Опрос
|
реклама
Быстрый переход
Так вот как это было! «Джеймс Уэбб» засёк начало рождения галактик в ранней Вселенной
25.05.2024 [08:34],
Геннадий Детинич
Космический телескоп «Джеймс Уэбб» получил, похоже, одни из самых ценных снимков за время своей работы. С его помощью учёным удалось увидеть, как рождались первые галактики во Вселенной. Это наблюдение в общем случае подтвердило нашу теорию об эволюции звёзд, галактик и самой Вселенной. «Можно сказать, что это первые "прямые" изображения формирования галактик, которые мы когда-либо видели, — пояснил ведущий автор исследования Каспер Эльм Хайнц (Kasper Elm Heintz), астрофизик Центра космического рассвета (DAWN) в Дании. — В то время как ранее "Джеймс Уэбб" показывал нам ранние галактики на более поздних стадиях эволюции [уже сформированные], здесь мы являемся свидетелями самого их рождения и, следовательно, построения первых звёздных систем во Вселенной». Телескоп получил изображения трёх галактик примерно через 400–600 млн лет после Большого взрыва. На тот момент галактики представляли собой скопления сгустков тёмной и обычной материи, по-видимому, с чёрной дырой в их центрах. Звёзд в них ещё не было или их было исчезающее мало, и лишь на ранних стадиях эволюции. Обычная материя в те времена — это практически один водород. Именно его движение и поглощение засекли спектральные приборы «Уэбба». На сделанных космической обсерваторией снимках учёные смогли различить движение водорода внутрь и по краям формирующихся галактик. Со временем под действием гравитации плотность газа в отдельных местах формирующихся галактик достигнет такого значения, которое запустит термоядерные реакции и породит первые звёзды. Но это будет потом и, к тому же, всё это мы видели на более поздних стадиях развития Вселенной. Увидеть фактически зачатие первых галактик — это редкая удача и, кстати, исследователи утверждают, что они выбирали цель для работы наобум, не до конца понимая, что же они хотят найти. Астрономы пока не знают, как распределяется газ между центрами галактик, а также на их окраинах. Будущие наблюдения могут не только помочь решить эту задачу, но и показать, полностью ли газовые облака этих галактик состоят из первичного водорода или уже содержат более тяжёлые элементы. Недалеко от Земли нашли потенциально пригодную для жизни экзопланету — Новый год на ней наступает каждые 13 дней
24.05.2024 [12:34],
Геннадий Детинич
Группа астрономов на основании наблюдений с помощью нескольких телескопов обосновала открытие потенциально пригодной для жизни экзопланеты размерами с Землю. Экзопланета Gliese 12b находится у красного карлика на расстоянии всего 40 световых лет от нашей системы. Средняя температура поверхности экзопланеты составляет около 40 °C, что можно считать комфортным для возникновения той жизни, которую мы знаем по нашей планете. Родная звезда экзопланеты Gliese 12 относится к спектральному типу M3.5V — это так называемый красный карлик. Подобных звёзд большинство в нашей галактике — до 70 %. Это делает открытие потенциально обитаемой землеподобной планеты у красного карлика многообещающим событием. При этом близость планеты к звезде не делает жизнь на ней слишком рискованной. Красные карлики гиперактивны лишь на ранних этапах эволюции, а оставаться стабильными они могут сотни миллиардов и даже триллионы лет, что кратно превосходит сроки жизни нашего Солнца, например. Поэтому жизнь на них может развиваться так долго, как пожелает без оглядки на сроки жизни родной звезды. Экзопланета Gliese 12 открыта методом транзита телескопом NASA TESS. Также наблюдения подтвердили данные с телескопа CHEOPS и ряда наземных инструментов. В дополнение к транзитному методу наличие экзопланеты у звезды подтвердили данные по колебаниям её радиальной скорости, зафиксированные спектрографами HARPS-N и TRES. Полученная информация помогла рассчитать массу, размер и плотность экзопланеты. Gliese 12 оказалась чуть легче Земли (0,88 массы нашей планеты). Её радиус примерно соответствует радиусу Земли. Большой вопрос — это наличие атмосферы. Мы ведь не надеемся обнаружить биологическую жизнь на планете без атмосферы? Оба транзитных наблюдения не дали достоверной информации о наличии газовой оболочки вокруг Gliese 12. Однако в этом есть свои плюсы — она может быть разреженной и плохо различимой. Атмосфера вокруг Земли тоже неплотная. Наоборот, наличие плотной атмосферы вокруг экзопланеты может снизить шансы на возникновение жизни. Хороший пример — Венера. Плотная атмосфера и парниковый эффект создали там условия, при которых плавится свинец. Учёные надеются прояснить вопрос с атмосферой у Gliese 12 с помощью космического телескопа им. Джеймса Уэбба. Они уже запросили рабочее время на этом инструменте NASA. Поглощение чёрными дырами звёздного вещества выдало их скорость вращения
