Сегодня 15 апреля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → астрономия
Быстрый переход

Недавно проснувшаяся чёрная дыра показала «дикий» аппетит, ошеломивший учёных

Сверхмассивная чёрная дыра в галактике SDSS1335+0728, расположенной в 300 миллионах световых лет от Земли, с недавних пор находится под непрерывным наблюдением учёных. Этот объект стал первой чёрной дырой, которая «проснулась» на глазах исследователей, что дало возможность следить за её активностью в реальном времени. Неожиданностью стала демонстрация «дикого» аппетита чёрной дыры — высочайшей скорости поглощения окружающего её вещества.

 Источник изображения: ESA

Чёрная дыра в процессе питания посторонними объектами (художественное представление). Источник изображения: ESA

Сверхмассивная чёрная дыра в центре галактики SDSS1335+0728 — она же квазар или активное галактическое ядро — проявила первую активность в декабре 2019 года. Тогда она начала постепенно поглощать окружающее вещество и испускать вспышки в мягком рентгеновском диапазоне.

Всё укладывалось в рамки существующих моделей, пока в феврале 2024 года объект не начал испускать вспышки в десять раз ярче и в десять раз продолжительнее среднестатистических уровней. Иными словами, интенсивность излучения и, соответственно, темпы падения вещества на аккреционный диск чёрной дыры в совокупности выросли на два порядка. Это стало беспрецедентным событием в истории наблюдений активных ядер галактик. Причём эта «дискотека» продолжается до сих пор, ставя учёных в тупик.

Как признаются исследователи, активность объекта в центре SDSS1335+0728 находится на грани допустимого в рамках теоретических моделей. Интенсивность «питания» чёрной дыры и механизмы, порождающие столь мощное и регулярное излучение в широком диапазоне волн — от инфракрасного до рентгеновского — выходят за рамки объяснимого. Подобный режим аккреции нельзя объяснить ни окружающим газом или пылью, ни приливным разрушением звезды, попавшей в гравитационное поле чёрной дыры. За событиями в SDSS1335+0728, вероятно, скрываются иные, пока не установленные процессы.

Учёные предполагают, что наблюдаемые явления могут быть в какой-то степени вызваны гравитационными волнами. Однако существующие наземные гравитационно-волновые обсерватории не способны фиксировать волны столь низкой частоты. Для этого в будущем потребуется создание космических гравитационно-волновых детекторов с базой длиной в сотни километров. Возможно, именно они помогут раскрыть тайны столь необычной активности сверхмассивных чёрных дыр.

Калибровочный снимок космического телескопа «Гершель» вскрыл подноготную Вселенной

Группа британских учёных создала самое глубокое изображение Вселенной в дальнем инфракрасном диапазоне, объединив в одном кадре 141 отдельное изображение в каждом из трёх цветовых каналов: синем, зелёном и красном. Это позволило открыть ранее невидимый новый класс тусклых галактик. Если такие «скрытые» галактики распространены повсеместно, это может объяснить целый ряд пока неразрешимых загадок Вселенной.

 Источник изображения: Chris Pearson

Тёмный участок неба оказался полон галактиками. Источник изображения: Chris Pearson

Вся информация была взята из архива космической обсерватории «Гершель» (Herschel), которую Европейское космическое агентство эксплуатировало с 2009 по 2013 год. Глубокое изображение Вселенной создано на основе калибровочных снимков камеры SPIRE этой обсерватории. Примерно раз в месяц камера, для проверки чувствительности, направлялась на один и тот же участок неба, где, как считалось, почти ничего нет. В результате за четыре года работы обсерватории было сделано 141 изображение в синем (250 мкм), зелёном (350 мкм) и красном (500 мкм) канале. Повторить эксперимент невозможно, поэтому главные открытия, возможно, ещё впереди.

На объединённом изображении проявились 2000 ранее невидимых в этом месте далёких галактик и групп галактик. Они расположились фактически сплошным ковром, сливаясь с фоном в случае самых тусклых объектов. Обнаружение такого количества нового класса слабосветящихся галактик становится ключом к более ясному пониманию эволюции звёзд, галактик и Вселенной. Например, сегодня астрономы не могут объяснить избыток инфракрасного света во Вселенной: энергии регистрируется намного больше, чем наблюдается светящихся объектов. Присутствие глубоко скрытых галактик способно объяснить эту загадку.

Для создания более полной картины мироздания, очевидно, необходимы новые наблюдения и, в частности, новое поколение космических телескопов для дальнего инфракрасного диапазона. Один из таких проектов рассматривается NASA — это обсерватория PRIMA стоимостью около $1 млрд с диаметром зеркала 1,8 м. Однако проект пока не утверждён и может уступить место какой-либо другой, более востребованной программе или инструменту.

Всполошивший учёных астероид 2024 YR4 прилетел к Земле из неожиданного места

На сайте arXiv.org появилась работа, в которой даётся первая всесторонняя оценка астероиду 2024 YR4, обнаруженному вблизи Земли 27 декабря 2024 года. Статья подготовлена для публикации в одном из самых престижных астрономических изданий — The Astrophysical Journal Letters. Астероид 2024 YR4 стал самой серьёзной угрозой для нашей планеты за всю историю наблюдений за околоземными объектами, поэтому вызвал небывалый интерес.

