Опрос
|
реклама
Быстрый переход
Моделирование показало, что зарождение жизни было возможно уже в очень ранней Вселенной
25.01.2025 [23:39],
Геннадий Детинич
Если кто-то воспринимает библейскую легенду о Всемирном потопе как литературное преувеличение, то учёные пошли дальше и вычислили, что вода во Вселенной была в избытке уже через 100–200 млн лет после Большого взрыва. Более того, ранняя Вселенная образно «утопала» в воде, что заставляет рассматривать заманчивую возможность зарождения первой биологической жизни на самых ранних этапах её эволюции. ![]() Художественное представление о первых звёздах во Вселенной. Источник изображения: NOIRLab/NSF/AURA Как известно, молекула воды представляет собой два соединённых атома водорода и один атом кислорода. Свободного водорода во Вселенной всегда было в избытке — он присутствовал с самых первых моментов после Большого взрыва. Кислород, как считается, появился в звёздах в ходе термоядерных реакций синтеза. Он стал вырабатываться в звёздах и разлетался по Вселенной после их смерти во время взрывов сверхновых. Тем самым можно полагать, что кислород постепенно увеличивал своё присутствие в космосе, что также вело к постепенному увеличению воды во Вселенной. Группа учёных для журнала Nature Astronomy подготовила рецензируемое исследование, в котором утверждается, что всё было совсем не так. По крайней мере, на заре Вселенной. Согласно общепринятой теории, первые звёзды не содержали ничего, кроме водорода и гелия, и обладали низкой металличностью. В астрофизике металлами считают все элементы, тяжелее гелия, и кислород тоже считается металлом. Поэтому в теории кислород вырабатывали звёзды второго поколения (населения II) и звёзды населения I (как наше Солнце). Звёзды населения III — самые первые звёзды (по населению ведётся обратный отсчёт) — не должны были вырабатывать кислород. Однако в новой работе это утверждение опровергается. Исследователи предположили (точно этого не знает никто, поскольку звёзды населения III — самые первые во Вселенной — ещё никем не наблюдались), что первые звёзды были двух основных классов: маленькие с массой около 13 солнечных масс и большие с массой 200 солнечных масс. Маленькие звёзды образовывались как обычные из звёздных питомников (газа, пыли и гравитации) и обладали малой металличностью. А большие звёзды формировались напрямую из первичных облаков материи. Малые звёзды взрывались как обычные сверхновые, но большие взрывались как парно-нестабильные сверхновые, что вело к интересным результатам. Моделирование показывает, что большие звёзды при смерти должны были значительно обогатить окружающую среду кислородом и, как следствие, водой. Доля воды в молекулярных облаках, оставшихся после таких взрывов, должна в 10–30 раз превышать долю воды в диффузных молекулярных облаках в Млечном Пути, которые учёные наблюдают сегодня. Это даёт основание сделать вывод, что через 100–200 миллионов лет после Большого взрыва в молекулярных облаках было достаточно воды и других элементов для формирования биологической жизни. Увы, ответить на вопрос, появилась ли жизнь уже тогда, учёные вряд ли смогут. Но даже если жизнь тогда начала появляться, уровень ионизации во Вселенной был настолько высоким, что известные нам живые организмы не смогли бы выжить в такой среде. Нормальные условия для зарождения жизни создали звёзды последующих поколений. Но остаётся вероятность, что молекулы воды в чашке утреннего кофе намного древнее, чем было принято считать. Астрономы обнаружили планету, на которой ветер дует с гиперзвуковой скоростью
25.01.2025 [17:01],
Геннадий Детинич
Новые наблюдение за экзопланетой WASP-127b на удалении свыше 500 световых лет от Земли позволили выяснить удивительные подробности о поведении её атмосферы. Эта планета уже стала кладезем множества открытий в планетологии иных миров и каждый раз она продолжает раскрывать всё новые и новые детали. В частности, учёные смогли определить скорость воздушных потоков на экваторе WASP-127b. Она оказалась огромной — до 33 000 км/ч, но этому есть объяснение. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Экзопланета WASP-127b размерами чуть больше Юпитера, но её масса составляет всего 16 % от массы этого газового гиганта из нашей Солнечной системы. Тем самым плотность далёкой экзопланеты едва превышает плотность ваты. Это заставляет учёных придумывать экзотические механизмы образования подобных миров — больших и рыхлых, что трудно объяснить по тем примерам, которые мы наблюдаем в своей системе и можем вывести из теорий. Тем самым большая скорость воздушных потоков, измеренная в процессе наблюдений за WASP-127b, может служить той недостающей частью головоломки, которая откроет взгляду полную картину формирования таких планет. Что касается самого открытия, то группа учёных пронаблюдала за WASP-127b с помощью спектрометра на Очень большом телескопе Южной европейской обсерватории, расположенном в пустыне Атакама в Чили. Ориентируясь на линии спектра углекислого газа и воды, исследователи обнаружили два пика: один идущий нам навстречу с одной стороны планеты, а другой — на противоположной стороне, удаляющийся от нас. Расчёты показали, что это сверхреактивное движение газов в атмосфере экзопланеты, скорость которых лежит в диапазоне 7,5–7,9 км/с. Полученные