Сегодня 23 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Фото и видео

Тенденции в цифровой фотографии. Часть 3 (ПЗС-матрицы)

⇣ Содержание

Чувствительность

Одной из важнейших характеристик регистрирующего устройства, будь то фотоплёнка или ПЗС-матрица, является чувствительность — способность определенным образом реагировать на оптическое излучение. Чем выше чувствительность, тем меньшее количество света требуется для реакции регистрирующего устройства. Для обозначения чувствительности применялись различные величины (DIN ,ASA), однако в конечном итоге прижилась практика обозначать этот параметр в единицах ISO (International Standards Organization— Международная организация стандартов).

Для отдельного ПЗС-элемента под реакцией на свет следует понимать генерацию заряда. Очевидно, что чувствительность ПЗС-матрицы складывается из чувствительности всех её пикселов и в целом зависит от двух параметров.

Первый параметр — интегральная чувствительность, представляющий собой отношение величины фототока (в миллиамперах) к световому потоку (в люменах) от источника излучения, спектральный состав которого соответствует вольфрамовой лампе накаливания. Этот параметр позволяет оценить чувствительность сенсора в целом.

Второй параметр — монохроматическая чувствительность, то есть отношение величины фототока (в миллиамперах) к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны. Набор всех значений монохроматической чувствительности для интересующей части спектра составляет спектральную чувствительность — зависимость чувствительности от длины волны света. Таким образом, спектральная чувствительность показывает возможности сенсора по регистрации оттенков определённого цвета.

Понятно, что единицы измерения как интегральной, так и монохромной чувствительности отличаются от популярных в фототехнике обозначений. Именно поэтому производители цифровой фототехники в характеристиках изделия указывают эквивалентную чувствительность ПЗС-матрицы в единицах ISO. А для того, чтобы определить эквивалентную чувствительность, производителю достаточно знать освещённость объекта съёмки, диафрагму и выдержку, и использовать пару формул. Согласно первой, экспозиционное число вычисляется как log 2(L *S /C), где L — освещённость, S — чувствительность, а C — экспонометрическая константа. Вторая формула определяет экспозиционное число равным 2*log 2K - log 2t ., где K — диафрагменное число, а t —выдержка. Нетрудно вывести формулу, позволяющую при известных L , C , K и t вычислить, чему равняется S .

Чувствительность матрицы является интегральной величиной, зависящей от чувствительности каждого ПЗС-элемента. Ну а чувствительность пиксела матрицы зависит, во-первых, от «подставленной под дождь фотонов» площади светочувствительной области (fill factor), а во-вторых, от квантовой эффективности (quantum efficiency), то есть отношения числа зарегистрированных электронов к числу упавших на поверхность сенсора фотонов.

В свою очередь, на квантовую эффективность влияет ряд других параметров. Во-первых, это коэффициент отражения — величина, отображающую долю тех фотонов, которые «отрикошетируют» от поверхности сенсора. При возрастании коэффициента отражения доля фотонов, участвующих во внутреннем фотоэффекте, уменьшается.

Не отражённые от поверхности сенсора фотоны поглотятся, образуя носители заряда, однако часть из них «застрянет» у поверхности, а часть проникнет слишком глубоко в материал ПЗС-элемента. Очевидно, что в обоих случаях они не примут никакого участия в процессе формирования фототока. «Проникающая способность» фотонов в полупроводник, именуемая коэффициентом поглощения, зависит как от материала полупроводника, так и от длины волны падающего света — «длинноволновые» частицы проникают гораздо глубже «коротковолновых». Разрабатывая ПЗС-элемент, необходимо для фотонов с длиной волны, соответствующей видимому излучению, добиться такого коэффициента поглощения, чтобы внутренний фотоэффект происходил вблизи потенциальной ямы, повышая тем самым шанс для электрона попасть в неё.

Нередко вместо квантовой эффективности используют термин «квантовый выход» (quantum yield), но в действительности данный параметр отображает количество носителей заряда, высвобождаемых при поглощении одного фотона. Разумеется, при внутреннем фотоэффекте основная масса носителей заряда всё же попадает в потенциальную яму ПЗС-элемента, однако определённая часть электронов (или дырок) избегает «ловушки». В числителе формулы, описывающей квантовую эффективность, оказывается именно то количество носителей заряда, которое попало в потенциальную яму.

