Сегодня 21 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → аэс
Быстрый переход

Первый построенный в США за 30 лет атомный реактор достиг начальной критичности — реакция деления стала самоподдерживающейся

Компания Georgia Power сообщила, что реактор проекта AP1000 компании Westinghouse на площадке АЭС Vogtle в штате Джорджия запустил самоподдерживающуюся реакцию ядерного деления. Это первый построенный за 30 лет в США ядерный реактор и первый по проекту AP1000. Ввод энергоблока в эксплуатацию ожидается к маю или июню этого года после комплексных испытаний реактора и повышения нагрузки до номинального значения 1250 МВт.

 Источник изображения: Georgia Power

Энергоблок Vogtle 4. Источник изображения: Georgia Power

Строительство двух реакторов AP1000 поколения III+ с полностью пассивными системами безопасности и модульной конструкцией началось в 2013 году. Вскоре с реализацией проекта начались трудности, что в итоге заставило компанию Toshiba оформить банкротство дочерней компании Westinghouse и искать деньги, чтобы не обанкротиться самой. Как следствие этого процесса подразделение по производству флеш-памяти Toshiba было продано консорциуму сторонних компаний.

Достройкой реактора Vogtle 3 занялись местные компании Southern Nuclear и Georgia Power, с чем они справились. До этого четыре реактора по проекту AP1000 смогли построить в Китае местные компании. Юридически продажа Westinghouse корпорациям Cameco и Brookfield Renewable Partners должна быть закрыта до конца текущего года. Toshiba купила Westinghouse в 2006 году.

На площадке АЭС Vogtle строится ещё один реактор AP1000 — Vogtle 4. Для Westinghouse и её новых хозяев продолжение работы и запуск второго модуля важны в дальнейшей перспективе. Представители Westinghouse уже заключили предварительную договорённость о строительстве до шести реакторов AP1000 в Польше. Аналогичные договорённости готовятся с властями Болгарии и Украины. Причём для украинских АЭС Westinghouse производит топливные сборки, что откроет перед ней возможность поставлять топливо на существующие атомные электростанции, построенные по советским и российским проектам.

В отличие от Европы США не собираются отказываться от мирного атома и по мере сил восстанавливают пробелы, сделанные предыдущими властями в отношении поддержки атомной индустрии. Достижение реактором Vogtle 3 стадии первой критичности подтверждает, что многое сохранено. И, кстати, если верить слухам, специалисты Westinghouse сейчас помогают французам достроить атомные реакторы во Франции. Местная компания EDF, как выясняется на практике, тоже растеряла компетенции, но это уже другая история.

Rolls-Royce тоже пригласили построить малый модульный реактор в Европе — начнут с Польши

Список компаний, выбранных для строительства на территории Европейского союза малых модульных атомных реакторов, пополнился британской Rolls-Royce. Ранее для аналогичных программ были выбраны компании NuScale и GE Hitachi. Компания Rolls-Royce подписала Меморандум о взаимопонимании с польской компанией Industria, тогда как NuScale рассчитывает начать покорение Европы с Румынии, а GE Hitachi — с Эстонии.

 Источник изображения: Rolls-Royce

Источник изображения: Rolls-Royce

Следует сказать, что основная идея государственной компании Industria, которая является частью открытого акционерного общества Industrial Development Agency JSC (IDA), заключается в создании сети атомных электростанций для производства «низкоуглеродного» водорода. Будущий кластер, помимо обеспечения польских потребителей электроэнергией, будет производить от 50 тыс. т водорода в год.

Первый типовой проект малого модульного реактора Rolls-Royce предусматривает энергетический объект мощностью 470 МВтэ. Это уменьшенная копия водяного реактора под давлением, что облегчает проектные работы и сертификацию, но ведёт к кратному увеличению объёмов ядерных отходов (мощность реактора падает на порядок, а объём материалов для реактора уменьшается не столь сильно). В Великобритании первый реактор по данному проекту обещают ввести в эксплуатацию в 2029 году, но разрешение на строительство будут получать не раньше середины 2024 года.

Согласно предварительной договорённости с Industria, первый в Польше кластер из реакторов Rolls-Royce может включать до трёх установок. Также рассматривается возможность заменить более 8 ГВт мощностей угольных электростанций в южной Польше на ММР Rolls-Royce с 2030 по 2040 годы.

Это не единственный атомный проект для Польши. Страна находится в начале процесса широкомасштабного перехода на атомную энергию в рамках планов по декарбонизации. Так, в прошлом году правительство страны выбрало реакторы AP1000 компании Westinghouse для первой части плана по строительству к 2040 году шести полномасштабных реакторов мощностью до 9 ГВт, а южнокорейская Korea Hydro & Nuclear Power согласовала отдельный план строительства АЭС в Патнове с польскими компаниями ZE PAK и Polska Grupa Energetyczna.

Не менее амбициозные планы по строительству в Польше малых модульных реакторов. В частности, неделей ранее компания PKN Orlen заявила, что готовится объявить места для размещения до 79 реакторов SMR BWRX-300 компании GE Hitachi Nuclear Energy. Также в прошлом месяце французская EDF подписала соглашение с компанией Respect Energy о разработке проектов ядерной энергетики на основе технологии Nuward SMR.