 Художественное представление астероида. Источник изображения: W. M. Keck Observatory/Adam Makarenko

Художественное представление астероида 2024 YR4. Источник изображения: W. M. Keck Observatory/Adam Makarenko

В процессе первого изучения объекта 2024 YR4 степень его потенциальной опасности для планеты повышалась с 1 % до 3 %. Поскольку размеры астероида могли достигать 90 метров, его падение на поверхность Земли уничтожило бы всё живое в радиусе до 50 км. Столкновение могло произойти 22 декабря 2032 года — именно в этот день астероид, согласно расчётам, мог опасно сблизиться с планетой вплоть до пересечения траекторий.

Наблюдения за астероидом 2024 YR4 велись с использованием множества наземных телескопов. В феврале к ним присоединился космический телескоп «Джеймс Уэбб». Именно он позволил более точно определить размеры объекта — от 53 до 67 метров. В опубликованной работе эти данные не представлены: авторы использовали телескопы обсерваторий W. M. Keck и Gemini South. Согласно их наблюдениям, размеры астероида составляют 30–65 метров, что близко к данным «Уэбба».

На основании оценки блеска астероида учёные пришли к выводу, что он имеет неправильную, сплюснутую форму и совершает полный оборот за 20 минут. Астероид напоминает собой хоккейную шайбу. Его форма указывает на состав и происхождение: исследователи считают, что 2024 YR4 относится к каменным, а не углеродным (рыхлым) объектам. Это важно, поскольку выбор метода отклонения астероида зависит от его структуры — таран рыхлого тела может оказаться неэффективным.

 Модели формы астероида 2024 YR4 на основании фотометрических измерений

Модель формы астероида 2024 YR4 на основании фотометрических измерений

Строение и состав астероида указали на его вероятное место происхождения, и оно удивило учёных. Такие объекты обычно формируются и находятся в главном поясе астероидов между орбитами Марса и Юпитера. Притяжение Юпитера, как правило, защищает Землю от подобных тел, удерживая их в пределах главного пояса. Однако астероиду 2024 YR4 удалось преодолеть эту гравитационную защиту, что вызвало тревогу как у учёных, так и у общественности.

К счастью, новые наблюдения позволяют отбросить угрозу от 2024 YR4 как несущественную, хотя шанс столкнуться у него с Луной достаточно высок и превышает 3 %. Но это только на руку земной науке. В случае удара по Луне можно будет провести ценнейший сейсмологический эксперимент по изучению её недр, а также на практике с высокой точностью оценить последствия астероидного удара по её поверхности.

Учёные ошибались в оценке длительности суток на Уране, показал телескоп «Хаббл»

Анализ данных наблюдений телескопа «Хаббл» за Ураном — седьмой планетой Солнечной системы — позволил с высокой точностью определить продолжительность суток на этой планете. Эта информация поможет планировать космические миссии к Урану и организовать наблюдение за ним. Однако наиболее ценной стала разработка методики дистанционного определения продолжительности суток на планетах, включая далёкие экзопланеты, что расширяет возможности для изучения иных миров.

 Уран вблизи. Источник изображений: NASA

Уран вблизи. Источник изображений: NASA

Впервые длительность суток на Уране была определена космическим зондом NASA «Вояджер-2» (Voyager 2) во время пролёта планеты в январе 1986 года. Это было сделано на основе анализа магнитного поля Урана и, как выяснилось позднее, с большой погрешностью. Тем не менее продолжительность суток тогда была установлена: 17 часов 14 минут и 24 секунды. Поскольку эта величина вызывала сомнения, учёные решили повторно проанализировать магнитное поле планеты — уже по данным наблюдений телескопа «Хаббл» за полярными сияниями на Уране.

 Архивные данные наблюдений «Хаббла» за полярными сияниями на Уране

Архивные данные наблюдений «Хаббла» за полярными сияниями на Уране

Исследователи использовали данные из архива «Хаббла» за период с 2011 по 2022 год. Они анализировали перемещения полярных сияний над планетой. Анализ и расчёты показали, что предыдущая оценка продолжительности суток была неточной: погрешность составила 28 секунд. Наиболее точное на сегодняшний день значение продолжительности суток на Уране — 17 часов 14 минут и 52 секунды. Применение аналогичной методики к экзопланетам позволит узнать продолжительность суток на мирах, расположенных за десятки и сотни световых лет от Земли. Это даст больше информации о планетах, куда человечество, возможно, никогда не доберётся.

«Джеймс Уэбб» обнаружил в ранней Вселенной неожиданно много умирающих галактик

Ожидалось, что в ранней Вселенной будут лишь молодые и активные галактики, но новые наблюдения это опровергли. Инфракрасная космическая обсерватория имени Джеймса Уэбба обнаружила в первый миллиард лет после Большого взрыва неожиданно много умирающих галактик, в которых перестали рождаться новые звёзды. Разница между теорией и наблюдениями потрясла учёных, что вынуждает пересмотреть представления об эволюции Вселенной.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Задачей поиска умирающих или спящих галактик (quiescent galaxies), в частности, занимались учёные в рамках европейской широкомасштабной программы RUBIES («Красные неизвестные: яркий инфракрасный внегалактический обзор»), которая опиралась на данные прибора NIRSpec телескопа «Джеймс Уэбб». Программа позволила собрать спектроскопические наблюдения нескольких тысяч галактик, включая сотни недавно открытых «Уэббом» объектов.