Важной характеристикой ПЗС-матрицы является порог чувствительности — параметр регистрирующего свет устройства, характеризующий минимальную величину светового сигнала, который может быть зарегистрирован. Чем меньше этот сигнал, тем выше порог чувствительности. Главным фактором, ограничивающим порог чувствительности, является темновой ток (dark current). Он является следствием термоэлектронной эмиссии и возникает в ПЗС-элементе при подаче потенциала на электрод, под которым формируется потенциальная яма. «Темновым» же данный ток называется потому, что складывается из электронов, попавших в яму при полном отсутствии светового потока. Если световой поток слаб, то величина фототока близка, а порой и меньше, чем величина темнового тока.

Существует зависимость темнового тока от температуры сенсора— при нагревании матрицы на 9 градусов по Цельсию её темновой ток возрастает в два раза. Для охлаждения матрицы используются различные системы теплоотвода (охлаждения). В полевых камерах, массогабаритные характеристики которых сильно ограничивают применение систем охлаждения, иногда в качестве теплообменника используется металлический корпус камеры. В студийной технике ограничений по массе и габаритам практически нет, более того, допускается достаточно высокое энергопотребление охлаждающей системы, которые, в свою очередь, делятся на пассивные и активные.

Пассивные системы охлаждения обеспечивают лишь «сброс» избыточного тепла охлаждаемого устройства в атмосферу. При этом система охлаждения играет роль максимум проводника тепла, обеспечивающего более эффективное его рассеивание. Очевидно, что температура охлаждаемого устройства не может стать ниже, чем температура окружающего воздуха, в чём и заключается основной недостаток пассивных систем.

Простейшим примером системы пассивного теплообмена является радиатор (heatsink), изготавливаемый из материала с хорошей теплопроводностью, чаще всего— из металла. Поверхность, контактирующая с атмосферой, имеет форму, обеспечивающую как можно большую площадь рассеивания. Общепризнанно максимальной площадью рассеивания обладают игольчатые радиаторы, по форме напоминающие «ежа», утыканного рассеивающими тепло «иголками». Нередко для форсирования теплообмена поверхность радиатора обдувается микровентилятором— похожие устройства, называемые кулерами (cooler, от слова cool— охлаждать), в персональных компьютерах охлаждают процессор. На основании того, что микровентилятор потребляет электроэнергию, использующие его системы называются «активными»., что совершенно неправильно, так как кулеры не могут охладить устройство до температуры меньшей, чем атмосферная. При высокой температуре окружающего воздуха (40градусов и выше) эффективность пассивных систем охлаждения начинает падать.

Активные системы охлаждения за счет электрических либо химических процессов обеспечивают устройству температуру ниже окружающего воздуха. Фактически, активные системы «вырабатывают холод», правда, при этом в атмосферу выделяется как тепло охлаждаемого устройства, так и тепло системы охлаждения. Классическим примером активного охладителя является обычный холодильник. Впрочем, несмотря на довольно высокий КПД, его массогабаритные характеристики неприемлемы даже для студийной фототехники. Поэтому ее активное охлаждение обеспечивается системами Пельтье , работа которых основана на использовании одноименного эффекта, когда при наличии разности потенциалов на концах двух проводников, изготовленных из разных материалов, на стыке этих проводников (в зависимости от полярности напряжения) будет выделяться, либо поглощаться тепловая энергия. Причиной тому ускорение либо замедление электронов за счет внутренней контактной разности потенциалов стыка проводников.

При использовании комбинации полупроводников n-типа и p-типа, в которых теплопоглощение производится за счет взаимодействия электронов и «дырок», возникает максимальный теплопроводный эффект. Для его усиления можно применить каскадное объединение элементов Пельтье, причём, поскольку происходит как поглощение тепла, так и выделение, элементы необходимо комбинировать так, чтобы одна сторона охладителя была «горячей», а другая— «холодной». В результате каскадного комбинирования температура «горячей» стороны наиболее удалённого от матрицы элемента Пельтье значительно выше, чем у окружающего воздуха, а его тепло рассеивается в атмосфере при помощи пассивных устройств, то есть радиаторов и кулеров.