данные оказались кратно больше, чем что-либо зафиксированное в этой области за всю историю наблюдений. На Земле рекордная скорость ветра была зафиксирована в 1996 году на австралийском острове Барроу. Она достигла 407 км/ч. Самая высокая скорость воздушных потоков отмечена на Нептуне. Там она достигает 1770 км/ч. Но по сравнению с ветром на WASP-127b всё предыдущее едва тянет на лёгкий бриз. Газы в атмосфере этой экзопланеты облетают её за несколько часов. Высокая скорость воздушных потоков на WASP-127b может объясняться её близостью к звезде. Планета делает один оборот вокруг неё за 4,2 земных суток. Она находится в приливном захвате звезды и всё время обращена к ней одной стороной. Это создаёт огромный перепад температур между вечно освещённой и вечно тёмной стороной. На дневной стороне WASP-127b температура превышает 1000 ℃. Перепад температур ведёт к ускорению воздушных потоков в атмосфере экзопланеты. Тем не менее, процессы в атмосфере WASP-127b в чём-то напоминают земные и поддаются изучению и анализу, чему учёные посвятят будущие наблюдения. Астрономы поймали быстрые радиовсплески из неожиданного места — древней мёртвой галактики
25.01.2025 [00:39],
Геннадий Детинич
Сегодня нет общепринятой теории об источниках быстрых радиовсплесков — коротких радиоимпульсов, длительностью несколько миллисекунд, которые приходят из космоса. Это придаёт им налёт загадочности, включая предположения о посланиях иных цивилизаций. Новое открытие внесло ещё больше путаницы в поиск источников этого сигнала. Обнаруженный в феврале 2024 года сигнал FRB 20240209A пришёл из неожиданного места, где не должно было быть условий для его появления. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Одна из наиболее популярных гипотез о происхождении этих сигналов предполагает, что быстрые радиовсплески — короткие и невероятно мощные радиочастотные импульсы с энергией на уровне нескольких суток солнечного излучения в каждом — рождаются в процессе переключения линий электромагнитного поля магнетаров. Магнетары — это останки звёзд после взрывов сверхновых. После сброса звездой оболочки остаётся ядро, которое в процессе сжатия становится нейтронной звездой. При определённых условиях нейтронная звезда может обладать мощным электромагнитным полем, которое и порождает импульсы в процессе дальнейшей эволюции останков. По мере старения нейтронная звезда замедляет вращение, энергия которого уходит на выбросы, включая быстрые радиовсплески, и, тем самым, она теряет магнитное поле и способность их порождать. Нетрудно сообразить, что это помещает источник быстрых радиовсплесков в активные зоны галактик, где рождение и смерть звёзд — частое явление. Но с FRB 20240209A всё оказалось совсем не так. Поскольку сигнал повторялся 21 раз, шесть раз его удалось засечь с помощью второго более слабого радиотелескопа (главным инструментом был радиотелескоп CHIME в Канаде). Это дало точное направление на источник сигнала. ![]() Овалом обведено место источника радиовсплеска, а справа галактика, где всё произошло. Источник изображения: Gemini Observatory Сигнал FRB 20240209A был отслежен до галактики, возраст которой составил около 11 миллиардов лет. Это была древняя галактика без признаков звездообразования. Более того, сигнал пришёл с её окраин, где звездообразование по определению относительно слабое. Вероятность нахождения в таком месте и в таких условиях молодых магнетаров очень низкая. Их порождают достаточно крупные звезды, а такие по вселенским масштабам долго не живут. Поэтому могут быть иные, ещё неизвестные нам механизмы возникновения быстрых радиовсплесков. Есть ещё один вариант, который может объяснить источник радиовсплеска из необычного места. В той далёкой галактике может быть плотное шаровое звёздное скопление. Такие скопления часто встречаются, и это не должно удивлять. В них магнетары могут сливаться, что тоже может вызвать быстрый радиовсплеск при пересечении мощных линий магнитного поля этих объектов. К сожалению, у нас нет возможности с такого расстояния выяснить подробности. Остаётся только продолжить наблюдения и надеяться зарегистрировать сигнал из более удобного для наблюдения источника. Учёные определили происхождение второй луны, которая была у Земли осенью — это точно не космический мусор
23.01.2025 [21:37],
Геннадий Детинич
С конца сентября до конца ноября 2024 года у Земли была «вторая Луна» — неподалёку от планеты задержался десятиметровый астероид. Астрономы следили за ним с августа, сразу после обнаружения планетарной службой обороны. Была вероятность, что это лишь останки ракеты от одной из прошлых миссий. Группа астрономов провела серию наблюдений и отстояла «маленькую Луну», доказав, что этот объект не может быть космическим мусором. ![]() Художественное представление астероида. Источник изображения: NASA «У нас было общее представление о том, что этот астероид, возможно, прилетел с Луны, но неопровержимым доказательством стало то, что он богат силикатными минералами — не такими, которые встречаются на астероидах, а теми, которые были найдены в образцах лунных пород, — сказал Тедди Карета (Teddy Kareta), астроном из Университета Калифорнии, который руководил исследованиями. — Похоже, что он пробыл в космосе не очень долго, может быть, всего несколько