Анализ спектров показал, что в первый миллиард лет после Большого взрыва фактическое количество умирающих галактик было в 100 раз больше теоретических предсказаний, а это повод задуматься о верности существующих теорий об эволюции звёзд, галактик и Вселенной. Судя по всему, земная наука неверно оценивает влияние звёздного ветра и активности чёрных дыр на процессы звездообразования в первых галактиках. Всё это способно намного раньше остановить рождение новых звёзд и привести галактики к угасанию.

В данных «Уэбба» сотрудники Женевского университета (UNIGE), возглавляющие программу RUBIES, обнаружили рекордсменку — самую древнюю из угасших галактик. Это объект RUBIES-UDS-QG-z7, который выглядит умершим уже через 700 млн лет после Большого взрыва (красное смещение 7,29). Моделирование на основании полученных «Уэббом» данных показало, что галактика сформировала звёздную массу свыше 10 млрд солнечных масс в течение первых 600 млн лет после Большого взрыва и затем быстро прекратила процесс звездообразования.

 Спектр далёкой угасшей галактики — по центру изображения. Источник изображения: NASA

Спектр далёкой угасшей галактики — по центру изображения. Источник изображения: NASA

Сделанное открытие наводит на ещё одно важное заключение. Галактика RUBIES-UDS-QG-z7 имеет небольшой размер — всего около 650 световых лет — при этом сохраняет высокую плотность звёздной массы, сопоставимую с центральными областями современных галактик. Учёные предполагают, что угасшие ещё в ранней Вселенной галактики могли стать ядрами массивных галактик последующих эпох, включая нашу. Это ещё один повод пересмотреть представления о настоящей эволюции Вселенной, которую земная наука, похоже, до сих пор понимала не совсем верно.

Новая космическая обсерватория SPHEREx прислала первые снимки — их качество удовлетворило NASA

12 марта 2025 года на солнечно-синхронную полярную орбиту Земли была выведена новая обсерватория NASA — SPHEREx. Это почти «родственник» телескопа «Джеймс Уэбб», поскольку SPHEREx будет работать в ближнем инфракрасном диапазоне. Более того, новая обсерватория снимет Вселенную одновременно на 102 длинах инфракрасных волн, создав наиболее детальную инфракрасную карту Млечного Пути.

 Художественное представление Источник изображения: NASA

Художественное представление SPHEREx. Источник изображения: NASA

До конца апреля, а возможно, и дольше, обсерватория SPHEREx будет охлаждать свои детекторы, которые смогут улавливать свет в «тепловом» инфракрасном диапазоне. Каждый из шести детекторов обсерватории чувствителен к 17 длинам волн, вместе они фиксируют фотоны на 102 частотах невидимого для человеческого глаза света. Общая ширина кадра достигает 20 полных лун. Первый полный обзор неба SPHEREx создаст уже за первые шесть месяцев работы. Всего обсерватория должна проработать 25 месяцев.

Первые тестовые снимки обсерватория SPHEREx прислала в конце марта. Их качество говорит о том, что инструменты способны фокусировать далёкий свет, создавая чёткие изображения. Нюанс в том, что фокусировка могла быть настроена только в земных условиях, а после запуска в космос инженерам пришлось работать с тем, что получилось — без права на ошибку. NASA заявляет, что результат оправдал ожидания.

Обсерватория SPHEREx также будет искать следы воды во Вселенной и органику в виде ряда базовых соединений углерода. Перед ней также стоит задача изучения эволюции галактик — для этого она соберёт данные о более чем 450 млн объектов. Ожидается, что к концу апреля SPHEREx сможет делать до 600 снимков неба в сутки. Благодаря широкоугольной камере этот инструмент может стать помощником «Уэбба», подбирая для него наиболее интересные цели.

«Уэбб» засёк невозможный для ранней галактики свет, чем поставил учёных в тупик

Космическая обсерватория «Джеймс Уэбб» помогла сделать новое и совершенно неожиданное открытие — она зафиксировала свет от галактики в ранней Вселенной, который, согласно всем известным нам законам, не должен был попасть на её датчики. Это открытие позволяет по-новому взглянуть на ранние этапы эволюции звёзд и галактик во Вселенной, что должно оказать критическое влияние на научное понимание этих процессов.

 Источник изображений: NASA

Источник изображений: NASA

Опубликованная в журнале Nature работа посвящена анализу галактики JADES-GS-z13-1. Этот объект был обнаружен «Уэббом» через 330 млн лет после Большого взрыва. Это было время, когда видимый свет (от первых звёзд и галактик) ещё с трудом распространялся по Вселенной. До появления прозрачной Вселенной с чрезвычайно разреженным молекулярным водородом оставалось ещё около 700 млн лет. Зафиксированный «Уэббом» сигнал от галактики JADES-GS-z13-1 был бы характерен для более позднего периода эволюции Вселенной, и его появление, а также сам факт обнаружения на столь раннем этапе мироздания поставили учёных в тупик.