Использующие эффект Пельтье активные системы охлаждения могут понизить температуру сенсора вплоть до нуля градусов, кардинально снижая уровень темнового тока. Однако чрезмерное охлаждение ПЗС-матрицы грозит выпадением конденсата влаги из окружающего воздуха и коротким замыканием электроники. А в ряде случаев предельная разность температур между охлаждаемой и светочувствительной плоскостями матрицы может привести к её недопустимой деформации.

Однако ни радиаторы, ни кулеры, ни элементы Пельтье не применимы к полевым камерам, ограниченным по весу и габаритам. Вместо этого для такой техники используется метод, основанный на так называемых черных пикселах (dark reference pixels).Эти пикселы представляют собой покрытые непрозрачным материалом столбцы и строки по краям матрицы. Усредненное значение для всех фототоков черных пикселов считается уровнем темнового тока. Очевидно, что при разных условиях эксплуатации (температура окружающей среды и самой камеры, ток аккумуляторов и т. д.), уровень темнового тока будет разным. При использовании его в качестве «точки отсчёта» для каждого пиксела, то есть вычитая его значение из фототока, можно определить, какой именно заряд создан упавшими на ПЗС-элемент фотонами.

Подавляя тем или иным способом темновой ток, следует помнить о другом факторе, ограничивающем порог чувствительности. Им является тепловой шум (thermal noise), создаваемый даже при отсутствии потенциала на электродах одним лишь хаотичным движением электронов по ПЗС-элементу. Выдержки большой длительности ведут к постепенному накапливанию блуждающих электронов в потенциальной яме, что искажает истинное значение фототока. И чем «длиннее» выдержка, тем больше «заблудившихся» в яме электронов.

Технология производства ПЗС-матриц обладает рядом особенностей. В частности, практически в каждом ПЗС-элементе уровни как темнового тока, так и теплового шума не такие, как в соседних пикселах. Поэтому степень искажения фототоков паразитными зарядами распределена по матрице хаотическим образом. Положение усугубляется практически всегда присутствующей несогласованностью в подаче перемещающих потенциалов на электроды переноса. Всё это ведёт к появлению у каждого отдельного сенсора присущего только ему шума фиксированного распределения (fixed pattern noise), выражающегося в виде раскиданных по всему кадру пикселов постороннего цвета, яркость которых напрямую связана с выдержкой — чем дольше длится экспонирование, тем резче выделяются на снимке точки с паразитными зарядами. Наиболее заметные пикселы называются «горячими» (hot pixels).

Существует «народное средство», позволяющее частично нейтрализовать шум фиксированного распределения— съемка последнего в серии кадра при закрытом крышкой объективе. Полученную «маску» из раскиданных на черном фоне горячих пикселов затем можно использовать для «изъятия» паразитных зарядов из кадра. Метод показался простым и эффективным и потому послужил базой для аппаратного решения в виде системы шумоподавления с помощью «темного кадра» (dark frame). Большинство современных любительских камер снабжается такой системой—фотоаппарат сначала делает обычный снимок, а затем при закрытом затворе считывает «маску», полученную с той же выдержкой. Однако если уровень паразитного заряда пиксела слишком велик, то нельзя судить о достоверности «остатков» его фототока, образовавшихся после «вычитания» «маски». Поэтому в некоторых фотоаппаратах функция шумоподавления «тёмным кадром» модифицирована, так что при высоком уровне паразитного заряда «дефектный» пиксел в формировании кадра не участвует, вместо него используется интерполированное значение яркости и цвета, основанное на соседних элементах матрицы. Проблема в том, что при избытке горячих пикселов кадр становится слишком «размытым». Поэтому следует помнить, что любая система шумоподавления— отнюдь не панацея, а вынужденное и не всегда эффективное средство.

Как известно, светочувствительность плёнки в пределах одной кассеты остаётся постоянной, иными словами— не может изменяться от кадра к кадру. А вот цифровая камера позволяет для каждого снимка устанавливать самое оптимальное значение эквивалентной чувствительности. Достигается это посредством усиления видеосигнала, исходящего с матрицы— в чём-то такая процедура, называемая «повышением эквивалентной чувствительности», напоминает вращение регулятора громкости проигрывателя.