23.05.2024 [11:00],
Геннадий Детинич
Похоже, учёные разработали новые методы оценки параметров сверхмассивных чёрных дыр. У науки не так много возможностей, чтобы измерить те или иные характеристики этих таинственных объектов, и любой новый метод — это находка, ценность которой трудно переоценить. Оказалось, что агрессия чёрных дыр в отношении разрываемых ими звёзд в процессе поглощения вещества позволяет вычислить скорость их вращения. Звезда может подлететь к чёрной дыре с любой точки пространства. Такие события наблюдаются достаточно часто, что отражается в рентгеновских вспышках, когда вещество звезды падает на чёрную дыру. Точнее, на её диск аккреции. Как подозревают учёные, взаимодействие останков звезды с диском аккреции дестабилизирует последний. Это как ударить по вращающемуся волчку — его ось вращения отклонится от вертикального положения и начнёт описывать в пространстве окружность (возникнет прецессия). Группа учёных из Массачусетского технологического института справедливо предположила, что амплитуда колебания (прецессия) диска аккреции связана со скоростью вращения чёрной дыры. Если можно будет вычислить прецессию, то, зная массу объекта, можно узнать скорость его вращения. Но измерения необходимо проводить длительное время и с высочайшей точностью. Сегодня это ресурсоёмкие исследования. Но в будущем ожидается запуск ряда широкоугольных телескопов нового поколения, которые будут легко фиксировать множественные переходные процессы. Благодаря наблюдению за квазаром на удалении около одного миллиарда световых лет от нас (по зафиксированной в 2020 году рентгеновской вспышке AT2020ocn), учёные смогли вычислить скорость вращения сверхмассивной чёрной дыры в центре этого активного ядра галактики. Она оказалась примерно на уровне 25 % от скорости света. Само по себе это измерение мало что даёт науке, но многочисленные аналогичные измерения для всех наблюдаемых нами во Вселенной чёрных дыр расскажут об эволюции этих объектов ещё больше, чем мы сегодня знаем. «Джеймс Уэбб» показал Туманность Ориона в деталях невиданной ранее красоты
18.05.2024 [23:17],
Геннадий Детинич
В рамках отрабатываемой обсерваторией им. Джеймса Уэбба программы PDRs4All («область фотодиссоциации для всех») исследователи получили самые детальные снимки Туманности Ориона. Это ближайшая к нам область звездообразования, иначе называемая звёздными яслями. Каждый элемент причудливой формы из газа и пыли в этой области — это бесценный кладезь знаний о самых первых этапах зарождения звёзд, изучать которые можно десятилетиями. Мы же начнём с неземной красоты Туманности Ориона. Этот объект виден с Земли невооружённым взглядом, и учёные тысячелетиями пытались разгадать его происхождение и сущность. Расположена туманность в 1500 световых годах от Солнечной системы. В видимом диапазоне многие структуры туманности разглядеть нельзя — мешают плотные скопления пыли и газа. Инфракрасный телескоп «Джеймс Уэбб» стал тем инструментом, который способен заглянуть внутрь нагретых облаков, пыль и газ которых разогревает и разгоняет ультрафиолетовое излучение молодых и горячих звёзд. Более того, излучение молодых звёзд меняет не только физические формы пыли и газа, оно ещё запускает множество химических процессов в веществе туманности. Собственно, название программы изучения физики и химии областей звездообразования говорит само за себя — она изучат в них процессы фотодиссоциации. И здесь «Уэбб» стал незаменим. Его спектрометры не такие широкоугольные, как оптические и инфракрасные приборы, но способны предоставить в тысячу раз больше информации на каждый кадр, чем приборы, работающие с видимым светом. В Туманности Ориона учёные обнаружили свыше 600 химических веществ и соединений, которые расскажут о химии областей, где рождаются звёзды. Собрано столько данных, что их будут анализировать не одно десятилетие, говорят участники программы. Материала так много, что по этому наблюдению в журнале Astronomy & Astrophysics одновременно вышло шесть статей. И это только верхушка айсберга! «Джеймс Уэбб» засёк древнейшее в истории наблюдений столкновение сверхмассивных чёрных дыр, многое объясняющее в эволюции Вселенной
17.05.2024 [09:12],
Геннадий Детинич
