить. Майк Ресслер (Mike Ressler), учёный из Лаборатории реактивного движения (JPL) NASA и второй автор исследования, отметил: «Что меня восхитило и поразило в данных „Уэбба“, так это то, что из этого звёздного скопления во все стороны вылетает множество джетов. Это немного похоже на фейерверк, где вы видите, как всё стреляет то в одну, то в другую сторону». «В прошлом мы знали об этих регионах звёздообразования, но не могли изучить их свойства. Данные „Уэбба“ основываются на том, что мы тщательно собирали в течение многих лет в ходе других наблюдений. С помощью „Уэбба“ мы можем получить очень мощные и впечатляющие изображения этих облаков. В случае с облаком Дигеля 2 я не ожидала увидеть столь активное звёздообразование и впечатляющие джеты», — заявила Нацуко Изуми (Natsuko Izumi) из Университета Гифу и Национальной астрономической обсерватории Японии (NAOJ). Учёные намерены продолжить изучение процессов звёздообразования в этих регионах. Изуми подчеркнула важность объединения данных с различных обсерваторий и телескопов для детального анализа каждого этапа эволюционного процесса. Среди приоритетных направлений учёная отметила изучение околозвёздных дисков в крайних внешних областях галактики и нерешённый вопрос о причинах более короткого времени жизни этих структур по сравнению с аналогичными объектами в ближних звёздообразующих регионах. Особый интерес у неё вызывает кинематика джетов, обнаруженных в облаке Дигеля 2S. Снимки «Уэбба» охватывают крайние внешние области галактики и облака Дигеля и являются лишь отправной точкой для команды учёных. Они намерены вновь осмотреть этот форпост Млечного Пути, чтобы найти ответы на целый ряд загадок. «Джеймс Уэбб» совершил покушение на напряжённость Хаббла — это просто ошибка измерений
17.08.2024 [10:40],
Геннадий Детинич
Величайшая космологическая загадка современности может быть результатом ошибки измерений, сообщают учёные под руководством исследователя из Университета Чикаго (University of Chicago). Зоркие глаза «Уэбба» помогли извлечь из наблюдений данные, которые отправляют напряжённость Хаббла в диапазон погрешностей измерений. Статья об открытии ещё не прошла рецензирование, но выводы в ней интересные. Около ста лет назад Эдвин Хаббл измерил скорость разбегания галактик и выяснил, что они разлетаются, а Вселенная расширяется. Позже выяснилось удивительное: с использованием расчётов на основе одних и тех же законов физики коэффициент пропорциональности в расчётах — так называемая постоянная Хаббла, которая зависит от удалённости объекта, существенно отличается в зависимости от исходной для расчётов точки. Если измерять и считать от начала Вселенной (по измерениям реликтового излучения) то постоянная Хаббла одна (66,93 ± 0,62 (км/с)/Мпк), а если начинать считать от Земли и дальше, то другая (73,24 ± 1,74 (км/с)/Мпк). Почти 8 % разницы — это не ошибка, это разная физика, а такого в природе не должно быть. Группа Венди Фридман (Wendy Freedman) из Чикагского университета воспользовалась данными Уэбба как наиболее точными на сегодняшний день. Учёные проанализировали свет сверхновых типа Ia в 10 ближайших галактиках, носящих название стандартных свечей за их предсказуемую яркость и динамику. Затем они воспользовались другими тремя методами определения скорости разбегания этих галактик: по состоянию красных гигантов, по углеродистым звёздам J-класса и Цефеидам — переменным звёздам с известными и предсказуемыми характеристиками. Всё это раньше делал телескоп «Хаббл» и другие инструменты, поэтому вся надежда была на возросшую точность измерений с помощью инфракрасных приборов «Уэбба». И результат себя оправдал! Два первых метода (гиганты и J-звёзды) дали показатели, близкие к «реликтовому»: 69,85 (км/с)/Мпк и, соответственно, 67,96 (км/с)/Мпк. Из стройного ряда вылетели лишь Цефеиды, показав значение 72,04 (км/с)/Мпк. В среднем измеренная «Уэббом» постоянная Хаббла составила 69.96 ± 1,05 (км/с)/Мпк, что близко к Стандартной модели и практически устраняет противоречия или необходимость в напряжённости Хаббла. Никаких противоречий в современной космологической модели нет, считают учёные. Во всяком случае, они сделали шаг в сторону их ликвидации. «Джеймс Уэбб» доказал обнаружение самой древней известной галактики во Вселенной