Речь идёт о фиксации линии Лайман-альфа у галактики JADES-GS-z13-1 — это спектральная линия ультрафиолетового излучения водорода с длиной волны 121,6 нанометра. Она возникает, когда электрон в атоме водорода переходит с первого возбуждённого уровня на основной, испуская фотон. В ранней Вселенной ультрафиолетовые фотоны этой линии поглощались нейтральным водородом, что создавало характерные следы в спектре излучения далёких объектов. Учёные не ожидали увидеть эту линию у галактики, существовавшей через 330 млн лет после Большого взрыва. Она могла быть обнаружена лишь в пузыре прозрачности диаметром 650 тыс. световых лет. Однако «Уэбб» зафиксировал всплеск этого света спустя 13,4 млрд лет! Это стало загадкой для исследователей, у которых пока нет однозначного ответа на этот феномен.

Существует два возможных объяснения наблюдаемого явления. Во-первых, оно может быть следствием чрезвычайной активности чёрной дыры в галактике. Во-вторых, в далёкой галактике может находиться аномально большое количество сверхмассивных звёзд, каждая из которых в 100–300 раз превышает массу Солнца. Однако обе гипотезы пока не имеют достаточных подтверждений, чтобы одна из них могла считаться окончательной. Учёные продолжат наблюдение за этой далёкой галактикой и надеются открыть другие подобные объекты. Это станет неоценимым вкладом в понимание процессов, происходивших в ранней Вселенной, откуда внятные сигналы доходят до нас с большим трудом.

Центр нашей галактики — это настоящая «мясорубка звёзд» и учёные объяснили почему

Центр нашей галактики, Млечного Пути, — интересное во всех смыслах место. Во-первых, там находится сверхмассивная чёрная дыра Стрелец A* (Sgr A*). Во-вторых, там сосредоточено столько всевозможных объектов — от пыли и газа до звёзд и чёрных дыр, — что учёные порой теряются в этом многообразии. И хотя всё это скрыто от нас пеленой межзвёздного вещества, сквозь которую непросто пробраться, модели и статистика помогают делать удивительные открытия.

 Источник изображения: Mark Garlick/Science Photo Library

Источник изображения: Mark Garlick/Science Photo Library

Исследование центра Млечного Пути в инфракрасном и радиодиапазоне позволяет находить там звёзды даже за плотными облаками пыли. Гораздо сложнее искать в этом «саване» чёрные дыры звёздной массы. Согласно моделям формирования звёзд, в ближайшей к сверхмассивной чёрной дыре Стрелец A* области может находиться около 300 чёрных дыр звёздной массы. Как известно, при гибели достаточно крупных звёзд их ядра коллапсируют и превращают останки звезды в чёрную дыру. Это поддаётся учёту и статистике, что позволяет примерно оценить количество чёрных дыр вблизи центра галактики.

Новая работа идёт дальше и утверждает, что чёрных дыр звёздной массы вблизи центра Млечного Пути гораздо больше — не сотни, а сотни миллионов и даже миллиарды. Учёные называют центр нашей галактики настоящей «мясорубкой звёзд» и «роем чёрных дыр звёздной массы».

Основная идея этой новой модели заключается в том, что центральная область вблизи Стрельца A* по сравнению с остальной частью галактики чрезвычайно богата газом и пылью. Это означает, что там легко могут формироваться массивные звёзды O- и B-типа. Такие звёзды живут очень недолго и умирают как сверхновые. Их ядра коллапсируют в чёрные дыры, а оставшееся вещество рассеивается и может быть использовано для рождения новых звёзд. Со временем, по мере появления и гибели звёзд в этом регионе, чёрные дыры будут неизбежно накапливаться.

В конце концов, в этой области скопится столько чёрных дыр, что столкновения между ними и звёздами станут обычным явлением. Чёрные дыры будут постепенно разрывать звёзды на части, перемешивая вещество в этой области и ускоряя формирование новых звёзд и чёрных дыр. Авторы исследования назвали эту модель «звездодробилкой».

Если эта гипотеза верна, то в центре нашей галактики могут находиться миллионы или даже миллиарды чёрных дыр звёздной массы на один кубический парсек (парсек равен 3,26 светового года). Любая звезда, попавшая в эту область, окажется в зоне риска. Чтобы подтвердить свою концепцию, учёные обратились к статистическому анализу.

При заданной плотности чёрных дыр в регионе можно вычислить среднее время, по истечении которого произойдёт столкновение звезды с чёрной дырой. Время столкновения зависит от количества чёрных дыр и размера звезды: чем больше чёрных дыр, тем короче этот срок, и чем массивнее звезда, тем выше вероятность столкновения.

Проведя расчёты и сравнив их с наблюдениями, учёные выяснили, что в центральном регионе галактики меньше всего звёзд O-типа и больше B-типа. Оба этих типа представляют собой массивные, но короткоживущие звёзды. Они хорошо заметны благодаря своим горячим оболочкам, что делает возможным их статистический анализ. В итоге расчёты показали, что в указанной области на один кубический парсек приходится около 100 миллионов чёрных дыр звёздной массы. Это невероятно высокая плотность, которая радикально меняет наше представление о процессах в центре галактики.

Косвенно эти расчёты подтверждаются наблюдениями более чем десятка звёзд-беглянок, которые вырываются из центра галактики со скоростями, превышающими обычные внутригалактические значения. Такие колоссальные скорости звёзды могли набрать только при близком взаимодействии с чёрными дырами, разогнавшись в их гравитационных колодцах до значений, позволяющих покинуть Млечный Путь. Число таких звёзд слишком велико, что указывает на высокую плотность чёрных дыр в этом регионе.