В тех случаях, когда диафрагма максимально открыта, а выдержку «удлинять» больше нельзя, только повышение чувствительности может обеспечить нормальную экспозицию кадра. Однако данная функция имеет и негативный эффект. Параллельно с усилением фототока растёт и уровень паразитных зарядов, говоря в терминах проигрывателя— чем громче звук, тем слышнее шорох от пылинок на пластинке.

Таким образом, при слабом освещении перед пользователем встаёт дилемма— либо повышать эквивалентную чувствительность, либо увеличивать выдержку. При этом в обоих случаях не избежать порчи кадра шумом фиксированного распределения. Правда, опыт показывает, что при «длинной» выдержке снимок портится не так сильно, как при усилении сигнала матрицы. Однако большая продолжительность экспонирования грозит другой проблемой— пользователь может «сдёрнуть» кадр. Поэтому, если пользовать планирует частую съёмку в помещении, то ему следует выбирать фотоаппарат с высокой светосилой объектива, а также мощной и «интеллектуальной» вспышкой.

Динамический диапазон

От матрицы требуется способность регистрировать свет как при ярком солнце, так и при слабом комнатном освещении. Поэтому потенциальные ямы матрицы должны быть весьма ёмкими, а также уметь как удерживать минимальное количество электронов при слабой освещенности, так и вмещать большой заряд, получаемый при попадании на сенсор мощного светового потока. Да и изображение, формируемое объективом, зачастую состоит как из ярко освещенных участков, так и из глубоких теней, а сенсор должен уметь регистрировать все их оттенки.

Возможность сенсора формировать хорошей снимок при разной освещённости и высокой контрастности определяется параметром «динамический диапазон», характеризующим способность матрицы различать в изображении, проецируемом на её регистрирующую поверхность, самые темные тона от самых светлых. При расширении динамического диапазона количество оттенков снимка будет увеличиваться, а переходы между ними будут максимально соответствовать изображению, формируемому объективом.



Влияние динамического диапазона на качество кадра (А — широкий динамический диапазон, Б — узкий динамический диапазон)

Характеристика, описывающая способность ПЗС-элемента накопить определённой величины, называется «глубиной потенциальной ямы» (well depth), и именно от неё зависит динамический диапазон матрицы. Разумеется, при съёмке в условиях слабого освещения на динамический диапазон влияет также порог чувствительности, который, в свою очередь, определяется величиной темнового тока.

Очевидно, что потери электронов, составляющих фототок, происходят не только в процессе накопления заряда потенциальной ямы, но и при его транспортировке к выходу матрицы. Потери эти вызваны дрейфом электронов, «оторвавшихся» от основного заряда при его перетекании под следующий электрод переноса. Чем меньше количество «оторвавшихся» электронов, тем выше эффективность переноса заряда (charge transfer efficiency). Данный параметр измеряется в процентах и показывает долю заряда, сохранившуюся при «переправе» между ПЗС-элементами.

Влияние эффективности переноса можно продемонстрировать на следующем примере. Если для матрицы 1024 X 1024 величина данного параметра составит 98%, то чтобы определить значение фототока центрального пиксела на выходе матрицы необходимо 0,98 (объём переносимого заряда) возвести в степень 1024 (количество «переправ» между пикселами) и умножить на 100 (проценты). Результат совершенно неудовлетворительный — от исходного заряда останется каких-то 0.0000001 %. Очевидно, что при росте разрешения требования к эффективности переноса становятся ещё более жёсткими, так как количество «переправ» возрастает. Кроме того, падает скорость считывания кадра, потому что наращивание скорости переноса (для компенсации увеличившегося разрешения) ведёт к неприемлемому росту числа «оторвавшихся» электронов.

Для того, чтобы достичь приемлемых скоростей считывания кадра при высокой эффективности переноса заряда при конструировании ПЗС-матрицы планируют «заглублённое» размещение потенциальных ям. Благодаря этому электроны не так активно «прилипают» к электродам переноса, и именно для «глубокого залегания» потенциальной ямы в конструкцию ПЗС-элемента вводят n-канал.

Возвращаясь к вышеприведённому примеру: если в данной матрице 1024 X 1024 эффективность переноса заряда составит 99.999 %, то на выходе сенсора от фототока центрального заряда останется 98.98 % его первоначальной величины. Если разрабатывается матрица с более высоким разрешением, то требуется эффективность переноса заряда 99,99999%.