В опубликованной в четверг работе в журнале The Monthly Notices of the Royal Astronomical Society группа астрономов сообщила, что обнаружила древнейшее за всё время наблюдений столкновение сверхмассивных чёрных дыр. Слияние этих колоссальных объектов произошло через 740 млн лет после Большого взрыва. Это стало доказательством, что чёрные дыры с самого начала играли значительную роль в эволюции галактик, и объяснило их стремительный рост в древности. С появлением невероятного по чувствительности в инфракрасном диапазоне космического телескопа им. Джеймса Уэбба астрономам стали открываться явления в ранней Вселенной, куда предыдущее приборы не могли заглянуть. Это период, когда Вселенная ещё не перешагнула рубеж первого миллиарда существования из нынешних примерно 13,8 млрд лет. Одной из загадок детства Вселенной стало открытие множества сверхмассивных чёрных дыр до первого миллиарда её развития. Согласно нашим теориям, эти объекты никак не успевали в то время развиться до детектируемых масс от нескольких десятков млн солнечных масс до млрд солнечных масс. На эти процессы должны уходить миллиарды лет, а не сотни миллионов, как показывают данные «Уэбба». Новое наблюдение как раз объясняет, каким образом чёрные дыры могли быстро набирать массу в древности, и это слияния, которых в те времена не должно было бы быть так много, чтобы они оказали влияние на всю последующую эволюцию галактики и самой Вселенной. Похоже, земная наука ошибалась на этот счёт. «Наши результаты показывают, что слияние является важным путём, по которому чёрные дыры могут быстро расти даже на заре космоса, — сказала в заявлении руководитель исследования и учёный из Кембриджского университета Ханна Юблер (Hannah Übler). — Вместе с другими открытиями «Уэбба» активных массивных чёрных дыр в далёкой Вселенной наши результаты также показывают, что массивные чёрные дыры формировали эволюцию галактик с самого начала». По факту исследователи засекли признаки активности древнего квазара — активного центра галактики ZS7, в центре которого живёт и быстро питается сверхмассивная чёрная дыра. Спектральной чувствительности «Уэбба» хватило, чтобы увидеть в излучении объекта две составляющие. Обе они оказались сверхмассивными чёрными дырами на грани слияния. Об этом подсказало интенсивное излучение от разогретого газа в аккреционном диске чёрных дыр, а также анализ плотности ионизированного газа. Масса одного из объектов была определена с достаточной точностью — она составила 50 млн солнечных. Масса второй чёрной дыры оценивается как примерно такая же, но точно учёные сказать не смогли — этому помешало плотное скопление газа на пути излучения. «Звёздная масса изученной нами системы [галактики ZS7] аналогична массе нашего соседа, Большого Магелланова облака, — поясняют учёные. — Мы можем попытаться представить, как могло бы повлиять на эволюцию сливающихся галактик, если бы в каждой галактике была одна сверхмассивная чёрная дыра, такая же большая, как у нас в Млечном Пути». Тем самым астрономы намекают, что наши модели эволюции галактик явно не учитывают множества аспектов их поведения на заре появления и это надо исследовать. Кстати, с июня этого года «Уэбб» будет регулярно предоставляться для наблюдений сверхмассивных чёрных дыр, так что новых открытий будет не много, а очень много. Впрочем, больше информации о столкновениях чёрных дыр предоставят учёным гравитационно-волновые обсерватории, первые из которых уже работают. Такие обсерватории следующего поколения и, особенно, космического базирования смогут фиксировать столкновения чёрных дыр далеко и обильно. Жаль только, что заработают эти инструменты не раньше середины следующего десятилетия. Учёные обнаружили необъяснимую экзопланету — она обладает плотностью сахарной ваты
14.05.2024 [15:48],
Геннадий Детинич
Среди более чем 5000 открытых учёными экзопланет нашлось настоящее чудо — планета-гигант с плотностью сахарной ваты. Есть только одна экзопланета с ещё меньшей плотностью, и обе они не вписываются ни в какие модели эволюции планет. Это тот случай, когда наука получает шанс продвинуться вперёд, и возможно совсем скоро, в чём поможет космическая обсерватория им. Джеймса Уэбба. Как сообщила сегодня в журнале Nature Astronomy международная команда учёных, на расстоянии 1232 световых года от Земли открыта одна из самых странных на сегодня экзопланет — WASP-193b. Вселенная полна чудесами, и обнаружить экзопланету с плотностью 0,059 г/см3 — это самое редкое из них. Для сравнения, плотность Земли равна 5,51 г/см3. Плотность Юпитера, с которым экзопланету WASP-193b роднят размеры, составляет 1,33 г/см3. Плотность сахарной ваты, добавим, равна 0,05 г/см3. Учёные затрудняются вообразить, из какого вещества может стоять экзопланета с подобной плотностью. Она вращается вокруг подобной Солнцу звезды WASP-193. Эта звезда примерно в 1,1 раза больше массы Солнца, а её радиус больше радиуса Солнца в 1,2 раза. Температуры у них похожие, возраст — тоже. Единственное что выделяет эту далёкую систему — экзопланета-одуванчик совершает один оборот вокруг своей звезды за 6,25 дня. В нашей системе