В июле 2022 года производитель меди и серебра компания KGHM Polska Miedz SA подала заявку в Национальное агентство по атомной энергии Польши об оценке электростанции VOYGR SMR компании NuScale. KGHM заявляет, что её целью является развертывание первой электростанции NuScale VOYGR SMR в Польше уже в 2029 году. Черты будущего энергетики Польши и значительной части Европейского союза меняются так быстро и так сильно, что остаётся только удивляться, о чём все думали раньше?

Hitachi построит в Эстонии свой малый модульный реактор — это будет первая АЭС в стране

Эстонская компания Fermi Energia выбрала малый модульный реактор BWRX-300 компании GE Hitachi для первой в стране атомной электростанции. Реактор станет для Эстонии и зарубежных клиентов источником «чистого» электричества мощностью 300 МВтэ. Впрочем, для начала строительства придётся серьёзно изменить законодательство страны в области атомного регулирования, что должно произойти в кратчайшие сроки.

 Малый модульный реактор в представлении художника. Источник изображения: GE Hitachi

Малый модульный реактор BWRX-300 в представлении художника. Источник изображения: GE Hitachi

В сентябре 2022 года эстонская Fermi Energia объявила конкурс на проекты малых модульных реакторов, к главным преимуществам которых относятся сравнительно быстрое строительство, относительно небольшие затраты и повышенная безопасность эксплуатации. На конкурс были представлены проекты установок GE Hitachi, NuScale и Rolls-Royce. Заявки подавались к декабрю с полной технической документацией, необходимой для оценки стоимости строительства. По словам компании, при выборе технологии критериями были технологическая зрелость, создание эталонной установки, экономическая конкурентоспособность и участие эстонских предприятий в цепочке поставок.

На днях Fermi Energia сообщила о сделанном выборе. В качестве рабочего проекта выбран реактор BWRX-300 GE Hitachi. На этот выбор самое решительное влияние оказало то, что аналогичная установка будет построена в Канаде. Точнее проект BWRX-300 принят канадским регулятором для лицензирования и вскоре может начаться подготовка к строительству. Всё идёт к тому, что это будет вообще первый малый модульный реактор, построенный на североамериканском континенте. Это пока ещё не рабочая установка (как требовали условия контракта), но у остальных разработчиков нет даже этого. Реактор NuScale прошёл ряд важных этапов в получении лицензии, но заявка на начало строительства в США будет подаваться не раньше первого квартала 2024 года.

Другим важным преимуществом реактора BWRX-300 необходимо считать то, что он использует традиционное топливо, тогда как для работы реактора NuScale потребуется топливо на основе металлического высокопробного низкообогащённого уранового топлива (HALEU) с содержанием изотопа урана-235 на уровне 20 % (в обычном топливе его не более 5 %). В достаточном количестве топливо HALEU есть только у России и эстонская компания, вероятно, посчитала такую зависимость лишней.

 Реактор BWRX-300

Реактор BWRX-300

Наконец, принцип работы реактора BWRX-300 опирается на давно используемую в больших установках схему кипящих водо-водяных реакторов, у которых вода превращается в перегретый пар в активной зоне. Это всё многократно проверено на практике и очень надёжно, но при этом за счёт масштабирования в меньшую сторону приведёт к кратному увеличению радиоактивных отходов. Пожалуй, это единственный серьёзный минус у ММР, построенным по классическим схемам.

Выбор реактора BWRX-300 для реализации в Эстонии запускает процедуру разработки детального проекта для составления сметы. Дальше в дело должны вступить законодатели, чтобы создать правовую основу для реализации проекта. После этого будет запущен поиск и сертификация мест для строительства реактора. К моменту запуска стройки в Эстонии проект BWRX-300 должен во всю развиваться в Канаде, на что эстонцы сильно рассчитывают, так как в мире нет ещё ни одного такого реактора и чей-то опыт поможет избежать многих ошибок на месте. В конечном итоге ММР BWRX-300 компания Fermi Energia рассчитывает запустить к Рождеству 2031 года. Для GE Hitachi, которая надеется подмять под себя европейский атомный рынок, это будет делом чести.

Первый в Северной Америке малый модульный реактор готова построить Канада, а не США

Компания GE Hitachi Nuclear Energy (GEH) сообщила, что подписала контракт на строительство первого в Северной Америке коммерческого малого модульного реактора (ММР). Установка BWRX-300 будет построена совместно с канадскими компаниями Ontario Power Generation (OPG), SNC-Lavalin и Aecon рядом с АЭС «Дарлингтон» на северном берегу озера Онтарио в Кларингтоне, что в Канаде.

 Нажмите, чтобы увеличить. Источник изображения: GE Hitachi Nuclear Energy

Нажмите, чтобы увеличить. Источник изображения: GE Hitachi Nuclear Energy

Реактор BWRX-300 может начать работу на год–два раньше малого модульного реактора компании NuScale, которая стремится первой построить ММР в США. Предполагается, что на площадке Ontario Power Generation реактор BWRX-300 будет запущен в 2028 году, тогда как запуск реактора NuScale на площадке в Национальной лаборатории Айдахо отодвигается до 2029 года или на более позднее время.