тысяч лет или около того, поскольку из-за отсутствия космического выветривания его спектр покраснел». Астероид 2024 PT5 был впервые обнаружен 7 августа 2024 года телескопом Сазерленда (Южная Африка), а также системой ATLAS о раннем предупреждении астероидной опасности Гавайского университета. Для последующего наблюдения за этим 10-м небесным телом исследователи использовали телескоп Lowell Discovery Telescope в Аризоне и инфракрасный телескоп NASA (IRTF) в обсерватории Мауна-Кеа на Гавайях. Учёные изучали отражённый от астероида солнечный свет — его спектр. Спектр 2024 PT5, как выяснилось, больше соответствует образцам пород с Луны, чем известным астероидам, например, из главного пояса между Юпитером и Марсом. Также важно было отделить объект от космического мусора, оставленного человечеством в ближнем космосе. Исследователи исходили из того, что пустая ракета под воздействием солнечного ветра будет двигаться как консервная банка на ветру. Тем самым её скорость дрейфа будет значительно отличаться от скорости движения «космического кирпича». Наблюдения позволили точно вычислить динамику движения объекта 2024 PT5 — он вёл себя как камень, а не оболочка от ракеты или разгонного блока. ![]() Диаграмма движения астероида 2024 PT5 вблизи Земли Временная маленькая Луна Земли была «укреплена в правах» — её не разрешили считать космическим мусором. Более того, если когда-нибудь удастся связать её траекторию с исходным ударным кратером на Луне — это откроет новую возможность в изучении геологии спутника. Это, кстати, второй околоземный объект, который засекли как нашего временного попутчика. Впервые им стал обнаруженный в 2016 году астероид 469219 Камо'Оалева. Оба они вращаются вокруг Солнца по одной орбите с Землёй, но при этом не попадают в поле её гравитации. Они лишь ненадолго задерживаются рядом с планетой и никогда не входят с ней в гравитационную связь, чтобы превращаться в настоящие луны. «Хаббл» создал самое детальное изображение галактики Андромеда — на 2500-Мп снимок ушло 10 лет
22.01.2025 [15:47],
Геннадий Детинич
Завершено создание самого детального панорамного изображения галактики Андромеда, на что ушло десять лет наблюдений по двум программным обзорам. Составной снимок разрешением 2,5 млрд пикселей — это своего рода взгляд со стороны на нашу галактику Млечный Путь. Нам изнутри невозможно оценить все галактические особенности нашего звёздного дома, и Андромеда даёт подсказки для обнаружения многих из них. Для создания снимка Андромеды «Хаббл» совершил 1000 оборотов вокруг Земли. Было сделано 600 отдельных снимков этой галактики в обзорах Hubble Andromeda Southern Treasury (PHAST) и Hubble Andromeda Treasury (PHAT). Галактика словно лежит на ладони, удобно развёрнутая для наблюдений с Земли под углом 77°. Это самая близкая к нам спиральная галактика с перемычкой. До неё 2,5 млн световых лет. На снимках «Хаббла» можно обнаружить около 200 млн звёзд. Это лишь малая часть звёзд Андромеды и все они намного ярче нашего Солнца. Последний из обзоров, который завершил создание панорамного изображения Андромеды, добавил информацию о южном крае галактического диска Андромеды. Северный край изучен очень хорошо, чего не скажешь о юге. Между тем, в южной части Андромеды наблюдается карликовая галактика M32 и признаки внешнего влияния. С этим объектом также связывают массивный поток пыли, газа и отдельных звёзд, которые как бы втекают в галактику извне — из её гало. Всё вместе намекает на то, что это следы былого столкновения галактик — Андромеды и более мелкой, хотя этот вопрос ещё предстоит изучить в деталях. Но уже сейчас учёные считают, что M32 — это ядро, оставшееся от поглощённой миллиарды лет назад Андромедой другой галактики. Полученный в двух обзорах снимок Андромеды даст богатейшую пищу учёным для новых работ и открытий. Изображения доступны для свободного скачивания по этой ссылке. Астрономы получили наиболее детальное инфракрасное изображение активного ядра галактики
18.01.2025 [15:04],
Геннадий Детинич
Учёные из США использовали инновационный метод получения совместных изображений двух оптических телескопов для создания наиболее детального инфракрасного изображения активного ядра галактики — места расположения сверхмассивной чёрной дыры. Ранее для подобной цели метод интерферометрии был использован при получении снимка чёрных дыр в радиодиапазоне Телескопом горизонта событий (EHT). С оптикой всё намного сложнее, но зато наглядно и познавательно. ![]() NGC 1068. Источник изображения: NASA Совмещать два изображения с оптических телескопов с целью повышения разрешения итоговой картинки пока удаётся лишь при непосредственной синхронизации по оптике и при относительно близком расположении телескопов. Например, такие режимы возможны на комплексе оптических телескопов VLT, где оборудование для оптической интерферометрии было предусмотрено с самого начала. Учёные из США пока лишь делают первые шаги в этом направлении, создав условия для оптической интерферометрической съёмки на телескопе LBT в штате Аризона. Телескоп LBT или Большой бинокулярный телескоп — это два расположенных бок о бок зеркала. По сути это спаренные телескопы-близнецы, диаметр зеркала каждого из которых достигает 8,4 м. До прошлого года телескопы использовались по отдельности, например, наблюдая