таких планет нет. «Её чрезвычайно низкая плотность делает её настоящей аномалией среди более чем пяти тысяч экзопланет, открытых на сегодняшний день. Эта чрезвычайно низкая плотность не может быть воспроизведена стандартными моделями облучённых газовых гигантов, даже при нереалистичном предположении о структуре без сердцевины», — сетуют учёные. Изучая транзит планеты по диску звезды, исследователи вычислили, что радиус WASP-193b примерно в 1,46 раза больше радиуса Юпитера. Но её масса невероятно мала: всего 0,139 от массы Юпитера. Изучение второй такой экзопланеты — Kepler-51d, которая намного меньше WASP-193b, дало некоторую подсказку, почему обнаруженный газовый гигант очень лёгкий. По всей видимости, близкая звезда настолько сильно разогревает экзопланету, что её атмосфера распухла до чрезвычайных объёмов. В то же время планета не может находиться в таком состоянии бесконечно долго — максимум несколько миллионов лет. Однако возраст звезды составляет 6 млрд лет и она давно не молодая и не горячая, чтобы сотворить что-то подобное с атмосферой близкой экзопланеты. Одно дело, если бы события происходили на заре рождения звёздной системы. Но спустя 6 млрд лет такое невозможно. По крайней мере, с точки зрения наших знаний. Учёные намерены разгадать загадку экзопланеты WASP-193b с помощью космической обсерватории им. Джеймса Уэбба. Она создавалась, в том числе, для анализа атмосфер экзопланет. Изучение атмосферы WASP-193b будет продолжено с использованием «Уэбба». Но это будет уже другая история. Камера для поиска тёмной энергии запечатлела «Руку Бога» из молекулярного водорода
09.05.2024 [15:07],
Геннадий Детинич
Установленная на телескопе им. Виктора Бланко камера для поиска тёмной энергии получила новое изображение интереснейшего объекта — разорванной кометарной глобулы CG4, также известной как «Рука Бога». На снимке подсвеченная кроваво-красным ореолом призрачная рука тянется к спиральной галактике. Но никакой мистики в этом нет: камера чувствительна к излучению молекулярного водорода, разогретого излучением близких звёзд, а он светится красным. Кометарные глобулы впервые были обнаружены в 1976 году. Они имеют слабое свечение, поэтому плохо различимы на снимках. Также для образования подобных структур должен быть соблюдён ряд условий, поэтому повсеместно они не встречаются. Образования отдалённо напоминают кометы с ядром и хвостом, но к кометам они не имеют никакого отношения. Это плотные газопылевые облака, выбросившие хвосты под воздействием давления излучения звёзд или в процессе взрыва сверхновых. Впрочем, природа образования кометарных глобул продолжает оставаться предметом научных споров. Свет молодых и горячих звёзд в шарообразных облаках вызывает свечение молекулярного водорода, который на снимках в ближнем инфракрасном диапазоне выглядит красным, придавая облакам и хвостам глобул мистический облик. В глобулах достаточно пыли и газа для зарождения новых звёзд, что придаст им новые черты и, в итоге, развеет в пространстве. Большинство кометарных глобул обнаружено в туманности Гамма, в центре которой может находиться пульсар (нейтронная звезда), оставшийся после взрыва сверхновой. Вероятно, этот взрыв породил глобулы, которых в области туманности насчитывается свыше 30 штук. Но «Рука Бога» — это самый впечатляющий из подобных объектов. Его ядро имеет диаметр 1,5 световых лет, а хвост простирается на 8 световых лет. К тому же, разрыв глобулы действительно напоминает руку, тянущуюся к далёкой галактике. И это действительно красиво. «Джеймс Уэбб» обнаружил лучшее доказательство существования атмосферы у похожей на Землю планеты за пределами Солнечной системы
09.05.2024 [09:17],
Геннадий Детинич
Обитаемость инопланетных миров — это один из фундаментальных вопросов, на который пока нет ответа. Обнаружено свыше 5000 экзопланет, о которых наука знает исчезающе мало. Например, до сих пор не было надёжного доказательства существования атмосфер у скалистых миров, похожих на Землю. Если экзопланеты газовые гиганты без стеснения показывали свою раздутую атмосферу, то со скалистыми мирами всё было очень и очень неоднозначно. Возможности космической обсерватории им. Джеймса Уэбба открыли доступ к сбору данных по атмосферам экзопланет. Это довольно узкий канал для получения бесценной информации, но он есть и учёные им активно пользуются. Если экзопланета достаточно горяча или проходит по лику своей звезды, «Уэбб» фиксирует спектры излучения и поглощения в области наблюдений и помогает сделать вывод о наличии атмосферной оболочки и её приблизительном составе. В 2004 году на удалении 41 световой год от Земли в двойной системе 55 Рака у солнцеподобной звезды 55 Рака A учёные обнаружили горячую суперземлю 