Будет интересно проследить, если Канада и GE Hitachi перехватят инициативу. И GE Hitachi, и NuScale стремятся стать первыми компаниями на рынке ММР и за североамериканскими проектами последуют другие, включая европейские.

Реактор BWRX-300 относится к десятому поколению кипящих водо-водяных реакторов (BWR, boiling water reactor). Заявленная электрическая мощность установки достигает 300 МВтэ. К преимуществам BWRX-300 можно отнести простую конструкцию с естественной циркуляцией воды и пассивными системами безопасности, а также использование комбинаций обычного топлива, а не топлива типа HALEU, без которого не будет работать реактор NuScale и другие перспективные атомные реакторы.

За основу BWRX-300 был взят реактор ESBWR (Economic Simplified Boiling Water Reactor), ранее сертифицированный американским регулятором NRC. Тем самым получение сертификатов и лицензии для BWRX-300 шло по проторенному пути. Американский и канадский ядерные регуляторы продолжают координировать действия по реактору BWRX-300, что, к примеру, облегчит строительство такой же установки в США, а она рассматривается в штате Теннеси.

По контракту с канадскими компаниями GEH предоставит проект реактора, что будет включать ряд работ по проекту, в том числе проектирование, поддержку инженерного лицензирования, строительство, испытания, обучение и ввод в эксплуатацию. Наработки помогут продвинуть реакторы GEH в другие страны. Предварительные договорённости подписаны с компаниями из Польши и Великобритании. Для Hitachi это будет первый заказ на реактор с 2008 года. Важно будет запустить этот проект по возможности в срок и без превышения сметы, чего давно не наблюдалось при строительстве полномасштабных АЭС.

Вскоре в США заработает первая биткоин-ферма с прямым питанием от атомной электростанции

Высокая сложность добычи биткоина сделала эту криптовалюту одной из самых неэкологичных. По некоторым данным, в 2022 году добыча биткоина повлекла за собой выброс 86,3 млн т углекислого газа. Более того, смена алгоритма получения Ethereum подчеркнула антиклиматическую сущность биткоина и заставила что-то с этим делать. В частности, всё чаще стали говорить о питании биткоин-ферм от атомных электростанций, ставших маяками «зелёной» энергетики.

 Источник изображения: Cumulus

Источник изображения: Cumulus

Сообщается, что вскоре в США заработает первая в стране биткоин-ферма с прямым питанием от атомной электростанции. Площадку под неё предоставит компания Talen Energy, которая на прошлой неделе сообщила о завершении строительства помещений под ЦОД рядом с атомной электростанцией Susquehanna Steam Electric Station в Пенсильвании. За майнинг на новой площадке будет отвечать подразделение Cumulus Coin Talen Energy, а гиперскейлеров будет курировать другое подразделение — Cumulus Data.

Первой на площадке с прямым подключением к АЭС намерена начать добывать биткоин компания TeraWulf. По большому счёту все получаемые ею биткоины будут близки к нулевому выбросу углекислого газа. Строго говоря, это не так. Но ряд расчетов показывают, что атомная энергетика примерно сопоставима по уровню выбросов CO2 с возобновляемыми источниками энергии (полностью свободными от выбросов парниковых газов не будут ни одни источники, ведь производство оборудования и логистика всё равно будут сопровождаться выбросами CO2).

Переход алгоритма добычи Ethereum с доказательство выполнения работы (proof-of-work) на доказательство доли владения (proof-of-stake) снизило выработку CO2 на 99 %, но пока нет даже намёков на то, что добыча биткоина пойдёт по аналогичному пути. Остаётся искать для получения биткоинов чистые источники энергии и определённые подвижки в этом направлении есть — это практика закупки электричества у операторов солнечных и ветряных электростанций. Атомная энергетика также стала в один ряд с такими источниками, о чём два-три года назад даже не думали. Но теперь всё изменилось, и эти изменения будут затрагивать всё больше и больше сфер, включая майнинг криптовалют.

В США лицензировали первый ядерный реактор нового типа — малый и модульный

Комиссия по ядерному регулированию США (NRC) выпустила финальный пакет нормативных документов, необходимых для лицензирования постройки и эксплуатации малого модульного реактора (SMR) компании NuScale Power. Это седьмой проект реактора в истории ядерной энергетики США и первый малый модульный, который был одобрен регулятором для использования в стране. Но самый первый в мире реактор NuScale может появиться в Польше.

 Источник изображений: NuScale Power

Источник изображений: NuScale Power

Комиссия NRC приняла заявку NuScale на сертификацию проекта атомной станции с числом модулей до двенадцати штук мощностью 50 МВтэ каждый в марте 2018 года. Впоследствии базовая мощность каждого модуля была увеличена до 77 МВтэ. Регулятор выпустил финальный технический обзор проекта в августе 2020 года. В июле 2022 года Комиссия NRC проголосовала за сертификацию проекта. Полная конструкторская документация проекта была завершена в конце прошлого года. Теперь регулятор завершил лицензирование станции, что позволит внести малый модульный реактор в национальный реестр объектов, допущенных к постройке и эксплуатации. Решение вступает в силу с 21 февраля.