Учёные открыли чёрные дыры «на максималках» — сегодня таких уже нет

Год назад космический телескоп «Джеймс Уэбб» открыл в ранней Вселенной новые объекты, которые назвали «маленькие красные точки» (Little Red Dots, LRD). На датчиках обсерватории они буквально выглядели как точки с предельно большим красным смещением. С тех пор учёные выдвинули ряд гипотез о природе этих объектов, что позволяет находить объяснение их происхождению. Новая работа проливает больше света на эту загадку ранней Вселенной.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Первым и во многом верным предположением стало то, что «маленькие красные точки» — это активные ядра галактик (квазары). Особенность LRD заключалась в том, что, в отличие от квазаров, они очень слабо излучали в радиодиапазоне и рентгеновском спектре. Сверхмассивные чёрные дыры, находящиеся внутри далёких галактик, так себя не ведут — они буквально пылают в рентгеновском диапазоне.

Одна из вещей, которую учёные быстро выяснили об этих объектах, — их спектры сильно расширены из-за эффекта Доплера. Это указывает на то, что газ, излучающий свет, вращается вокруг центральной области с огромной скоростью — более 1000 километров в секунду.

Для углублённого изучения «маленьких красных точек» учёные воспользовались приборами «Уэбба» и собрали спектры высокого разрешения для 12 таких объектов. Затем полученные данные сравнили с моделями сверхмассивных чёрных дыр. Анализ показал, что всё может происходить внутри молодого галактического облака. Внутри галактики с очень большой скоростью должен вращаться диск аккреции, окружающий чёрную дыру. При этом галактическое облако должно быть сильно ионизированным. В таком случае окружающее галактику плотное облако свободных электронов действительно поглощало бы большую часть рентгеновского и радиоизлучения.

С другой стороны, чтобы LRD достигли наблюдаемой светимости в инфракрасном диапазоне, мощность излучения чёрной дыры должна быть на максимальном уровне. Наблюдения показывают, что эта мощность близка к пределу Эддингтона, после которого чёрная дыра своим «светом» просто разогнала бы вещество вокруг себя и галактики, включая ионизированный газ, маскирующий рентгеновское и радиоизлучение.

 Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

Некоторые из открытых галактик «маленьких красных точек». Источник изображения: NASA

Всё это говорит о том, что «маленькие красные точки» — это очень молодые сверхмассивные чёрные дыры, которые быстро растут и достигают зрелости. Это подтверждается оценками их массы, согласно которым она составляет от 10 000 до 1 000 000 солнечных масс, что намного меньше, чем у типичных сверхмассивных чёрных дыр. Эта модель также помогает объяснить, почему мы не видим более близких LRD с меньшим красным смещением. В процессе своей бурной эволюции, работая на пределе мощности, они быстро рассеивают окружающее их ионизированное облако и превращаются в типичные квазары, которых во Вселенной предостаточно и к которым учёные давно привыкли.

«Джеймс Уэбб» прислал потрясающий снимок «космического торнадо» — в одном кадре слились будущее и прошлое

Космическая обсерватория им. Джеймса Уэбба вновь продемонстрировала свои выдающиеся возможности передового инструмента. С её помощью получен самый детализированный снимок новой области звёздообразования, наполненный динамикой движения облаков пыли и газа под воздействием излучения новорождённых светил. Совершенно случайно в кадр попала древняя галактика, создав эффект «глаза торнадо» и символически объединив прошлое и будущее — старые звёзды с молодыми.

 Источник изображения: NASA

Источник изображения: NASA

Телескоп «Уэбб» запечатлел область Herbig-Haro 49/50 в нашей галактике. В нижнем левом углу изображения находится новорождённая звезда Cederblad 110 IRS4 (CED 110 IRS4). Ранее эту область снимал телескоп NASA «Спитцер», однако его изображение содержало мало деталей, а также демонстрировало «размытый объект» на кончике «торнадо». Снимок «Уэбба» в ближнем и среднем инфракрасном диапазоне позволил рассмотреть множество важных деталей в структуре облаков пыли и газа. При этом «размытый объект» оказался спиральной галактикой, удачно попавшей в кадр в необычной перспективе.

 Слева изображение «Спитцера», справа — «Уэбба»

Слева изображение «Спитцера», справа — «Уэбба»

«”Уэбб” запечатлел эти два не связанных между собой объекта в удачный момент, — пояснила команда телескопа. — На протяжении тысяч лет край HH 49/50 будет расширяться и в конечном итоге закроет собой далёкую галактику».

На полученном снимке оранжевым цветом обозначен молекулярный водород, а красным — монооксид углерода. Эти газы нагреваются под воздействием энергии струй соседней новорождённой звезды, приводя облака в движение. Кажущийся хаос подчиняется электромагнитному полю звезды и её излучению — всё это позволяет учёным наблюдать процесс, который во многом напоминает рождение нашей Солнечной системы.

Учёные засекли удивительно высокую концентрацию кислорода в самой древней из найденных галактик во Вселенной

Наблюдения последних лет часто ставят астрономов в тупик, доказывая ошибочность понимания эволюции ранней Вселенной. Звёзды и галактики в первый миллиард лет после Большого взрыва развивались неожиданно быстро, что невозможно объяснить принятыми в космологии моделями. В этот ряд попало и новое открытие — неожиданно большая концентрация кислорода в самой древней из найденных во Вселенной галактик.