за одним и тем же объектом с разными фильтрами (на разных динах волн). Впервые режим интерферометра был задействован для наблюдения за вулканами спутника Юпитера Ио. Результат настолько вдохновил учёных, что они решили взглянуть таким же образом на другие объекты Вселенной. В частности, их заинтересовали детали самого близкого к Млечному Пути активного ядра галактики NGC 1068. Активные ядра галактик — это следствия массивного падения вещества на сверхмассивные чёрные дыры в центрах галактик. Сами чёрные дыры невидимы во всех диапазонах, но до падения вещества на них оно разогревается до миллионов градусов и ярко светится во всех диапазонах. Эти излучения взаимодействуют с пылью и газом вблизи центров галактик и даже за их пределами. Это взаимодействие имеет обратную связь, которую можно проследить только при наличии высокого разрешения. Например, на представленном LBT изображении прослеживается зависимость движения пыли от излучения в радиодиапазоне и обратная связь между ними. Без снимка в инфракрасном диапазоне с рекордной детализацией эту связь было невозможно увидеть в таких деталях. «Активное ядро галактики в NGC 1068 особенно яркое, поэтому это была прекрасная возможность протестировать этот метод, — поясняют учёные. — Это самые точные снимки активного ядра галактики с самым высоким разрешением, сделанные до сих пор». Камера впервые в истории сняла, как метеорит врезался в землю
17.01.2025 [14:52],
Геннадий Детинич
При всём обилии космических осадков в несколько десятков тонн пыли и камней каждый день до поверхности Земли долетает не так много вещества. Ещё меньше падает на сушу, а не в океаны, и совсем мало при свидетелях. К счастью, множество систем видеорегистрации повышают шансы снять эти достаточно редкие явления. Впервые это удалось электронному дверному глазку в канадской глуши. Вероятно, это первый случай съёмки видео и звука удара метеорита о землю. ![]() Источник изображений: Joe Velaidum/Laura Kelly Инцидент был снят на канадском острове принца Эдуарда в Шарлоттауне. Проживающая в доме пара пошла выгулять собак и минуты спустя со двора послышался громкий звук удара. Произошло это ещё летом прошлого года. Последующий просмотр записей с электронного глазка показал, что рядом с порогом что-то с громким звуком грохнулось оземь. ![]() Удар оставил след на тротуарной плитке диаметром около двух сантиметров. В траве неподалёку нашлись куски упавшего предмета. Они были направлены в Университет Альберты (University of Alberta) для изучения. Анализ показал, что образцы представляют собой обычные хондриты, метеориты, состоящие из неметаллических минералов, которые сформировались на заре Солнечной системы и с тех пор почти не изменились. Подавляющее большинство обнаруженных на Земле метеоритов (90 %) — это хондриты. В принципе, случаи их падения уже не раз попадали в камеры объективов на небе. Но записать этот момент со звуком в момент удара о землю — в этом канадцам сильно повезло. Им повезло даже сильнее. По словам мужчины, он всего пару минут до удара стоял на том самом месте, в которое ударил камень с неба. Ему бы точно не поздоровилось при прямом попадании по телу. ![]() Источник изображения: University of Alberta Обнаружен загадочный источник радиосигналов из области Вселенной, где ничего нет
16.01.2025 [20:52],
Геннадий Детинич
Строящийся поэтапно новейший радиотелескоп ASKAP в Австралии засёк странный во всех отношениях источник радиосигналов, которому пока нет объяснения. Радиоимпульс приходит на Землю с интервалом 6,5 часов. Это настолько длительный период, что его нельзя объяснить современной теорией таких периодических источников, как пульсары, магнетары или белые карлики. И эту тайну ещё предстоит открыть. ![]() Художественное представление загадочного радиоисточника. Источник изображения: James Josephides Источник ASKAP J1839-0756 находится в направлении, где нет видимых или ранее зарегистрированных астрономических объектов. Например, это мог бы быть белый карлик — ядро умершей и остывающей звезды. С определённой натяжкой этим можно было бы объяснить столь длительный интервал между радиоимпульсами, но пока привязки к подобным объектам не найдено. Нейтронные звёзды, которые ассоциируются с периодическими радиосигналами, вращаются очень быстро — по несколько раз в секунду. Согласно теории, они прекращают испускать радиосигнал при замедлении скорости вращения примерно до одного оборота в минуту. Сами радиоимпульсы возникают из-за отклонения оси магнитных полюсов, из которых исходит сигнал, по отношению к оси вращения нейтронной звезды. Поэтому магнитный полюс совершает оборот и с определённым интервалом времени «светит» в сторону Земли. Если магнитный полюс никогда не направлен на нашу планету, мы не можем обнаружить такой источник. Если исключить из списка подозреваемых пульсары, другим кандидатом может быть магнетар. Проблема в том, что магнетары также не могут вращаться слишком медленно. Кроме того, должны быть соблюдены определённые условия, чтобы они излучали радиосигнал. Астрономы обнаружили один магнетар, излучающий сигнал каждые 6,67 часа, но это импульсы в рентгеновском диапазоне. Радиосигналов от него не зарегистрировано. Наконец, подозреваемым в источнике медленного радиосигнала может быть белый карлик. Эти