Лицензирование проекта означает, что любое коммунальное предприятие в США, которое пожелает построить атомную электростанцию по проекту NuScale, может получить комбинированную лицензию на строительство и эксплуатацию этого объекта. От заказчика потребуется лишь лицензировать выбранную для этого площадку.

В США первую АЭС по проекту NuScale из шести модулей собирается строить компания Utah Associated Municipal Power Systems (UAMPS). АЭС в качестве демонстрационной установки будет построена на площадке в Национальной лаборатории Айдахо. UAMPS планирует подать заявку на получение комбинированной лицензии в NRC в первом квартале 2024 года, первый модуль станции будет введен в эксплуатацию к 2029 году, а полная эксплуатация станции стартует в 2030 году (на два–три года позже ранее озвученных планов).

Может так случиться, что первый в мире малый модульный реактор NuScale Power начнёт работать за пределами США. Ранее компания заключила соглашения о развёртывании установок SMR в таких странах, как Украина, Польша, Румыния, Чехия и Иордания. Более того, с польским поставщиком меди и серебра KGHM Polska Miedź SA заключено окончательное соглашение, которое предполагает запуск реактора в Польше уже в 2029 году.

Реактор NuScale VOYGR не является революционным продуктом. Он использует те же принципы работы, что и большие реакторы. В нём обычная система из топливных сборок, вода под давлением и газовые турбины (генераторы). Новым будет то, что реактор и большинство контуров изготавливаются на заводе почти в законченном виде. Это значительно ускоряет завершение проектов и делает их менее дорогостоящими. Есть опасения, что подобный подход до 35 раз увеличит объём ядерных отходов, но это будет компенсировать генерация всё больших объёмов чистой электроэнергии, к которой временно приравняли атомную энергетику.

Samsung завершил разработку концепта плавучей АЭС

Южнокорейская судостроительная компания Samsung Heavy Industries (SHI) завершила разработку концептуального проекта CMSR Power Barge — плавучей атомной электростанции на базе компактных реакторов на расплавах солей. В зависимости от числа реакторов (модулей) судно будет вырабатывать от 200 до 800 МВт электроэнергии. Это позволит снизить углеродный след и доставить электричество в места, где его не хватает, включая промышленные объекты.

 Источник изображения: SHI/Seaborg

Источник изображения: SHI/Seaborg

Строго говоря, проект «атомной баржи» Samsung базируется на проекте реактора датской компании Seaborg Technologies, основанной в 2015 году. В своё время проект реактора на расплавах солей (CMSR) компания Seaborg передала на одобрение американскому регулятору. В декабре 2020 года Американское бюро судоходства (ABS) завершило квалификацию новой технологии, что означало признание концепции в рамках технико-экономического обоснования, а это первый этап при подготовке к детальному проектированию.

Полученное одобрение позволило компании Seaborg привлечь к проекту судостроительную компанию Samsung Heavy Industries, с которой в апреле 2022 года было заключено соответствующее соглашение. Фактически Samsung должна была создать модульное плавучее шасси под реактор CMSR, с чем компания успешно справилась до конца 2022 года и что позволило получить базовую сертификацию проекта от Американского бюро судоходства.

Бюро выдало компании SHI так называемое Утверждение в принципе (AIP) на использование конструкции реактора CMSR в составе судна Power Barge. Документ подтверждает, что предложенная новая концепция, включающая новую технологию, соответствует требованиям наиболее применимых правил и руководств ABS, а также соответствующим отраслевым кодексам и стандартам при соблюдении ряда условий. Иными словами, концепция выглядит осуществимой — делайте детальный проект.

Samsung Heavy Industries описывает проект как «слияние ядерной энергетики и судостроительных технологий», добавляя, что это «атомная электростанция на море с паротурбинными генераторами и передающими/распределительными устройствами в плавучем корпусе». Компания утверждает, что по сравнению с обычными наземными атомными электростанциями «выбор площадки и ограничения по объектам относительно менее сложны, период строительства составляет около двух лет, а стоимость низкая».

Реактор на расплаве солей использует его как теплоноситель и одновременно как носитель по передаче топлива в реактор. В случае аварии расплав просто застынет внутри конструкции и не приведёт к выбросу радиоактивных материалов, поскольку взрывы исключены. На следующем этапе проектирования судно и реактор будут разработаны во всех деталях, чтобы ввести первые суда CMSR Power Barge в эксплуатацию с 2028 года.

«Энергетические баржи» SHI и Seaborg кроме снабжения электричеством обычных объектов будут также использоваться для опреснения морской воды и для выработки водорода и аммиака. Установки обещают внести посильный вклад в снижение выбросов парниковых газов, с чем атомная энергетика неплохо справлялась до сих пор и обещает справиться в будущем.