 Художественное представление. Источник изображения: ESO

Художественное представление галактики JADES-GS-z14-0. Источник изображения: ESO

Галактика JADES-GS-z14-0 была открыта космической инфракрасной обсерваторией «Джеймс Уэбб». К лету 2024 года открытие было подтверждено по спектральным данным. Оказалось, что этот неожиданно крупный и яркий объект обнаружен всего через 290 млн лет после Большого взрыва. Это само по себе вызвало недоумение, поскольку современные модели не предполагают такого быстрого развития звёзд и галактик. Очевидно, что земная наука что-то упускает в оценке эволюции Вселенной.

Галактика JADES-GS-z14-0 не могла не вызвать растущего интереса учёных — это как обнаружить подростка в ясельной группе, поясняют исследователи. Поэтому для углублённого анализа химического состава этой «галактики-переростка» был использован радиотелескоп Atacama Large Millimeter/submillimeter Array в Чили. Наблюдения в радиоволновом диапазоне позволяют уловить спектры излучения холодных атомов, в отличие от инфракрасного и видимого излучения, которые фиксируют значительно более высокие уровни энергии.

Сигналы, полученные от галактики JADES-GS-z14-0, ошеломили исследователей. Уровень молекулярного кислорода в ней в десять раз превысил допустимый в моделях эволюции звёзд. Кислород и другие элементы, тяжелее водорода и гелия, образуются в недрах звёзд в результате ядерного синтеза. В межзвёздное пространство они попадают после смерти таких звёзд во время взрывов сверхновых. Иными словами, это крайне медленный процесс. Поэтому запредельный уровень кислорода в JADES-GS-z14-0 всего через 290 млн лет после Большого взрыва остаётся загадкой, на которую у учёных пока нет ответа. Для его поиска потребуются новые масштабные наблюдения.

Учёные показали как выглядела Вселенная до появления первых звёзд

Учёные завершили обработку данных, собранных за последние годы наблюдений за небом Атакамским космологическим телескопом (ACT) в Чили. Этот телескоп пришёл на смену космической обсерватории «Планк», первой создавшей карту реликтового излучения Вселенной. Новые изображения повысили чёткость картины распределения плазмы и газа в «детские» годы развития Вселенной — примерно через 380 тыс. лет после Большого взрыва.

 Источник изображений: ACT Collaboration

Источник изображений: ACT Collaboration

«Мы видим “первые шаги” Вселенной на пути к созданию самых ранних звёзд и галактик. И это не просто свет и тьма — это поляризация света в высоком разрешении», — пояснила директор телескопа ACT и профессор Принстонского университета Сюзанна Стэггс (Suzanne Staggs).

Определение поляризации реликтового микроволнового излучения позволяет с высокой детализацией изучить распространение ионизированного водорода и гелия в первые минуты жизни Вселенной по космологическим меркам. Из этих веществ позже сформировались первые звёзды, а затем и галактики. Полученная информация также даёт представление о распределении тёмной материи, которая собирала видимое вещество вокруг своих сгустков и, фактически, способствовала формированию всего, что мы наблюдаем.

Отдельно учёные подчеркнули сохранение так называемой напряжённости Хаббла — расхождения в измерении скорости расширения Вселенной по реликтовому излучению (в ранней Вселенной) и по наблюдениям звёзд и галактик в наши дни. Это расхождение не исчезло, а новые данные ACT в реликтовом микроволновом диапазоне в целом соответствуют показаниям, полученным ранее с «Планка».

Атакамский космологический телескоп был построен в 2007 году на вершине горы Серро-Токо в чилийской пустыне Атакама и завершил работу в 2022 году. Представленные недавно данные относятся к последним годам его наблюдений в период с 2017 по 2022 годы. Анализ полученной информации продлится много лет, предоставляя учёным обширный материал для новых открытий.

Сезон охоты за тёмной материей и не только открыт — опубликован первый пакет данных с телескопа «Евклид»

18 марта 2025 года Европейское космическое агентство опубликовало первый пакет данных наблюдений космической обсерватории «Евклид», получившей прозвище охотника за тёмной материей. Данные включают три глубоких обзора неба, проведённые за первую неделю наблюдений, общей площадью 63,1 квадратного градуса. Учёные назвали их «золотой жилой» для начала охоты за тайнами Вселенной, включая главные — поиск тёмной материи и разгадку тайны тёмной энергии.

 Источник изображения: ESA

Жёлтые мазки на данных по Млечном Пути — это первые глубокие обзоры «Евклида». Ниже фото обзоров. Источник изображения: ESA

Запущенный в космос в июле 2023 года, «Евклид» (Euclid) начал научную работу в феврале 2024 года. Первая публикация включила данные, собранные за первую неделю наблюдений: это три глубоких обзора небольших участков неба общей площадью 63,1 квадратного градуса. Это всего 0,4 % от будущего полного обзора, который охватит треть всего неба и продлится до 2030 года. Однако даже этих, казалось бы, скромных данных хватит на множество серьёзных открытий в астрономии.

Глубокие обзоры трёх первых участков неба — двух в южной части нашей галактики и одного в северной — вобрали в себя 380 000 классифицированных галактик, 500 новых кандидатов в гравитационные линзы и множество других космических объектов, таких как скопления галактик и активные ядра галактик.