55 Cancri e (55 Рака e). Экзопланета была примерно в два раза больше Земли и немного плотнее её. С тех пор 55 Рака e была под пристальным наблюдением множества научных коллективов, но обнаружить наличие атмосферы у экзопланеты не удавалось никакими способами. Следует сказать, что планета 55 Рака e слишком горяча для возникновения там жизни. Она вращается у своей звезды примерно на четверть расстояния от Солнца до Меркурия. Её поверхность, судя по всему — это бурлящий океан магмы. Для учёных это возможность заглянуть в прошлое Земли, Венеры или Марса, когда планеты из нашей системы тоже были раскалёнными шариками. Это возможность понять процессы образования атмосфер на скалистых планетах и их взаимодействия с планетарным веществом. Наблюдения за экзопланетой 55 Рака e позволили обнаружить признаки плотной и тонкой атмосферной оболочки. По словам исследователей — это лучшее доказательство наличия атмосфер у скалистых экзопланет за всю историю наблюдений подобных объектов. Данные получены благодаря высокой чувствительности «Уэбба» в ближнем и среднем инфракрасном диапазоне. Крошечные колебания света в диапазоне от 4 до 12 мкм позволили обнаружить поглощения спектральных линий, сигнализирующие о наличии в атмосфере 55 Рака e монооксида и диоксида углерода, которые, очевидно, выделяются и поддерживаются (что наиболее важно в данном исследовании) глобальным магматическим океаном. Иначе говоря, скалистый мир самостоятельно создаёт и поддерживает атмосферную оболочку. Первичную атмосферу давно ободрало бы излучение близкой звезды. Также «Уэбб» определил, что дневная сторона экзопланеты холоднее, чем предсказывает моделирование. Измерения показали, что температура поверхности на дневной стороне составляет 1540 °C. Если бы на планете не было атмосферы, она разогревалась бы до 2000 °C или около того. К охлаждению может привести либо перемещение лавовых потоков, либо атмосферных масс с дневной на ночную сторону (планета, суда по всему, находится в приливном захвате и всё время обращена к своей звезде одной стороной). Лаву можно исключить — явно не та динамика. Тем самым получено ещё одно косвенное доказательство наличия атмосферы у 55 Рака e. «В конечном счете, мы хотим понять, какие условия позволяют скалистой планете поддерживать богатую газом атмосферу: ключевой компонент пригодной для жизни планеты», — говорят исследователи. Чёрные дыры в ранней Вселенной развивались быстрее галактик, показали наблюдения «Джеймса Уэбба»
08.05.2024 [15:44],
Геннадий Детинич
В вопросе эволюции черных дыр много тёмных пятен. Космическая обсерватория им. Джеймса Уэбба позволяет прояснить ряд из них, поскольку она может заглянуть во времена ранней Вселенной. Например, «Уэбб» способен оценить размеры чёрных дыр и галактик 13 млрд лет назад и дать подсказку о том, что из них эволюционировало быстрее. Знание начальных условий многое прояснит в эволюции Вселенной и наблюдаемых в ней объектов. Группа астрономов из Массачусетского технологического института опубликовала в журнале Astrophysical Journal работу, в которой рассказала об исследовании шести квазаров на удалении около одного миллиарда лет от Большого взрыва. Квазары — это активные центры галактик. Фактически — это диск аккреции вокруг сверхмассивной чёрной дыры в центре галактики, в котором вещество разогревается так сильно, что светит на несколько порядков ярче всех остальных звёзд в галактике-хозяйке. И «Уэбб» стал тем инструментом, который помог на безумном удалении отделить свет звёзд от света аккрецирующих дисков. Измерения показали, что чёрные дыры в центрах древних галактик имеют массы порядка 10 % от массы окружающих их звёзд. С одной стороны, это не кажется слишком много. Однако следует принимать во внимание, что сверхмассивные чёрные дыры в центрах галактик в нашей части Вселенной имеют массы до 0,1 % от масс звёзд в галактиках-хозяйках. Данное наблюдение даёт возможность сделать вывод, что в ранней Вселенной чёрные дыры эволюционировали быстрее галактик. Более того, сверхмассивные чёрные дыры, судя по данной работе, могли возникнуть из более тяжёлых зародышевых первичных чёрных дыр, чем это предполагалось раньше. В противном случае учёным нечем объяснить тот факт, что всего через 1 млрд лет после Большого взрыва чёрные дыры развились до масс в несколько миллионов и миллиардов масс Солнца. «Джеймс Уэбб» запечатлел невиданные детали туманности Конская Голова
30.04.2024 [15:04],
Геннадий Детинич