В России первый в стране плавучий атомный реактор малой мощности (АСММ) — «Академик Ломоносов» — мощностью 70 МВт, был введён в строй в 2020 г. На очереди реализация новых проектов. Но это уже другая история.

Атомная энергия в энергобалансе Южной Кореи заняла больше 30 % и идёт на рекорд

По свежей информации Южнокорейской энергетической биржи, объём торговли ядерной энергией по состоянию на ноябрь составил 152 958 ГВт·ч — это 30,7 % от общего объёма энергобаланса страны в 498 757 ГВт•ч. Неожиданно резкое похолодание в декабре означает, что спрос на электричество вырастет и наверняка поможет южнокорейским атомщикам побить предыдущий рекорд по выработке, установленный в 2015 году.

 Источник изображения: Business Korea

Источник изображения: Business Korea

Семь лет назад атомные электростанции в Южной Корее внесли в энергобаланс страны долю на уровне 31,7 % (157 167 ГВт•ч). Затем последовал значительный спад, поскольку предыдущая администрация президента Мун Чжэ Ина проводила политику отказа от атомной энергетики. В 2018 году был зафиксирован 17-летний минимум в выработке электричества южнокорейскими АЭС — 23,7 %. Все эти годы вплоть до 2022 уровень вклада АЭС в энергобаланс страны был ниже 30 %.

В этом году глобальный энергетический кризис заставил изменить мнение о степени вредности атомной энергетики, и власти Южной Кореи решили расширить вклад АЭС в выработку электроэнергии к 2030 году до 32,8 % вместо предыдущих планов по её сокращению до 23,9 %. Этому будет способствовать множество факторов, например, увеличение государственных гарантий в поддержку атомщиков (на следующий год намечено удвоение этих сумм до $1,5 млрд), а также ослабление правил по пересмотру сроков и условий продления эксплуатации АЭС.

Также власти Южной Кореи рассчитывают на экспорт отечественных реакторов в другие страны. В частности, действующий президент республики ожидает до конца своих полномочий (до 2027 года) продать не менее 10 новейших реакторов APR1400. К примеру, в настоящий момент власти и бизнес Южной Кореи работают над проектами постройки APR1400 в Польше и Чешской Республике.

NuScale закончила разработку конструкторской документации для малого модульного реактора — на шаг ближе к строительству

Американская компания NuScale сообщила, что разработка конструкторской документации типового проекта атомной электростанции на малых модульных реакторах VOYGR завершена досрочно. Это послужит отправной точкой для развертывания конкретных проектов на площадках. Интерес к реакторам NuScale проявили страны Восточной Европы, Канада и ряд других. С выпуском документации преград на пути к строительству больше нет.

 Источник изображения: NuScale

Источник изображения: NuScale

Пакет конструкторской документации по проекту включает в себя свыше 12 тыс. вложений, куда входят полные расчёты материалов, перечни оборудования, спецификации, архитектурные и строительные чертежи и спецификации, подробные спецификации и расчеты системного дизайна, электрические схемы и перечни нагрузок, а также схемы механических трубопроводов и КИП. Сверх того, в комплект включена «всеобъемлющая 3D модель» электростанции.

Каждый энергетический модуль NuScale, на котором базируются атомные электростанции VOYGR, представляют собой реактор с водой под давлением, в котором все компоненты для производства пара и теплообмена объединены в единый блок мощностью 77 МВтэ. Это первый проект ММР, получивший одобрение Комиссии по ядерному регулированию США. Компания предлагает 12-модульную электростанцию VOYGR-12 мощностью 924 МВтэ, а также четырехмодульную VOYGR-4 (308 МВтэ) и шестимодульную VOYGR-6 (462 МВтэ) и другие конфигурации в зависимости от потребностей заказчика.

Основные компоненты реактора можно почти целиком изготавливать на заводе, а не на месте, как это происходит в случае строительства больших реакторов. Это значительно ускоряет строительство и ввод в эксплуатацию с хорошим контролем расхода средств, с чем не дружат масштабные стройки классических АЭС. Например, корейцы уже готовы штамповать корпуса реакторов NuScale на массовой основе, что обещает удешевить общие затраты.

В США компания NuScale вблизи Айдахо-Фолс с помощью коммунального предприятия Utah Associated Municipal Power Systems планирует построить АЭС из шести модулей. Ожидается, что ввод в эксплуатацию состоится к 2030 году. Недавно этот план подвергся интересной модификации. Компания Shell договорилась с NuScale создать в рамках данного проекта установку по добыче водорода из излишков вырабатываемых модулями тепла и электричества. Это будет отдельный проект, который не потребует значительных изменений в базовой документации.

Атомная энергетика возвращается в Японию — до конца десятилетия страна почти утроит число работающих реакторов

Власти Японии забыли об аварии на АЭС «Фукусима» или вынуждены сделать это под давлением глобального энергетического кризиса и необходимости декарбонизации экономики. Сегодня Управление по ядерному регулированию Японии одобрило план Министерства экономики и промышленности страны по резкой смене курса в энергетике. В работу не только вернут старые реакторы, но также будут построены новые реакторы, чтобы к концу десятилетия утроить долю выработки энергии АЭС.