объекты обычно вращаются намного медленнее нейтронных звёзд и, в принципе, при наличии сильных магнитных полей могут излучать в радиодиапазоне. Однако и здесь должны быть подходящие условия, например, это должна быть двойная система. У обнаруженного медленного радиоисточника есть ещё одна редкая особенность. Его магнитный полюс ориентирован почти точно в сторону Земли. Это означает, что радиотелескопы регистрируют два импульса — по одному от каждого его полюса. После первого сигнала примерно через 3,2 часа приходит чуть более слабый второй. В подобной ориентации обнаружено лишь около 3 % всех радиоисточников. Определённо, учёным повезло с объектом ASKAP J1839-0756. Его можно изучать буквально со всех сторон, и его непонятный статус только подогревает интерес. Поиск разгадки этого явления, безусловно, расширит наше представление о Вселенной. «Джеймс Уэбб» рассмотрел колоссальные волны звёздной пыли — они больше нашей Солнечной системы
15.01.2025 [19:18],
Геннадий Детинич
Явления космических масштабов могут быть стремительными, как показал телескоп «Джеймс Уэбб» в процессе наблюдения за двойной системой звёзд Вольфа–Райе WR 140. «Уэбб» наблюдал эту систему с интервалом около 14 месяцев и зафиксировал значительные изменения за столь короткий по меркам Вселенной срок. Система WR 140 формирует в своём центре расходящиеся концентрические волны звёздной пыли, которые улетают прочь буквально на глазах у учёных. ![]() Источник изображений: NASA Звёзды Вольфа–Райе считаются фабриками звёздной пыли, поскольку обладают наиболее мощными звёздными ветрами. Это особенно важно, так как они выбрасывают углерод из своих недр — элемент, являющийся одним из ключевых атрибутов биологической жизни. Такие звёзды окружены пылевой оболочкой, а если это двойная система, как WR 140, то в процессе орбитального движения пары звёзд пылевые возмущения создают невероятную картину. ![]() Сравнение снимков распространения пылевых волн с интервалом около 14 месяцев Центральная звезда максимально сближается со своим партнёром ровно раз в 7,93 года. В этот момент звёздные ветра от обеих звёзд сталкиваются наиболее интенсивно, что порождает интерференционную картину расходящихся волн в облаке пыли. Волны распространяются со скоростью 2600 км/с, что составляет около 1 % от скорости света. «Уэбб» сделал первый снимок в 2022 году, а второй — спустя неполных 14 месяцев. Сравнение снимков демонстрирует, что явления космических масштабов могут происходить в промежутки времени, соизмеримые с человеческой деятельностью. Расходящиеся кольца — это лишь видимая часть изменений в сплошном облаке пыли. Вокруг звёзд находится гораздо больше вещества, в том числе атомов углерода, чем может запечатлеть космический телескоп. Система WR 140 изучена настолько хорошо, что за распространением пыли в её окрестностях можно наблюдать как за природной астрофизической лабораторией, буквально с хронометром в руках, изучая динамику поведения вещества и физику процессов. Если бы наше Солнце могло испускать такие волны пыли, расстояние между ближайшими волнами примерно равнялось бы 5 % дистанции между нашей звездой и Альфой Центавра — ближайшей соседкой Солнца. Это красивое и интересное явление, которое телескоп «Джеймс Уэбб» несомненно поможет изучать в дальнейшем. NASA стало чаще находить скрытые сверхмассивные чёрные дыры, но учёным этого мало
15.01.2025 [16:13],
Геннадий Детинич
Считается, что в центре почти всех галактик находятся сверхмассивные чёрные дыры (СЧД), которые серьёзно влияют на их эволюцию. Подтвердить это можно было бы прямым наблюдением, благо СЧД с массой от сотен миллионов до миллиардов солнечных масс — это как слон в посудной лавке: их сложно не заметить. Однако проблема в том, что чёрные дыры хорошо видны только в том случае, если они обращены к нам торцом. Если же они расположены ребром, пыль и газ надёжно скрывают даже самые яркие из них. ![]() Облако пыли вокруг СЧД в инфракрасном, видимом и рентгеновском свете (внизу), где справа диапазон сильных энергий. Источник изображений: NASA Предыдущие исследования показывают, что пыль и газ скрывают около 15 % всех сверхмассивных чёрных дыр. Теория же предполагает, что таких объектов должно быть около 50 %. Новая работа, основанная на архивных данных телескопа IRAS 1980-х годов и запущенного в 2012 году рентгеновского телескопа NuSTAR (Nuclear Spectroscopic Telescope Array), позволила учёным из NASA сделать вывод, что за облаками пыли и газа скрываются 35 % сверхмассивных чёрных дыр. Этот результат лучше, чем показывали предыдущие исследования, но всё ещё не дотягивает до теоретических ожиданий. Более точное знание о количестве сверхмассивных чёрных дыр и их расположении в центрах галактик необходимо для понимания эволюции последних. СЧД отбирают вещество у галактик, которое могло бы быть использовано для формирования новых звёзд (без чёрных дыр галактики были бы гораздо больше, чем мы наблюдаем). Кроме того, СЧД могут останавливать звездообразование, поглощая большие объёмы вещества. Это приводит к мощным выбросам энергии и частиц, которые выталкивают вещество из галактик. ![]() Обсерватория Nuclear Spectroscopic Telescope Array Поскольку охватить Вселенную невозможно, учёные делают выводы о процессах в ней на основе относительно небольшой выборки объектов. Поэтому важно знать, сколько СЧД может быть скрыто за облаками пыли, чтобы сделать выборку максимально точной. К счастью, наблюдения в инфракрасном диапазоне и рентгеновских лучах высоких энергий позволяют обнаруживать СЧД даже тогда, когда они обращены к нам ребром, а не яркими полюсами с аккреционным диском, джетами и световыми эффектами. Рентгеновское излучение высоких энергий и инфракрасный свет вызывают вторичное свечение облаков пыли и газа, что позволяет учёным обнаружить спрятанные сверхмассивные чёрные дыры. Именно благодаря этим методам учёные NASA смогли выявить больше СЧД там, где другие наблюдения оказались бессильны. Мощнейший в истории гамма-всплеск может пролить свет на новую физику — аксионы и тайну тёмной материи