Туманность Конская Голова — это не только один из самых фотогеничных объектов во Вселенной, но также источник ценных данных о физических и химических процессах в межзвёздных средах газа и пыли. Одна из групп астрономов использовала телескоп «Джеймс Уэбб» для изучения структур этого объекта и впервые получила изображения пограничных областей туманности в беспрецедентных деталях. Туманность Конская Голова расположена на удалении 1500 световых лет от Земли. Это достаточно плотный сгусток пыли и газа, возникший в результате коллапса облака в этой области пространства. Это облако подсвечено ультрафиолетовым светом от расположенной недалеко молодой и горячей звезды, свет которой также меняет химический состав газа и рассеивает его и пыль. В конечном итоге туманность тоже со временем исчезнет под давлением излучения звёзд, но для Конской Головы это случится примерно через 5 млн лет. С помощью инфракрасных приборов «Уэбба» учёные впервые получили изображение «гривы» Конской Головы — пограничной области пространства длиной 0,8 световых лет. Исследователей интересовал вопрос поведения пыли и газа в области рассеивания, где эти процессы видны наиболее отчётливо. Благодаря новым наблюдениям удалось лучше представить объёмную картину распределения пыли и газа туманности в области рассеивания и увидеть, как вещество тонкими струйками уносится в пустое пространство. Позже будут проанализированы спектральные данные, полученные с помощью «Уэбба». Ультрафиолет в процессе фотодиссоциации меняет химический и физический состав газопылевой среды туманности, а это ключ к пониманию эволюции вещества во Вселенной. Такие знания на дороге не валяются, и «Уэбб» стал незаменимым инструментом на пути к их получению. Китайский телескоп «Зонд Эйнштейна» прислал первые пробные снимки —они впечатлили ученых деталями и находками
30.04.2024 [11:12],
Геннадий Детинич
На 7-м семинаре консорциума Einstein Probe consortium в Пекине были представлены первые снимки неба в рентгеновском диапазоне, сделанные китайским рентгеновским телескопом «Зонд Эйнштейна» (Einstein Probe). Также на борту обсерватории установлен европейский прибор, который имеет особую ценность. Все снимки пока калибровочные. Научная работа обсерватории начнётся в середине июня. Но даже сейчас аппарат поражает своими возможностями. Обсерватория «Зонд Эйнштейна» была запущена в космос 9 января 2024 года с космодрома Сичан на юго-западе Китая с помощью ракеты «Чанчжэн 2C». Обсерватория расположилась на орбите Земли на высоте около 600 км. Научная работа рассчитана на три года наблюдений. За своё участие в проекте европейские учёные получат около 10 % рабочего времени обсерватории. Основной поток данных будет генерировать широкоугольный китайский рентгеновский телескоп WXT (Wide-field X-ray telescope). Его поле зрения составляет 1345 квадратных градусов, что позволяет ему одним кадром захватывать площадь неба, равную 10 тыс. дискам полной Луны. Телескоп делает полный снимок неба каждые 5 часов, что позволит учёным обнаруживать массу переходных событий, которые раньше ускользали от них. Это джеты нейтронных звёзд, падение вещества на чёрные дыры, взрывы сверхновых и другие яркие в рентгеновском излучении события. Европейский телескоп FXT (Follow-up X-ray Telescope) — это узконаправленный прибор с очень высокой чувствительностью в рентгеновском диапазоне. Если WXT найдёт что-то особенно интересное, FXT сможет рассмотреть это с превосходным разрешением. Также оба телескопа помогут в поиске объектов и событий, обнаруженных в других диапазонах, например, гравитационно-волновыми обсерваториями, гамма-телескопами и даже оптическими и инфракрасными телескопами. Даже калибровочные снимки поразили учёных своей детализацией и возможностями. В процессе настройки бортовых систем и приборов обсерватория «Зонд Эйнштейна» обнаружила 19 февраля 2024 года первый переходный процесс и, позже, ещё 14 временных источников рентгеновского излучения, а также 127 вспышек звёзд. Можно только представить, какой поток ранее недоступной информации пойдёт с началом работы обсерватории через полтора месяца! По масштабу это станет чем-то близким к началу работы «Уэбба», хотя, конечно, новые рентгеновские обсерватории запустили NASA и JAXA в добавок к уже летающим. Но такого масштабного проекта как «Зонд Эйнштейна» пока нет ни у кого. Используя опыт этой обсерватории, ЕКА планирует в будущем запустить собственную космическую рентгеновскую обсерваторию NewAthena. Однако пока этот проект не вышел из стадии обсуждения. В будущем NewAthena станет крупнейшей рентгеновской обсерваторией в истории. Добавим, китайский телескоп Wide-field X-ray собирает рентгеновское излучении оптикой типа «глаз омара». Это трубчатые конструкции, которые за счёт отражения от внутренних стенок позволяют усиливать рентгеновский свет. Подробнее об этой оптике мы рассказывали раньше, например, здесь. Телескоп «Хаббл» отметил 34-ю годовщину работы красочным изображением туманности Гантель