 Вил на АЭС «Фукусима-1». Источник изображения:

Вид на АЭС «Фукусима-1». Источник изображения: Shohei Miyano, ASSOCIATED PRESS

Авария на АЭС «Фукусима-1» в 2011 году после землетрясения и цунами привела к остановке всех действующих атомных реакторов в Японии. В 2012 году впервые с 1970 года в стране не работал ни один атомный реактор. Реакторы в очень ограниченном количестве начали возвращать к работе с 2015 года, потому что альтернативы им не нашлось. Эти мероприятия считались временной мерой, а задача стояла к 2030 году полностью отказаться от атомной энергетики.

В этом году ситуация в мире радикально изменилась. Развитым странам стали недоступны энергоносители по приемлемой цене. Ещё летом премьер-министр Японии Фумио Кисида (Fumio Kishida) призвал запустить к зиме как минимум 9 из 10 разрешённых к продлению работы реакторов. Если верить свежей публикации Associated Press, в Японии всё же сумели ввести в эксплуатацию 10 реакторов из 17 допущенных к продлению сроков службы. Всего заявки были поданы на продление эксплуатации 27 реакторов.

Сегодня доля АЭС в электрогенерации в Японии составляет от 7 до 10 %. Согласно новому плану, к 2030 году эта доля должна увеличиться до 20–22 %. Больше речь не идёт об отказе от атомной энергетики в стране. Срок эксплуатации АЭС сможет теперь превышать 60 лет, а также будут построены новые реакторы. И если ранее работу реакторов в Японии продлевали после 40 лет работы на 20 лет (а теперь это можно будет делать не один раз), то согласно новому плану вопрос продления работы будет подниматься после 30 лет эксплуатации реакторов сроками на 10 лет до следующей экспертизы.

Японские эксперты считают, что новый план позволит коммунальным компаниям оставаться со старым оборудованием намного дольше и не вкладываться во что-то новое, например, в возобновляемые источники энергии. Что касается инновационных ядерных реакторов и термоядерных реакторов, о которых новые власти страны говорят как о перспективных для энергетики, то обсуждать тут особенно нечего. До 2030 года и даже дольше это всё будут только планы, которые не согреют и не обеспечат Японию энергией. Поэтому всё, что есть у страны — это проверенные временем реакторные технологии со своими плюсами и явными минусами.

Запуск перспективного реактора TerraPower Natrium задержится на два года из-за отсутствия замены топливу из России

Основанная Биллом Гейтсом компания TerraPower объявила о задержке как минимум на два года запуска перспективного ядерного реактора на расплавах солей. Вместо 2028 года новый реактор начнёт работу после 2030 года. Причина заключается в отсутствии необходимого топлива в США. Сегодня все его поставки идут в основном из России. Американские законодатели обещают приложить все усилия, чтобы в «реактор Гейтса» заложили топливо местного производства.

 Источник изображения: TerraPower

Источник изображения: TerraPower

Перспективные атомные реакторы на расплавах солей и ряд альтернативных проектов малых модульных реакторов ориентированы на топливо из обогащённого до 20 % урана-235. Это так называемое металлическое высокопробное низкообогащённое урановое топливо (HALEU). Небольшое его количество производится в США, но оно неспособно решить задачи американской энергетики. Основные его поставки идут из России, о чём неоднократно предупреждали и эксперты и законодатели, что крайне опасно с точки зрения национальной безопасности США.

Разработчики перспективных атомных реакторов в США не стали ждать решения вопроса с топливом и подготовили ряд проектов к началу строительства, надеясь, что вопрос с топливом со временем как-то решится. Далеко вперёд в этом вопросе вышел проект Natrium компании TerraPower. Только в прошлом году он получил грант от властей США на сумму свыше $1,5 млрд.

Демонстрационную АЭС на опытном реакторе Natrium решено строить рядом с угольной электростанцией Naughton вблизи города Кеммерер в штате Вайоминг. Заявку на начало строительства компания рассчитывала подать в середине 2023 года, чтобы к 2027 или 2028 году ввести АЭС в эксплуатацию. Это должен был быть малый модульный реактор мощностью 345 МВтэ. Топливо в него подаётся в расплаве солей натрия, что отражено в названии проекта. В ходе реакции распада возникают быстрые нейтроны, энергию которых получает носитель и дальше нагревает воду, которая превращается в пар и вращает турбину.

Конструкция и принцип работы реактора Natrium позволяют создать внушительный буфер по накоплению тепла с пиковой мощностью 500 МВтэ. Это даёт возможность балансировать мощностью для сглаживания нагрузок, что невозможно в случае классических реакторов.

Отсутствие поставок топлива HALEU из России минимум на два года задержит запуск реактора Natrium и электростанции на его основе. Несмотря на это компании TerraPower и её партнёр в лице компании Global Nuclear Fuel-Americas (GNF-A) в октябре этого года официально запустили строительство завода по изготовлению топлива для реактора Natrium и других проектов. Топливо будет изготавливаться из сырья HALEU неизвестного пока происхождения.