Блюминг

В тех случаях, когда внутренний фотоэффект приводит к избыточному количеству электронов, превышающему глубину потенциальной ямы, заряд ПЗС-элемента начинает «растекаться» по соседним пикселам. На снимках это явление, именуемое «блюмингом» (от английского blooming — размывание), отображается в виде пятен белого цвета и правильной формы, и чем больше избыточных электронов, тем крупнее пятна.

Подавление блюминга осуществляется посредством системы электронного дренажа (overflow drain), основная задача которой— отвод избыточных электронов из потенциальной ямы. Наиболее известны варианты вертикального дренажа (Vertical Overflow Drain, VOD) и бокового дренажа (Lateral Overflow Drain, VOD).

В системе с вертикальным дренажом на подложку матрицы подаётся потенциал, значение которого подбирается так, чтобы при переполнении глубины потенциальной ямы избыточные электроны вытекали из неё на подложку и там рассеивались. Минусом такого варианта является уменьшение глубины потенциальной ямы и, соответственно, сужение динамического диапазона ПЗС-элемента. Очевидно также, что данная система неприменима в матрицах с обратной засветкой.



Вертикальный электронный дренаж

Система с боковым дренажом использует электроды, препятствующие проникновению электронов потенциальной ямы в «дренажные канавки», из которых происходит рассеивание избыточного заряда. Потенциал на этих электродах подбирается в соответствии с барьером переполнения потенциальной ямы, при этом её глубина не меняется. Однако за счёт электродов дренажа сокращается светочувствительная площадь ПЗС-элемента, поэтому приходится использовать микролинзы.



Боковой электронный дренаж

Конечно, необходимость добавлять в сенсор дренажные устройства усложняет его конструкцию, однако искажения кадра, вносимые блюмингом, нельзя игнорировать. Да и электронный затвор невозможно реализовать без дренажа— он играет роль «шторки» при сверхкоротких выдержках, длительность которых меньше интервала, затрачиваемого на перенос заряда из основного параллельного регистра сдвига в буферный параллельный регистр. «Шторка», то есть дренаж, предотвращает проникновение в ямы буферных ПЗС-элементов тех электронов, что образовались в «светочувствительных» пикселах после того, как прошло заданное (и очень короткое) время экспонирования.

«Залипшие» пикселы

Из-за технологических погрешностей в некоторых ПЗС-элементах даже самая короткая выдержка ведёт к лавинообразному накоплению электронов в потенциальной яме. На снимке такие пикселы, именуемые «залипшими» (stuck pixels), очень сильно отличаются от окружающих точек как по цвету, так и по яркости, причём, в отличие от шума фиксированного распределения, они появляются при любой выдержке и вне зависимости от нагрева матрицы.

Удаление залипших пикселов осуществляется посредством встроенного программного обеспечения камеры, обеспечивающего поиск дефектных ПЗС-элементов и запоминание их «координат» в энергонезависимой памяти. При формировании изображения значения дефектных пикселов в расчёт не берутся, их заменяют интерполированным значением соседних точек. Чтобы определить дефектность пиксела в процессе поиска, его заряд сравнивается с эталонным значением, которое тоже хранится в энергонезависимой памяти камеры.

Размер матрицы по диагонали

Иногда в ряду прочих параметров какой-либо цифровой камеры указывается размер ПЗС-матрицы по диагонали (чаще всего в долях дюйма). В первую очередь эта величина связана с характеристиками объектива— чем больше габариты сенсора, тем крупнее должно быть формируемое оптикой изображение. Чтобы данное изображение полностью накрывало регистрирующую поверхность матрицы, размеры оптических элементов приходится увеличивать. Если этого не делать и созданная объективом «картинка» окажется меньше сенсора, то периферийные области матрицы окажутся невостребованными. Однако в ряде случаев производители фотокамер не стали указывать, что в их моделях определенная доля мегапикселей оказалась «не у дел».