25.04.2024 [13:55],
Геннадий Детинич
За 34 года на орбите телескоп «Хаббл» собрал данные о таком множестве событий, объектов и явлений во Вселенной, объёма которых от него не ожидали даже создатели. Проект стал самым продуктивным среди всех миссий NASA. Этому помогло то, что телескоп создавался как платформа, доступная для ремонта и модернизации. С 2011 года «Хаббл» лишился такой возможности, но задела оказалось достаточно, чтобы он мог проработать до конца текущего десятилетия. Годовщину работы «Хаббла» астрономы NASA отметили красочным изображением планетарной туманности Гантель, которая находится от нас на расстоянии 3400 световых лет в созвездии Персея. Туманность возникла после того, как звезда после выгорания топлива сбросила внешнюю оболочку и та со скоростью свыше 3 млн км/ч начала разлетаться по космосу. Но форма туманности оказалась необычна для такого явления. Она приняла форму перетянутого посередине шара или гантели, за что и получила такое название. Предполагается, что завершившая свой век звезда могла иметь партнёра по системе. Уничтожение партнёра или его влияние на динамику сброса оболочки может объяснить ту странную форму останков звезды, которую наблюдал «Хаббл». Внутри «гантели» телескоп определил сгустки пыли и газа протяжённостью от 17 до 56 млрд км. Масса каждого из таких сгустков примерно равна массе трёх наших планет вместе взятых, что в итоге может помочь восстановить момент до сброса звездой своей оболочки. В последние годы «Хаббл» несколько раз останавливали для дистанционной диагностики возникающих неполадок. Пока действовала программа «Спейс Шаттл» его ремонтировали и улучшали, а также поднимали повыше на орбите, чтобы он не вошёл в атмосферу. Телескоп вращается на высоте примерно 500 км над поверхностью планеты. Через несколько лет его нужно будет либо поднимать ещё раз, либо контролируемо сводить с орбиты. В любом случае для этого нужны средства, которых пока нет. По неподтверждённой информации, NASA попросило компанию SpaceX разработать систему корректировки орбиты для «Хаббла», но подробностей на этот счёт нет. Открыта вторая по близости к Земле чёрная дыра, и она оказалась рекордно большой
16.04.2024 [14:40],
Геннадий Детинич
Удивительно, но в относительной близости к Земле скрывалась необычно большая чёрная дыра звёздной массы. Открытие сделано на основе данных европейского астрометрического спутника «Гайя» (Gaia). В двойной системе вместе со звездой-гигантом обнаружена чёрная дыра массой 33 солнечных масс. Это самый крупный такого рода объект, обнаруженный в Млечном Пути и это вторая по близости к Земле чёрная дыра в нашей галактике. Ранее в каталоге «Гайи» внимание астрономов привлекла гигантская звезда Gaia DR3 4318465066420528000 (Gaia BH3). Звезда находится на удалении 2000 световых лет от Солнечной системы в созвездии Орла. Наблюдение за звездой с помощью эшелле-спектрографа UVES на наземном телескопе VLT Южной европейской обсерватории в Чили показало, что у звезды есть невидимый партнёр, параметры которого оказались достаточно необычными, что позволило прийти к выводу, что это чёрная дыра с рекордной звёздной массой. Расчёты показывают, что звезда и чёрная дыра совершают один оборот по орбите за 11,6 года. Спектральный анализ показал, что звезда бедна металлами и, следовательно, чёрная дыра также образовалась из звезды-гиганта с низкой металличностью. Это первое такое открытие. Именно звёзды с низкой металличностью потенциально способны образовывать рекордно массивные чёрные дыры после своей смерти, так как они в процессе жизни не так активно «разбазаривают» вещество, как звёзды с высоким содержанием металлов. До обнаружения чёрной дыры в системе Gaia BH3 самой массивной чёрной дырой звёздной массы считался объект Лебедь Х-1 массой 21 солнечная на удалении около 7000 световых лет от нас. Самая близкая к нам чёрная дыра солнечной массы расположена в 1500 световых годах — это чёрная дыра Gaia BH1 с массой в 10 солнечных. Также была найдена ещё одна чёрная дыра подобной массы — Gaia BH2, которая расположена на удалении 3800 световых лет от Солнечной системы. Новое открытие затмевает предыдущие находки и делает его крайне интересным. Астрономы обнаружили на Земле пригодные для жизни условия — это поможет в поиске землеподобных экзопланет
13.04.2024 [21:01],
Геннадий Детинич