Впервые для поиска наиболее перспективных объектов для дальнейшего наблюдения был использован искусственный интеллект, что резко сократило время отбора кандидатов и, соответственно, время проведения научных работ. Отобранные ИИ кандидаты затем передавались гражданским учёным — волонтёрам, которые на добровольной основе классифицировали объекты, экономя тем самым время и ресурсы профессиональных исследователей.

Первые элементы будущего атласа «Евклида» уже послужили основой для публикации десятков научных работ, включая исследование, посвящённое обнаружению идеального кольца Эйнштейна. Это явление возникает в результате гравитационного линзирования, когда удалённый объект и массивная галактика или скопление галактик, действующие как гравитационная линза, находятся на одной линии с наблюдателем (в данном случае с «Евклидом»).

«Евклид» стал первым космическим телескопом, поставившим обнаружение гравитационных линз на поток. Почти все из 500 найденных им гравитационных линз оказались новыми. К концу наблюдений ожидается, что обсерватория обнаружит 100 000 гравитационных линз — в 100 раз больше, чем известно сегодня.

Обсерватория заглядывает в глубины Вселенной на 10,5 млрд лет назад во времени. На всей этой дистанции она выявляет особенности строения галактик. Форма или морфология галактик — расположение и вид рукавов, типы скоплений звёзд и другие детали — позволяют оценить распределение тёмной материи вокруг каждой из них. В то же время скопления и расположение галактик в системе космической паутины определяются внешним влиянием тёмной материи.

Оба этих фактора — внутренний и внешний — формируют вид галактик и их взаимное размещение. Сегодня мы не можем с уверенностью сказать, что такое тёмная материя. Однако скрупулёзно собранные «Евклидом» данные обещают помочь в разгадке этой тайны. Невидимое проявится через его глобальное воздействие на видимое вещество.

 Фрагмент одного из участков с увеличением в 70 раз

Фрагмент одного из участков с увеличением в 70 раз

Похожая ситуация складывается и с тёмной энергией. Какая-то сила заставляет несвязанные гравитацией галактики разлетаться друг от друга с ускорением. Что именно их расталкивает — остаётся загадкой. «Евклид» также поможет установить самые строгие ограничения на эту невидимую силу, создав наиболее точный набор данных о множестве галактик на огромной глубине.

 Пример ряда классифицированных галактик из первого обзора

Пример ряда классифицированных галактик из первого обзора

Работа с первыми данными обсерватории уже началась. В 2026 году ожидается публикация отчёта за первый год работы «Евклида», который включит 2 Пбайт данных. Сегодняшний обзор на этом фоне может показаться скромным — всего 35 Тбайт, но это информация лишь за одну неделю наблюдений. Над каждым из уже пройденных участков неба «Евклид» пройдёт от 30 до 50 раз, каждый раз повышая разрешение и улучшая качество снимков. К 2030 году это будет самый полный и подробный каталог галактик, равных которому нет и, вероятно, ещё долго не будет.

У Сатурна обнаружили 128 новых лун

Юпитер выбыл из гонки с Сатурном за звание самого богатого на луны небесного тела Солнечной системы. Последние наблюдения позволили обнаружить у Сатурна сразу 128 новых спутников, что довело общее число лун у этой планеты-гиганта до 274 штук. У Юпитера обнаружено всего 95 спутников или в три раза меньше, что не оставляет ему шансов преодолеть образовавшийся разрыв.

 Сатурн и его ближайшие крупные спутники. Источник изображения: NASA

Сатурн и его ближайшие крупные спутники. Источник изображения: NASA

Первый намёк на существование множества ещё неоткрытых спутников Сатурна появился в период с 2019 по 2021 год, когда рядом с ним было обнаружено 62 новых объекта. В то время также были замечены другие мелкие тела, которые на тот момент не удалось идентифицировать.

«Зная, что это, вероятно, спутники и что, скорее всего, их ещё больше, мы в 2023 году на протяжении трёх месяцев изучали одни и те же участки неба, — пояснил астроном Эдвард Эштон (Edward Ashton) из ведущего научно-исследовательского института Тайваня Academia Sinica. — В результате мы обнаружили 128 новых спутников. Судя по нашим прогнозам, я не думаю, что Юпитер когда-нибудь сможет догнать Сатурн в этом».

Следует отметить, что практически все новые спутники Сатурна — это вовсе не классические луны наподобие земной. Это небольшие небесные тела неправильной формы, имеющие в поперечнике всего несколько километров. По мнению учёных, изначально они представляли собой небольшую группу объектов, захваченных гравитацией Сатурна в ранний период существования Солнечной системы. Впоследствии серия столкновений превратила их в мелкие обломки, что и привело к преобладанию небольших каменистых тел, которые зафиксировали астрономы.

Эти катастрофические столкновения произошли относительно недавно по космическим меркам — всего 100 млн лет назад. На это, например, указывает ранее открытая скандинавская группа спутников Сатурна. Они уже изучены с этой точки зрения: также имеют небольшие размеры, неправильную форму и движутся по вытянутым орбитам, за что их относят к категории нерегулярных спутников.

Более подробную информацию о некоторых новых спутниках можно найти на сайте препринтов arXiv, где уже опубликована соответствующая статья.