Перспективным поставщиком топлива HALEU американского производства может стать компания Centrus Energy. Она уже выпускает его в небольших объёмах и через несколько лет обещает увеличить производство. Помочь в этом могут новые законодательные инициативы в США. Отрасль нуждается как в стимуляции, так и в переменах, а без поддержки государства бизнес не готов идти на риск.

Малые атомные реакторы могут стать источником водорода — для них это будет побочный продукт

Компания Shell подписала контракт с американской компанией NuScale, которая первой получила лицензию Комиссии по ядерному регулированию США (NRC) на строительство в стране малых модульных атомных реакторов. По контракту Shell и NuScale проработают проект производства водорода на таких реакторах. Модульные АЭС обеспечат мир не только чистой электрической и тепловой энергией, но также укрепят основу водородной энергетики, которая заменит природный газ.

 Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Основной смысл производства водорода как сопутствующего продукта работы АЭС в том, что реакторы вырабатывают достаточно много избыточного тепла и электричества, чтобы хотелось использовать их с толком, а не просто рассеивать в окружающем пространстве.

Реакторы, даже малые, это инерционные машины. В случае появления излишков мощности её было бы желательно направить на выполнение полезной работы. В частности, на электролизные ячейки для получения водорода. Затем водород можно либо просто сжечь для получения тепла или электричества или использовать как топливо для транспорта и механизмов.

Наделить малые модульные реакторы решениями для баланса мощности в виде побочного производства водорода стало бы высшим пилотажем в сфере атомной энергетики. Малые реакторы ценны сами по себе, поскольку обещают такую выгоду, как быстрое тиражирование АЭС от проекта до ввода в строй без обычного перерасхода средств и затягивания строительства, чем болеют полномасштабные АЭС. И если к этому добавится возможность вырабатывать, хранить и обеспечивать транспортировку водорода, то это будет максимум, который можно будет выжать для будущей экологичной экономики.

Компании Shell и NuScale совместно оценят такую возможность. Они разработают проект установки по побочной выработке водорода модульными реакторами NuScale, испытают модели, способы интеграции, дадут оценку экономической эффективности, очертят границы возможностей и так далее. Возможно даже, что первый в США малый модульный реактор NuScale, который планируется построить на базе Национальной лаборатории в Айдахо, получит подобные установки для практического эксперимента, благо там нет ничего принципиально сложного.

В Китае на номинальную мощность вывели «двухтактный» ядерный реактор — два реактора работают на одну турбину

Китай стал первой страной в мире, где начал работать модульный реактор. Вчера каждый из двух реакторов «Шидаовань-1» (Shidaowan-1) вышел на номинальную тепловую мощность 250 МВт(т). Для этого им понадобился один год. Оба реактора крутят одну газовую турбину электрической мощностью 211 МВт(э). Успешное завершение проекта открывает дорогу к созданию установки с шестью реакторами для обслуживания одной 650-МВт(э) турбины.

 АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC

АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC

Реактор «Шидаовань-1» интересен не только модульным подходом, хотя это путь к гибким проектам в широком диапазоне задач и стоимости. Ключевой интерес к проекту заключён в том, что это первый в мире новейший проект высокотемпературного газоохлаждаемого реактора с галечным слоем (HTR-PM). Топливом служат 60-мм шарики из графита, внутри которых находится обогащённый до 8,5 % уран-235. Шарики лежат в реакторах, как галька на пляже, а сквозь неё продувается нагретый до 250 °C гелий. В каждом реакторе около 245 тыс. таких шариков.

При проходе сквозь «галечный слой» гелий разогревается до 750 °C. На входе в турбину температура ниже — она опускается до 567 °C. Топливные шарики выдерживают температуры до 1620 °C без разрушения, что сохраняет их целостность даже в случае аварий. Технология считается высоконадёжной и перспективной. Настолько, что власти Великобритании сделали ставку на HTR-PM-реакторы как на самые перспективные для будущего развёртывания в стране.

Китайский реактор «Шидаовань-1» ещё не принят в коммерческую эксплуатацию. Но этот шаг не задержится. Площадка «Шидаовань», как ожидается, вместит ещё 18 реакторных блоков. В этом вся ценность модульного подхода — реакторы строятся относительно быстро, сравнительно недорого и по мере появления в них потребности.

Малые модульные реакторы будут не грязнее обычных АЭС, выяснили учёные

Малые модульные реакторы обещают стать настоящей находкой для промышленности и экономики в целом. Главным их достоинством считаются сравнительно малые затраты на начальном этапе запуска. Строятся они быстрее и скорее начинают выдавать электричество и тепло, хотя их мощность будет составлять всего от 10 до 30 % от возможностей обычных АЭС. Остаётся неясным, будут ли они по итогу грязнее обычных АЭС? Учёные считают, что если да, то ненамного.

 Источник изображения: International Atomic Energy Agency

Источник изображения: International Atomic Energy Agency

Сегодня в мире нет работающих малых модульных реакторов. Оценить объёмы создаваемых ими ядерных отходов можно только теоретически. Одно из первых изысканий на эту тему говорит, что ММР в среднем будут генерировать до 35 раз больше ядерных отходов, чем обычные реакторы с водой под давлением. Новое исследование, проведённое специалистами из Аргоннской и Айдахоской национальных лабораторий Министерства энергетики США (DOE) показывает, что малые модульные реакторы будут создавать сравнимые с обычными реакторами объёмы ядерных отходов.