Некоторое время назад в журнале The Astrophysical Journal вышла статья, в которой приводятся обоснования методики поиска пригодных для жизни землеподобных экзопланет. Разработчики проекта LIFE (Large Interferometer For Exoplanets) на примере спектральных сигнатур Земли в ближнем инфракрасном диапазоне доказали, что они смогли бы определить пригодность нашей планеты к жизни с расстояния в 30 световых лет. Космическая обсерватория Large Interferometer For Exoplanets или, по-русски, большой интерферометр для экзопланет разрабатывается учёными под руководством специалистов из Швейцарской высшей технической школы Цюриха (ETH Zurich). Это должна быть четвёрка примерно 3-метровых инфракрасных телескопов, разнесённых друг от друга на расстояние до 600 м, что эквивалентно одному зеркалу диаметром до 600 м. Телескоп LIFE будет базироваться в точке Лагранжа L2 — там же, где сейчас работает «Джеймс Уэбб». Проект должен быть реализован в начале 30-х годов. Свежей работой учёные из Цюриха доказали, что лежащая в основе интерферометра LIFE методика будет надёжно работать. По крайней мере, с её помощью они смогли обнаружить пригодные для зарождения жизни условия на Земле. Это была не имитация, а проверка на самом высоком уровне — на реальных спектрах. Данные об инфракрасных спектрах Земли учёные получали с космического зонда NASA Aqua и затем анализировали с использованием соответствующих фильтров. Учёные понимали, что с расстояния в десятки, а то и сотни световых лет экзопланеты будут выглядеть для инструментов человечества как точки или, в лучшем случае, как размытые пятна. Поэтому опираться надо будет на усреднённые показатели. «Наша цель — обнаружить химические соединения в спектре света, которые указывают на жизнь на экзопланетах», — пояснила Саша Куанц (Sascha P. Quanz), руководитель LIFE initiative. Исследователи специально ограничили экспериментальные данные, чтобы они напоминали спектры экзопланет, полученные из глубин Вселенной. Также были проанализированы спектры, полученные с разных сторон Земли — с полюсов и экватора. Ведь мы вряд ли узнаем об ориентации экзопланеты, поэтому важно было понять, как отличаются спектры с разных точек обзора. К счастью, отличий не оказалось. Если экзопланета будет пригодна для жизни земного типа (а другой мы не знаем), то без разницы каким боком она будет обращена в нашу сторону. Зато сезонные изменения, как выяснилось, повлияли на показания достаточно неопределённым образом. Наблюдения в январе и июне не дали чётких различий, и судить по полученным данным о климате и атмосфере было затруднительно. Ключевой вывод исследования обнадёживает: если бы подобный LIFE космический телескоп наблюдал за планетой Земля с расстояния около 30 световых лет, то он обнаружил бы признаки обитаемого мира с умеренным климатом. Команда смогла определить концентрацию в атмосфере CO2, воды, озона и метана в инфракрасных спектрах атмосферы Земли, а также такие условия на поверхности, которые способствовали появлению воды. Признаки наличия озона и метана особенно важны, поскольку эти газы производятся биосферой Земли. Физики обосновали существование тёмной материи повышенной плотности
13.04.2024 [15:14],
Геннадий Детинич
Космическая обсерватория им. Джеймса Уэбба помогла сделать ещё одно интересное открытие или вернее будет сказать предположение. В процессе наблюдения за галактикой JWST-ER1g на удалении примерно 3,7 млрд лет после Большого взрыва выяснилось, что она может содержать намного более плотную тёмную материю, чем обычно. Учёные доказали это используя моделирование и данные наблюдений и это редкий шанс взглянуть на мифическую субстанцию под новым углом. Галактика JWST-ER1g была открыта «Уэббом» в сентябре 2023 года. Она оказалась идеальным примерном кольца Эйнштейна — явления гравитационного микролинзирования, когда дальний объект оказывается размазан по кольцу вокруг гравитационной линзы. Определив этот далёкий объект и учтя все другие параметры можно вычислить силу гравитационной линзы. В данном случае это означает, что галактика JWST-ER1g может быть взвешена и оценена как с позиции массы видимого вещества, так и с точки зрения находящейся в ней массы тёмной материи. Сложив одно и другое, должна получиться сила, преломляющая свет в соответствии с известными нам законами. Наблюдения и расчёты показали, что свет от далёкого объекта преломляется сильнее, чем это допускала бы масса видимого вещества и расчётная масса тёмной материи в составе гало галактики JWST-ER1g. Поскольку с видимым веществом — звёздами и газом — всё просто, то выходит, что тёмной материи в гало JWST-ER1g явно больше, чем это допускают наиболее распространённые гипотезы и образованное галактикой гало. Сложившаяся ситуация позволила учёным предположить и позже математически доказать, что тёмная материя в галактике JWST-ER1g уплотнилась под воздействием видимого вещества и самой тёмной материи. Это сделало случай наблюдения за JWST-ER1g уникальным и удобным для дальнейшего изучения свойств тёмной материи, которой, по принятым расчётам, примерно 85 % от всего находящегося во Вселенной вещества. |