Астрономы приблизились к обнаружению самых первых звёзд во Вселенной

Было время, когда ещё не было звёзд. Вскоре после Большого взрыва в бесконечном море водорода и гелия, из-за чудовищной плотности газа, стали появляться первые светила. Эти звёзды назвали населением III (Population III). Их ещё никто не видел, но новые инструменты, в частности «Джеймс Уэбб», дают надежду обнаружить такие объекты на заре Вселенной. Недавно астрономы приблизились к этому, открыв лучшего на сегодняшний день кандидата среди звёзд населения III.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Считается, что первые звёзды во Вселенной, или звёзды населения III, были очень массивными — намного больше современных звёзд-гигантов. А чем больше звезда, тем быстрее она сгорает и разбрасывает останки по пространству, успевая синтезировать в недрах более тяжёлые элементы, чем первоначальные водород и гелий. Именно поэтому мы не видим первых звёзд — их век был мимолётным, но они оставили следы своего пребывания в виде определённых химических элементов.

Большая международная группа учёных под руководством Сейджи Фудзимото (Seiji Fujimoto) из Техасского университета в Остине (University of Texas at Austin) направила в The Astrophysical Journal статью, которую также выложила в свободный доступ на сайт препринтов arXiv. В работе исследователи рассказали о перспективном методе поиска первых звёзд и об обнаружении лучшей на сегодняшний день галактики-кандидата, вероятно содержащей звёзды населения III.

Эта галактика, получившая название GLIMPSE-16403, пока не является доказанным носителем звёзд населения III. Однако само появление такого кандидата говорит о том, что обнаружение первых звёзд во Вселенной — лишь вопрос времени.

«Эта работа прокладывает чёткий путь к открытию первых галактик населения III, — пишут исследователи. — Какова бы ни была судьба нынешних кандидатов, методы, разработанные в этом исследовании, позволят искать галактики населения III в эпоху JWST [обсерватории "Джеймс Уэбб"]».

Фудзимото и его коллеги решили ускорить поиск, сосредоточив внимание на небольших участках неба в поисках химических «отпечатков» первых звёзд. Учёные сосредоточились на галактиках с мощными спектрами излучения водорода и гелия при минимальном содержании других элементов. В результате они нашли двух кандидатов. Один оказался ненадёжным, но другой, GLIMPSE-16403, появившийся примерно через 825 млн лет после Большого взрыва, соответствовал всем критериям, определённым для галактик населения III.

Это открытие делает GLIMPSE-16403 лучшим кандидатом для поиска звёзд, которые зажгли первый свет во Вселенной. Чтобы определить природу звёзд в GLIMPSE-16403, потребуется дополнительная работа, которая может оказаться непростой: нужен детальный спектральный анализ, а его трудно получить на столь огромном расстоянии в пространстве-времени. Тем не менее, это невероятно захватывающее открытие, которое делает обнаружение звёзд населения III, как представляется, неизбежным.


window-new
Soft
Hard
Тренды 🔥
Представлена обновлённая платформа «Яндекс Авто» с расширенными возможностями «Алисы» 21 мин.
«Яндекс» научил «Алису» рассуждать, работать с файлами, говорить по-английски, изучать мир и заниматься с детьми 2 ч.
В открытый доступ попали первые скриншоты The Elder Scrolls IV: Oblivion Remastered — официального ремейка культовой RPG от Bethesda 2 ч.
Япония предписала Google прекратить навязывание своих приложений производителям смартфонов 4 ч.
Obsidian рассказала о широте ролевых возможностей в The Outer Worlds 2 — игроки смогут отыгрывать серийного убийцу и не только 5 ч.
Датамайнер рассказала о самом большом неиспользованном боссе в играх FromSoftware — он мог появиться в Sekiro: Shadows Die Twice 5 ч.
В деле об отделении Instagram и WhatsApp от Meta появилась веская улика — компрометирующее письмо Цукерберга от 2012 года 5 ч.
ИИ-модели Gemini позволили анализировать снимки в «Google Фото», но пока не у всех пользователей 5 ч.
«Абсолютно завораживающий опыт»: эксперт Digital Foundry протестировал Cyberpunk 2077 на Nintendo Switch 2 6 ч.
К Apple подали ещё два иска за невыполненные обещания по ИИ-функциям Apple Intelligence 7 ч.
Palit представила GeForce RTX 5060 Ti и RTX 5060 в версиях Infinity 3 и Dual — последняя выделяется компактностью 21 мин.
«Рикор» представила Rikor Pro 7 — лёгкий и мощный ноутбук для бизнеса 2 ч.
Учёные МФТИ построили литограф для создания 3D-микроструктур с элементами размером 150 нм 2 ч.
«Яндекс» представила первую в России портативную умную колонку — «Станцию Стрит» с «Алисой» 2 ч.
«Яндекс» представила свою первую умную IP-камеру для дома 2 ч.
США призвали Европу сделать выбор между американскими и китайскими технологиями связи 2 ч.
ИБП Google Cloud стали причиной… шестичасового перебоя в электроснабжении одного из облачных регионов 3 ч.
TSMC решила выпускать прямоугольные чипы на квадратных кремниевых пластинах вместо круглых 4 ч.
Caviar представила OVI 8 — спецверсию iPhone в честь Александра Овечкина за 650 тыс. рублей 4 ч.
МТС придумала, как сэкономить на развёртывании сетей 5G 4 ч.