30.07.2024 [09:44],
Геннадий Детинич
В журнале Nature вышла первая из трёх статей, в которой учёные сообщили о получении убедительных доказательств обнаружения самой древней галактики в истории наблюдений. Галактика JADES-GS-z14-0 существовала менее чем через 300 млн лет после Большого взрыва. Это не укладывается в голове у учёных — настолько больших, ярких и развитых галактик в те времена просто не должно было быть. «В январе 2024 года прибор NIRSpec наблюдал за этой галактикой, JADES-GS-z14-0, в течение почти десяти часов, и когда спектр был впервые обработан, были получены однозначные доказательства того, что у галактики действительно было красное смещение 14,32, что побило предыдущий рекорд самой удаленной галактики», — пояснили астрономы Стефано Карниани (Stefano Carniani ) из Высшей нормальной школы в Италии и Кевин Хайнлайн (Kevin Hainline) из Университета Аризоны. Спектрограф NIRSpec ближнего инфракрасного диапазона в составе космической обсерватории им. Джеймса Уэбба способен определить величину красного смещения объекта, отсеяв, например, волны того же диапазона естественного происхождения — от химических и физических процессов в звёздах. Только после спектрального анализа объекта, например, галактики, можно делать вывод о его удалённости. После такого анализа галактика JADES-GS-z14-0 определена как самая древняя (или самая юная, смотря, откуда считать) в истории наблюдений. Протяжённость галактики JADES-GS-z14-0 оценивается минимум в 1600 световых лет. Это говорит о том, что свет в основном исходит от молодых звёзд, а не от массивной чёрной дыры в её центре. Масса галактики превышает несколько сотен миллионов масс Солнца. Это примерно 10 % от массы нашей галактики Млечный Путь. Казалось бы, мелочь. Но эта «мелочь» была не по годам развита во времена Рассвета Вселенной, когда не должно было быть галактик такого размера и массы. «Джеймс Уэбб» позволил нам заглянуть во времена, когда Вселенная была окутана туманом из атомарного водорода, рассеивавшего видимый свет и не позволяющий учёным заглянуть вглубь времён. Увиденное там бросило вызов земной науке. Динамика эволюции звёзд и галактик превысила все теоретические расчёты. В галактике JADES-GS-z14-0, например, обнаружено так много пыли и тяжёлых элементов (в астрономии это всё, что тяжелее гелия), что это невозможно сегодня объяснить. Для этого должны были жить и умереть много поколений тяжёлых звёзд, что для времени через 300 млн лет после Большого взрыва представляется просто невероятным. Учёные впервые увидели подноготную гамма-всплеска — распознали его спектральные линии
27.07.2024 [15:11],
Геннадий Детинич
Взрывы сверхновых, слияния нейтронных звёзд и чёрных дыр порождают самые энергичные явления во Вселенной — гамма-всплески, которые на Земле замечают, лишь попав под их лучи. В октябре 2022 года произошло из ряда вон выходящее событие — ярчайший за всю историю наблюдений гамма-всплеск, названный за это BOAT. Всплеск ослепил датчики телескопов, но не помешал восстановлению данных, которые оказались сюрпризом для учёных — в них обнаружился спектр. В четверг 25 июля 2024 года одновременно в ведущих американском и китайском научных журналах вышли две независимые статьи, в которых сказано об удивительном открытии, вызвавшем «мурашки на коже» учёных. Впервые за многие годы регистрации гамма-всплесков в нём обнаружился спектр. Точнее, признаки спектров и раньше были в гамма-всплесках, но все они объяснялись помехами. В случае события BOAT (номер регистрации GRB 221009A) вероятность проявления помехи, а не спектра, оценивалась как один к 500 млн. Иначе говоря, есть все основания полагать, что в составе гамма-всплеска учёные впервые рассмотрели спектральные линии. Для понимания, спектр — это подноготная физики и химии процесса. По линиям поглощения или свечения можно многое узнать о явлении, что позволит с уверенностью говорить о происхождении того или иного гамма-всплеска. Пока учёные не готовы строить предположения о сути события BOAT или «ярчайшего за всё время» (Brightest Of All