09.01.2025 [19:16],
Геннадий Детинич
Чем больше учёные изучают данные гамма-всплеска GRB 221009A, который называют буквально «ярчайшим за всё время» или BOAT, тем интереснее становятся их выводы. Новая работа итальянских астрономов, опубликованная в продолжение доклада марта прошлого года, связывает это событие с теорией струн и возможным объяснением тёмной материи частицами-аксионами или подобными им. Если эта гипотеза подтвердится, это станет прорывом в космологии и новой физикой. ![]() Джет в представлении художника. Источник изображения: NASA Goddard Space Flight Center Вспышка GRB 221009A, напомним, зафиксирована в октябре 2022 года. Она ослепила все гамма-телескопы за исключением одного китайского, который в это время находился на техобслуживании и отключил почти все датчики. Более выгодное положение заняли наземные телескопы высокоэнергетических частиц, отслеживавшие вторичный поток частиц в атмосфере Земли, вызванный первичным потоком. Одним из таких телескопов был китайский LHAASO (Большая высотная обсерватория воздушных потоков). Именно анализ данных LHAASO привёл итальянских учёных к возможному открытию. Группа исследователей под руководством профессора Джорджио Галанти (Giorgio Galanti) из Национального института астрофизики Италии (INAF) обнаружила несоответствия в данных наблюдений. Обсерватория зафиксировала энергию фотонов гамма-излучения до 18 ТэВ (тераэлектронвольт). По мнению исследователей, такую энергию невозможно объяснить в рамках современной физики. Согласно современным космологическим моделям, высокоэнергичные фотоны от источника GRB 221009A, находящегося на удалении 2,4 млрд световых лет от Земли, должны были взаимодействовать с фотонами диффузного внегалактического фонового излучения. Это взаимодействие должно было снизить их энергию до 10 ТэВ и ниже. Однако данные наблюдений говорят об обратном, что вынудило учёных рассмотреть альтернативные модели для объяснения явления. В частности, высокая энергия фотонов, зарегистрированных обсерваторией, указывает на большую прозрачность Вселенной как внутри галактик, так и между ними. Это возможно в рамках теории струн при взаимодействии фотонов с аксионоподобными частицами (ALPs, axion-like particles), что исследователи обосновали в своей работе, опубликованной на сайте arXiv 30 декабря 2024 года. Аксионы или подобные им частицы рассматриваются как кандидаты на роль тёмной материи — неуловимой субстанции, взаимодействующей с обычной материей исключительно через гравитационное взаимодействие, которое крайне слабо. Согласно расчётам, около 85 % всей материи во Вселенной представлено тёмной материей, существование которой пока удаётся определить лишь косвенно. Регистрация фотонов с экстремально высокой энергией также может служить косвенным подтверждением существования аксионов или их разновидностей семейства ALPs. Однако это требует независимого изучения и дальнейших исследований другими научными группами. Учёные впервые разглядели десятки звёзд в далёкой галактике
07.01.2025 [22:36],
Геннадий Детинич
Обычно учёные даже не надеются разглядеть отдельные звёзды в далёких галактиках. Между тем, изучение звёзд на ранних этапах развития Вселенной необходимо для понимания эволюции галактик и Вселенной в целом. И тогда спасает случай, эффект гравитационного линзирования и появление более совершенных телескопов, таких как «Джеймс Уэбб». И звёзды сошлись. ![]() Источник изображений: NASA Астрономам из Университета Аризоны (University of Arizona) посчастливилось обнаружить одновременно десятки звёзд в галактике на таком отрезке времени, когда Вселенная была вдвое моложе — возрастом всего 6,5 млрд лет. В обычных условиях такая галактика выглядела бы на астрономических снимках, как тусклое пятно. Благодаря гравитационном линзированию в ней удалось разглядеть 40 отдельных звёзд и получить о них достаточное представление. Открытие произошло благодаря двум наблюдениям «Уэбба» за сверхскоплением галактик Abell 370 на удалении примерно 4 млрд лет от Земли. На линии прямой видимости между Землёй и скоплением далеко за ним расположилась галактика «Дуга Дракона» (Dragon Arc). Изучение снимков скопления, сделанных «Уэббом» с разницей примерно в один год, помогло выявить четыре десятка звёзд, которые оказались родом из далёкой галактики. Одни из обнаруженных далёких звёзд были ярче на одном снимке, другие — на втором. Анализ показал, что звёзды увеличивались как всей массой скопления Abell 370, эффект от чего назвали гравитационным макролинзированием, так и от