А вот в цифровых «зеркалках», созданных на базе 35-милиметровой техники, практически всегда встречается обратная ситуация— изображение, формируемое объективом, перекрывает светочувствительную область матрицы. Вызвано это тем, что сенсоры с габаритами кадра 35-милииметровой плёнки слишком дороги, а приводит к тому, что часть изображения, формируемая объективом, оказывается в буквальном смысле слова «за кадром». В результате характеристики объектива смещаются в «длиннофокусную» область. Поэтому при выборе сменной оптики для цифровой «зеркалки» следует учитывать коэффициент увеличения фокусного расстояния — как правило, он составляет около 1,5. Например, при установке вариообъектива 28–70мм его рабочий диапазон составит 42–105мм.

Упомянутый коэффициент обладает как положительным, так и негативным влиянием. В частности, усложняется съёмка с большим углом охвата, требующая короткофокусных объективов. Оптика с фокусным расстоянием 18мм и менее стоит очень дорого, а в цифровой «зеркалке» она превращается в тривиальные 27мм. Впрочем, длиннофокусные объективы стоят тоже очень дорого, и при большом фокусном расстоянии, как правило, уменьшается относительное отверстие. А вот недорогой 200- миллиметровый объектив при коэффициенте 1,5 превращается в 300-миллиметровый, при этом у «настоящей» 300-миллиметровой оптики диафрагма порядка f/5,6, у 200-миллиметровой светосила выше— f/4,5.

Кроме того, для любого объектива характерны такие аберрации, как кривизна поля и дисторсия, выражающиеся в размытости и искривлении изображения в краевых областях кадра. Если габариты матрицы меньше, чем размер формируемого объективом изображения, «проблемные области» просто не будут зарегистрированы сенсором.

Следует отметить, что чувствительность матрицы связана с габаритами её регистрирующей области. Чем обширнее светочувствительная площадь каждого элемента, тем больше света попадает на него и тем чаще происходит внутренний фотоэффект, таким образом, возрастает чувствительность всего сенсора. Кроме того, пиксел больших габаритов позволяет создать потенциальную яму «повышенной вместимости», что положительно сказывается на широте динамического диапазона. Наглядный тому пример— матрицы цифровых «зеркалок», сравнимые по габаритам с кадром 35-миллиметровой плёнки. Эти сенсоры традиционно отличаются чувствительностью порядка ISO 6400 (!), а динамический диапазон требует АЦП с разрядностью 10-12-бит.

В то же время матрицы любительских камер обладают динамическим диапазоном, для которого достаточно 8-10-битного АЦП, а чувствительность редко превышает ISO 800. Причиной тому особенности конструкции данной техники. Дело в том, что у фирмы Sony очень мало конкурентов по части производства малогабаритных (1/3, 1/2 и 2/3 дюйма по диагонали) сенсоров для любительской техники, а вызвано это было грамотным подходом к развитию модельного ряда матриц. При разработке очередного поколения матриц с разрешением «на мегапиксел больше» обеспечивалась почти полная совместимость с предыдущими моделями сенсоров, причём как по габаритам, так и по интерфейсу. Соответственно, проектировщикам фотоаппаратов не приходилось «с нуля» разрабатывать объектив и «электронную начинку» камеры.

Впрочем, с увеличением разрешения буферный параллельный регистр сдвига захватывает всё большую долю площади сенсора, в результате и светочувствительная область, и «вместимость» потенциальной ямы сокращаются.



Уменьшение светочувствительной области ПЗС-матрицы при росте разрешения.

Поэтому за каждым «N +1 мегапикселом» кроется кропотливый труд разработчиков— к сожалению, не всегда успешный.

Аналого-цифровой преобразователь

Видеосигнал, прошедший сквозь усилитель, необходимо перевести в понятный микропроцессору камеры цифровой формат. Для этого используется аналого-цифровой преобразователь, АЦП (analog to digital convertor, ADC)— устройство, преобразующее аналоговый сигнал в последовательность цифр. Его главной характеристикой является разрядность, то есть количество распознаваемых и кодируемых дискретных уровней сигнала. Чтобы вычислить количество уровней, достаточно возвести двойку в степень разрядности. Например, «разрядность 8 бит» обозначает, что преобразователь в состоянии определить 2 в восьмой степени уровней сигнала и отобразить их в виде 256 различных значений.