Time), но расшифровка и моделирование продолжатся, и это станет основой для работы по другим подобным явлениям. Можно подозревать, что значительный вклад в это удивительное открытие внесли китайские учёные и китайский орбитальный рентгеновский телескоп GECAM-C. В момент события BOAT все гамма-телескопы оказались ослеплены, включая ведущий инструмент NASA — «Ферми». По интенсивности всплеск BOAT в среднем оказался в 1000 раз ярче обычно регистрируемых всплесков. Датчики телескопов такое не вынесли, за исключением датчиков китайского GECAM-C, которые либо были частично отключены, либо настроены на меньшую чувствительность. Благодаря данным GECAM-C удалось восстановить данные «Ферми» и вычленить спектральные линии из сигнала. Согласно выводам международной группы учёных, спектральное излучение длилось около 40 секунд и достигло пиковой энергии около 12 МэВ, по сравнению с 2 или 3 МэВ для видимого света. Китайские учёные дали более развёрнутую характеристику спектральным составляющим вспышки, заявив об открытии линии гамма-излучения с энергией до 37 МэВ, что, как они заявляют, стало спектральной линией с самой высокой энергией, когда-либо излучавшейся небесными объектами во Вселенной. Кстати, в событии BOAT обнаружены признаки необычной физики. Интрига сохраняется. Интересно, что бы это могло быть? В центре нашей галактики обнаружена редчайшая чёрная дыра промежуточной массы
23.07.2024 [11:17],
Геннадий Детинич
Всего в 0,1 световом годе от центра Млечного Пути может находиться чёрная дыра промежуточной массы — существование таких объектов пока не доказано, а кандидатов можно пересчитать по пальцам одной руки. Между чёрными дырами звёздной массы и сверхбольшими существует пропасть, что делает необъяснимым обычную эволюцию чёрных дыр. Как и другие объекты во Вселенной, чёрные дыры должны питаться и расти постепенно, а не перескакивать из одного состояния в другое. Примерно четверть века назад в центре нашей галактики было открыто компактное звёздное скопление IRS 13. Оно с самого начала ставило учёных в тупик, а по мере совершенствования инструментов наблюдения становилось всё загадочнее и загадочнее. Сначала учёные думали, что это сверхмассивная звезда. Затем IRS 13 переквалифицировали в двойную звёздную систему. Потом сочли, что это так называемая звезда Вольфа–Райе. Новая работа астрономов из Кёльнского университета показала, что IRS 13 может быть небольшим звёздным скоплением с компактным источником массы внутри. Но во всём этом есть одна изюминка. Скопление IRS 13 расположено рядом с чёрной дырой Стрелец A* (Sgr A*) массой 4,3 млн солнечных масс, расположенной в центре Млечного Пути. Чёрная дыра Стрелец A* должна была повлиять на траекторию звёзд в скоплении IRS 13 и разорвать его. Однако этого не происходит, что заставило учёных заподозрить о существовании некоего «цементирующего» центра у скопления. Анализ движения звёзд в IRS 13 и моделирование показали, что в середине скопления может находиться компактный невидимый объект массой 30 тыс. солнечных. Поскольку в промежутке масс от 100 до 100 тыс. солнечных масс нет достаточно надёжно подтверждённых чёрных дыр, уверенное открытие объекта массой 30 тыс. солнечных масс обещает стать значимым событием в астрономии. Это может быть первая подтверждённая чёрная дыра промежуточной массы, которая гарантировано не могла появиться после взрыва сверхновой или от слияния двух ядер звёзд. Она должна была питаться и эволюционировать обычным образом, чтобы вырасти до измеряемой массы. Учёные попытались больше узнать о таинственном объекте в центре IRS 13 и обнаружили в месте предполагаемого размещения чёрной дыры рентгеновское излучение и облако ионизированного газа, вращающегося со скоростью 130 км/с, что стало ещё одним подтверждением обнаружения именно чёрной дыры. Поскольку одна работа не может служить надёжным доказательством удивительного открытия, наблюдения за объектом IRS 13 будут продолжены. Если там действительно окажется чёрная дыра, то она также будет считаться кандидатом для поглощения чёрной дырой Стрелец A*, а это ещё один шажок в сторону обычной эволюции чёрных дыр: они действительно питаются и растут. |