отдельных звёзд в скоплении, которые не входили ни в какие тамошние галактики (летали свободно). Именно эти звёзды производили эффект гравитационного микролинзирования, меняя увеличение (и яркость) далёких звёзд за короткий промежуток времени — за недели и даже дни. И если скопление увеличивало галактику «Дуга Дракона» и отдельные звёзды в ней примерно в 100 раз, то отдельные звёзды в скоплении увеличивали свет далёких звёзд ещё примерно в 10 раз. ![]() Сочетание редких условий и проницательность, а также упорство учёных дали поразительный результат — 40 наблюдаемых звёзд в галактике на удалении 6,5 млрд световых лет от Земли. Все они оказались красными гигантами на исходе своей жизни, как относительно недалёкая от нас яркая звезда Бетельгейзе. Примечательно, что «Уэбб» стал тем прибором, который впервые так далеко смог увидеть относительно холодные звёзды, ведь раньше самыми далеко обнаруживаемыми звёздами были яркие голубые гиганты. С помощью «Уэбба» астрономия взяла ещё одну планку и расширила для земной науки наблюдаемую Вселенную. Учёные на шаг приблизились к разгадке источника загадочных радиосигналов из глубин Вселенной
02.01.2025 [15:38],
Геннадий Детинич
Группа учёных из Массачусетского технологического института (MIT) на шаг приблизилась к разгадке источника загадочных радиосигналов — быстрых радиовсплесков (FRB) мощностью в сотни миллионов солнц продолжительностью несколько миллисекунд. Это близко к пределу мощности энергии, на который только способна физика нашей Вселенной. Исследователи впервые проследили радиосигнал до вероятного источника — магнетара, удалённого от нас на 200 млн световых лет. ![]() Художественное представление быстрого радиовсплеска от магнетара. Источник изображения: Daniel Liévano, MIT News Магнетары считаются наиболее вероятными источниками FRB. Однако поймать их непросто. Во-первых, это нейтронные звёзды — фактически угли от бывших звёзд. Такие не увидеть в телескоп, особенно если они за миллионы и миллиарды световых лет от Земли. Во-вторых, быстрые радиовсплески не повторяются, поэтому отследить и предсказать их источник заранее нельзя. Учёным остаётся только анализировать записанный сигнал. И кое-что в этом сигнале даёт подсказку, где искать его загадочный источник. В записи радиосигнала есть информация о его поляризации. Когда радиосигнал и другое излучение проходят через пространство, они ионизируют встречающиеся на пути атомы газа и пыли. Это заставляет излучение как бы мерцать, что называется термином сцинтилляция. Также излучение приобретает ту или иную поляризацию, из характеристики которой можно сделать вывод о происхождении сигнала. Исследователи взяли в разработку быстрый радиовсплеск FRB 20221022A, обнаруженный в 2022 году. Они смогли проследить его до источника, удалённого на 200 млн световых лет от нас. Анализ поляризации и «мерцания» сигнала позволили сузить область его происхождения до пространства 10 000 км в поперечнике. Это как измерить ширину спирали ДНК (2 нм) с Земли на поверхности Луны. Поиск иголки в стогу сена по сравнению с этим покажется лёгкой задачкой. Поляризация FRB 20221022A обнаружила признаки испускания сигнала от вращающегося источника, каким по совокупным признакам может быть только магнетар — нейтронная звезда с мощнейшими во Вселенной магнитными полями. Исследователи считают, что это на сегодня самое точное доказательство происхождения быстрых радиовсплесков, но до конца вопрос определённо не закрыт и потребует множества новых наблюдений. Отменяя тёмную энергию: сторонники идеи о неоднородной Вселенной доказали её неоднородность
01.01.2025 [18:27],
Геннадий Детинич
Частным случаем уравнений Эйнштейна из общей теории относительности стали выводы Фридмана об однородности нашей Вселенной. Она одинакова и равномерно заполнена материей во всех направлениях на всём протяжении, что было доказано учёными. Но четверть века назад были обнаружены признаки ускоренного расширения Вселенной, что не имело объяснения в рамках официальной космологии и пришлось выдумывать тёмную энергию. Но у тёмной энергии есть альтернатива, и она получила подтверждение. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Опубликованная в конце декабря 2024 года в журнале Monthly Notices of the Royal Astronomical Society Letters работа группы учёных, возглавляемая астрофизиком Антонией Сейферт (Antonia Seifert) из Кентерберийского университета в Новой Зеландии, собрала доказательства альтернативной сущности нашей Вселенной, а именно того, что она, напротив, очень даже неоднородная. При этом общая теория относительности Эйнштейна ничуть от этого не страдает. Зато, если собранные группой данные будут подтверждены независимыми коллективами, это перевернёт представление науки о строении Вселенной с ног на голову или даже наоборот, поставит её на ноги, сделав ненужным, к примеру, такой «костыль», как тёмная энергия. Основы теоретического обоснования неоднородности Вселенной были предложены в 2007 году рядом учёных, включая Дэвида Уилтшира (David Wiltshire). Добавим, Уилтшир заявлен как соавтор новой работы, доказывающей его правоту, поэтому независимый анализ представленных данных должен быть проведён обязательно. По его представлению, по мере развития Вселенной материя сгруппировалась в суперскопления, которых