Для оценки создаваемых ММР ядерных отходов была использована универсальная метрика, взятая на вооружение в 2014 году. Учёные давали оценку трём перспективным малым модульным реакторам: легководному VOYGR компании NuScale Power, реактору Natrium на расплавах солей компании TerraPower и реактору Xe-100 компании X-energy, который охлаждается газообразным гелием. Все эти реакторы планируется ввести в строй к концу текущего десятилетия. Они полностью или частично сертифицированы регулятором в США и понемногу движутся к реализации.

С позиции генерации ядерных отходов каждый из проанализированных реакторов имеет как преимущества, так и недостатки.

«Неправильно говорить, что поскольку эти реакторы меньше, у них будет пропорционально больше проблем по ядерным отходам, просто потому, что у них больше площадь поверхности по сравнению с объёмом активной зоны, — сказал один из авторов работы (условно, железа для захоронения больше, а выхлоп меньше). — У каждого реактора есть плюсы и минусы, которые зависят от степени выгорания топлива, обогащения урана, тепловой эффективности и других особенностей конструкции реактора».

Самым заметным фактором, от которого зависит объём ядерных отходов, остаётся степень выгорания топлива. Реакторы Natrium и Xe-100 имеют значительно более высокую степень выгорания, чем традиционные большие легководные реакторы. Они эффективнее утилизируют топливо, преобразуя его в больший объём выработанной энергии. Также оба типа ММР могут похвастаться более высоким значением КПД, чем классические большие реакторы.

При этом характеристики отработанного топлива несколько различаются между конструкциями: в этом VOYGR похож на классические реакторы, Natrium производит более концентрированные отходы с различными долгоживущими изотопами, а Xe-100 производит отработанное топливо меньшей плотности, но большего объёма.

«В целом, когда речь идет о ядерных отходах, реакторы ММР примерно сопоставимы с обычными реакторами с водой под давлением (LWR) с потенциальными преимуществами и недостатками в зависимости от того, для каких аспектов вы пытаетесь разработать проект, — сказано в исследовании. — В целом, похоже, что нет никаких дополнительных серьёзных проблем в обращении с ядерными отходами от реакторов ММР по сравнению с коммерческими отходами от крупных реакторов LWR».

В то же время реактор VOYGR компании NuScale Power хотя и является сегодня самым далеко продвинутым к практической реализации, генерирует больше всего ядерных отходов даже по сравнению с классическими реакторами. Реактор VOYGR является уменьшенной копией классических легководных реакторов и закон «больше железа и меньше рабочая зона — это больше отходов» для него полностью справедлив. Но исследователи не видят в этом проблемы.


window-new
Soft
Hard
Тренды 🔥
Первая за 11 лет новая книга Анджея Сапковского из цикла «Ведьмак» получила название «Перекрёсток воронов» — первые подробности 5 мин.
В Японии порекомендовали добавить в завещания свои логины и пароли 16 мин.
Обновления Windows 11 больше не будут перезагружать ПК, но обычных пользователей это не касается 36 мин.
VK похвасталась успехами «VK Видео» на фоне замедления YouTube 3 ч.
GTA наоборот: полицейская песочница The Precinct с «дозой нуара 80-х» не выйдет в 2024 году 4 ч.
D-Link предложила устранить уязвимость маршрутизаторов покупкой новых 5 ч.
Valve ужесточила правила продажи сезонных абонементов в Steam и начнёт следить за выполнением обещаний разработчиков 6 ч.
Австралия представила беспрецедентный законопроект о полном запрете соцсетей для детей до 16 лет 6 ч.
Биткоин приближается к $100 000 — курс первой криптовалюты установил новый рекорд 7 ч.
В открытых лобби Warhammer 40,000: Space Marine 2 запретят играть с модами, но есть и хорошие новости 7 ч.
Meta планирует построить за $5 млрд кампус ЦОД в Луизиане 29 мин.
HPE готова ответить на любые вопросы Минюста США по расследованию покупки Juniper за $14 млрд 49 мин.
Thermaltake представила компактный, но вместительный корпус The Tower 250 для игровых систем на Mini-ITX 3 ч.
Флагманы Oppo Find X8 и X8 Pro на Dimensity 9400 стали доступны не только в Китае — старший оценили в €1149 3 ч.
«ВКонтакте» выросла до 88,1 млн пользователей — выручка VK взлетела на 21,4 % на рекламе 4 ч.
В Китае выпустили жидкостный кулер с 6,8-дюймовым изогнутым OLED-экраном за $137 4 ч.
«Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных 4 ч.
Электромобили станут более автономными и долговечными: Honda через несколько лет стартует массовый выпуск твердотельных батарей 4 ч.
Большой планшет Oppo Pad 3 Pro вышел на глобальный рынок за €600 4 ч.
Каждый третий смартфон теперь попадает в Россию нелегально 5 ч.