При большой разрядности АЦП можно (теоретически) достигнуть большей глубины цвета (color depth), то есть разрядности обработки цвета, описывающей максимальное количество цветовых оттенков, которое можно воспроизвести. Глубина цвета обычно выражается в битах, а количество оттенков вычисляется так же, как и количество уровней сигнала АЦП. К примеру, при 24-битной глубине цвета можно получить 16777216 оттенков цвета.

В действительности же глубина цвета для файлов в форматах JPEG либо TIFF, которые используются компьютером для обработки и хранения изображений, ограничена 24 битами (по 8 бит на каждый цветовой канал — синий, красный и зеленый). Поэтому используемые иногда АЦП с разрядностью 10, 12 и даже 16 бит (то есть глубиной цвета 30, 36 и 48 бит) можно ошибочно посчитать «избыточными». Однако динамический диапазон матрицы некоторых моделей цифровой фототехники достаточно широкий, и если фотоаппарат оборудован функцией сохранения кадра в нестандартном формате (30–48 бит), то при дальнейшей компьютерной обработке есть возможность использовать «лишние» биты. Как известно, ошибки в расчёте экспозиции по частоте проявления уступают лишь неточностям фокусировки. И потому возможность компенсировать такие ошибки с помощью «нижних» (в случае недодержки) либо «верхних» (при передержке) бит оказывается весьма кстати. Ну а если экспозиция рассчитана без ошибок, то «сжать» без искажений 30–48 бит в стандартные 24 не представляет собой особо сложную задачу.

Очевидно, что динамический диапазон ПЗС-матрицы должен являться основанием для повышения разрядности АЦП, так как при узком динамическом диапазоне АЦП с 10-12 битами на канал просто нечего будет распознавать. И зачастую нельзя назвать иначе, чем рекламным трюком упоминания «36-битного» и даже «48-битного» цвета скромной «мыльницы» с матрицей в полдюйма по диагонали, ведь даже 30-битный цвет требует, как минимум, сенсор с диагональю 2/3 дюйма.

Дополнительные материалы:

 
← Предыдущая страница
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
World of Warcraft исполнилось 20 лет — это до сих пор самая популярная ролевая игра в мире 8 ч.
Microsoft хочет, чтобы у каждого человека был ИИ-помощник, а у каждого бизнеса — ИИ-агент 11 ч.
«Атака на ближайшего соседа» сработала — хакеры удалённо взломали компьютер через Wi-Fi поблизости 13 ч.
Google Gemini сможет управлять приложениями без пользователя и даже не открывая их 16 ч.
Илон Маск отделался выплатой $2923 за неявку для дачи показаний по делу о покупке Twitter 17 ч.
Microsoft открыла доступ к скандальной ИИ-функции Recall — пользователям разрешили ограничить её «подглядывания» 23 ч.
Новая статья: Death of the Reprobate: что не так на картине? Рецензия 24 ч.
Главный конкурент OpenAI получил $4 млрд на развитие ИИ без следов Хуанга 24 ч.
Valve раскрыла часть игр, которые получат скидку на осенней распродаже Steam — официальный трейлер акции 22-11 22:34
Threads получила «давно назревавшие улучшения» в поиске и тренды 22-11 22:17
xMEMS представила бескатушечные МЭМС-динамики для открытых наушников, ноутбуков и носимой электроники 47 мин.
Учёные разгадали тайну Урана, над которой бились почти 40 лет 51 мин.
Microsoft и Meta представили дизайн ИИ-стойки с раздельными шкафами для питания и IT-оборудования 8 ч.
Eviden создаст для Финляндии ИИ-суперкомпьютер Roihu производительностью 49 Пфлопс 8 ч.
iFixit не нашли улучшений ремонтопригодности у нового Apple MacBook Pro на чипе M4 Pro 10 ч.
Вселенское ДТП на скорости 3,2 млн км/ч — «Джемс Уэбб» пролил свет на столкновение галактик 10 ч.
Стартап Enfabrica выпустил чип ACF SuperNIC для ИИ-кластеров на базе GPU 11 ч.
На Amazon всплыло «устройство подачи пикселей» Intel Arc B580 11 ч.
«Аквариус» и «Группа Астра» представили ПАК облачной инфраструктуры Aquarius AIC 11 ч.
Bluetooth-колонки Tronsmart Halo 200, Mirtune S100 и Bang Max помогут превратить любую вечеринку в праздничное шоу 11 ч.