достаточно, чтобы скопления и пустоты могли оказывать существенные локальные влияния на пространство-время. В рамках современной космологической модели Вселенной (ΛCDM, лямбда или космологическая постоянная плюс холодная и тёмная материя) свет равномерно и равноэффективно распространяется по всей Вселенной на всём её протяжении. В рамках космологической модели timescape или «ландшафта времени» Уилтшира внутренние часики Вселенной тикают медленнее возле гравитационных ям (скоплений материи) и быстрее в пустотах. Всё как завещал Альберт Эйнштейн в специальной теории относительности. Живущие на верхних этажах люди постареют быстрее живущих на первом этаже, хотя разница эта будет исчисляться минутами или даже секундами за время жизни. Но для Вселенной с её расстояниями и распределением масс это может иметь решающее значение. Группа Сейферт проанализировала самые последние и наиболее полные наблюдения сверхновых типа Ia на данных Pantheon+ и заявила, что полученные данные согласуются с моделью Вселенной, которая не может считаться однородной, что также позволяет сделать вывод о ненужности тёмной энергии. «Эти результаты свидетельствуют о необходимости пересмотра основ теоретической и наблюдательной космологии», — сообщают они в своей работе. Сверхновые типа Ia являются одними из стандартных свечей, яркость которых известна, что позволяет достаточно точно определять расстояние до них. Именно измерением расстояний до таких сверхновых в 1998 году было определено, что Вселенная ускоренно расширяется, что потребовало введение понятия тёмной энергии. Новая работа показывает, что мы имеем дело с иллюзией. Из-за эффектов искажения пространства-времени мы неверно оцениваем расстояния до сверхновых, и они кажутся дальше, чем на самом деле (что означает также якобы их ускоренное перемещение). На самом же деле, Вселенная может даже сжиматься, а не расширяться, если начать углубляться в процесс с позиций теории «временного ландшафта». «Рассматривая всю выборку Pantheon+, мы находим очень веские доказательства в пользу timescape, а не ΛCDM», — говорят Сейферт и соавторы. Для открытия тёмной материи учёным потребуется всего 10 секунд, а также близкая сверхновая и вагон удачи
27.12.2024 [12:06],
Геннадий Детинич
Учёные уверяют, что от открытия тёмной материи нас отделяют считанные секунды. Подвох в том, что обнаружить её можно в строго заданных условиях и только с помощью одного инструмента — гамма-телескопа «Ферми». Неизвестными остаются место и время, куда и когда необходимо направить этот инструмент. Это как сыграть в лотерею с шансами выиграть 1 к 10. Но можно «сжульничать» и добиться нужного результата. ![]() Остатки последней близлежащей сверхновой, взорвавшейся в феврале 1987 года. Источник изображения: NASA Искать учёные предлагают аксионы — гипотетические частицы, предложенные ещё в 70-х годах прошлого века для устранения ряда противоречий в физике элементарных частиц. Позже оказалось, что аксионы подходят на роль тёмной материи. Они не имеют заряда и обладают крайне малой массой — в миллиарды раз легче электронов. Одно из предсказанных свойств аксионов — это их распад в сильном магнитном поле с испусканием фотонов. Именно по этому признаку аксионы пытаются искать в лабораторных условиях. Однако таких энергий, как в космосе, в лаборатории создать невозможно. Поэтому учёные надеются обнаружить аксионы в природных условиях Вселенной. Перспективными источниками аксионов считаются нейтронные звёзды. Частицы могут рождаться в невероятно мощном гравитационном поле этих объектов, а сильнейшее магнитное поле звёзд создаёт подходящую среду для распада аксионов. В одной из предыдущих работ астрономы предлагали искать слабое добавочной свечение нейтронных звёзд как признак окружающего эти объекты облака из аксионов. В новой работе учёные из Калифорнийского университета в Беркли (University of California, Berkeley) заявляют, что наилучший момент для обнаружения аксионов — это взрыв ближайшей к Земле сверхновой. Не нужно ждать, пока сверхмассивная звезда на исходе своей жизни коллапсирует до состояния нейтронной. Расчёты показывают, что в первые 10 секунд взрыва будет выброшено множество аксионов. Это позволит решить проблему тёмной материи и раскрыть ряд других загадок космологии. Сегодня подобное событие и частицы способен уловить космический гамма-телескоп «Ферми». Главная проблема в том, что он должен быть направлен на сверхновую в момент её рождения, а шансов на это немного. ![]() Схема предложенного эксперимента по поиску аксионов Близкие к Земле сверхновые появляются нечасто — примерно раз в 50 лет. Одна такая вспыхнула в 1987 году. Следующая сверхновая может появиться в любой момент. Вопрос с тёмной материей и аксионами можно решить быстро и навсегда, но только если заранее подготовиться. Учёные считают, что для этого стоит вывести в космос флот небольших гамма-телескопов, которые обеспечат 100-процентное покрытие неба. Тогда первая же близкая сверхновая предоставит достоверные данные о существовании аксионов и их массе (энергии). Мы можем потратить десятилетия на раскрытие загадки тёмной материи или найти решение за 10 секунд. Даже отрицательный результат будет полезен, наложив ограничения на массу гипотетических частиц и значительно продвинув физику вперёд. |