Сегодня 25 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → водородное топливо
Быстрый переход

Китайцы переделали дизельный тепловоз в водородный, и теперь он ездит больше недели на одной заправке

Железные дороги были и остаются одними из сильнейших загрязнителей окружающей среды. Поэтому перевод подвижного состава на экологические виды топлива обязателен для соблюдения «зелёной» повестки. В идеальном случае транспорт под эти цели надо проектировать с нуля, но замена двигателей на «чистые» — это тоже рабочий вариант и главное, что он может быть реализован в кратчайшие сроки.

 Источник изображений: CRRC

Источник изображений: CRRC

Китайские СМИ сообщают, что в филиале Датун государственного производителя China Railway Rolling Stock Corporation (CRRC) завершена модернизация первого дизельного локомотива с заменой «ископаемого» двигателя на водородный. Точнее, локомотив получил электрический двигатель и водородные топливные ячейки, в которых легчайший газ при взаимодействии с кислородом превращается в электричество и водяной пар.

На одной заправке модернизированный локомотив может двигаться до 190 часов — это больше недели в пути, а на саму заправку необходимы два часа. Другая выгода от использования водородных ячеек заключается в том, что обслуживание и эксплуатация водородных локомотивов обещает быть в два раза дешевле дизельных.

Китай может довольно быстро перевести дизельные локомотивы на водородное топливо. По оценкам специалистов, модернизировать можно будет до 90 % локомотивов из парка порядка 7800 штук. Это почти третья часть от всего подвижного состава в Китае. Экологический эффект обещает быть колоссальным.

Всё это хозяйство и водородный автомобильный транспорт потребует выработки соответствующих объёмов водородного топлива. Сегодня водород в основном производится методами, сопровождающимися вредными выбросами — это переработка нефти, угля и сопутствующая добыча. Более экологически чистые способы — получение водорода с помощью электричества с АЭС и из биомассы. Совсем чистые — электролиз с использованием мощностей солнечных и ветряных электростанций. Китайские железнодорожники рассчитывают своими силами организовать производство «зелёного» водорода в объёме до 200 тыс. т к 2025 году.

 Новый водородный состав

Новый водородный состав

Параллельно разрабатываются абсолютно новые локомотивы, сразу ориентированные на водородное топливо. Такая новинка была представлена зимой этого года. Современный четырёхвагонный водородный пассажирский поезд может проезжать на одной заправке до 600 км. В Германии подобный пилотный состав был запущен в 2018 году и летом 2022 года принят в эксплуатацию. За четыре года он проехал более 220 тыс. км и хорошо себя зарекомендовал. Есть подозрение, что китайцы спроектировали водородный четырёхвагонный пассажирский состав с прицелом на европейский рынок, но пока там правит бал французская компания Alstom.

В России разработан способ добычи водорода из воды с поразительной энергоэффективностью

Самый «чистый» водород производится из воды методом электролиза с использованием электричества от возобновляемых источников. Но энергетически это очень затратное мероприятие, которое российские учёные обещают ощутимо улучшить, повысив его энергоэффективность до двух и более раз. И поможет в этом простейший лазер.

 Источник изображения: Портал «Атомная энрегия 2.0»

Источник изображения: Портал «Атомная энрегия 2.0»

Изобретение представили исследователи из кемеровского ФИЦ угля и углехимии СО РАН. Доклад опубликован в журнале Hydrogen Energy и свободно доступен по ссылке. Учёные предложили оригинальное решение. Вместо того чтобы пропускать ток большой силы через электроды электролизёра и страдать от потерь, предложено облучать объём воды лазером.

В воде создаётся суспензия в виде наночастиц алюминия. Лазерный луч свободно проходит сквозь толщу воды и работает исключительно на поверхности наночастиц. Это разрушает защитный оксидный слой на частицах и обнажает металлический алюминий для вступления в химическую реакцию с водой, в результате которой начинает выделяться чистый водород.

Согласно проведенным расчётам, затраты электроэнергии на получение 1 кг водорода могут быть снижены до 15–17 кВт·ч, тогда как в классическом электролизёре они могут достигать 40 кВт·ч и более. При этом появляется возможность создавать компактные и относительно недорогие модульные генераторы водорода, для работы которых хватит сравнительно маломощных полупроводниковых лазеров.

Побочным продуктом процесса станут оксиды алюминия, которые можно использовать для производства адсорбентов, керамических материалов и других материалов.

В США придумали, как использовать уголь в «зелёной» энергетике — в нём можно хранить водород

Учёные из Университета Пенсильвании предложили неожиданное применение обычному углю в низкоуглеродной энергетике. Уголь любых марок можно использовать как контейнер для длительного хранения газообразного водорода. Первые эксперименты в этом направлении обнадёживают. Это позволит сохранить отрасль, десятки тысяч рабочих мест и даст старт водородной энергетике — чистой безо всяких оговорок.

 Источник изображения: Pixabay

Источник изображения: Pixabay

С выработкой водорода особых проблем сегодня нет. Есть проблемы с его длительным хранением в больших объёмах. Предлагаются как классические способы хранения с закачиванием в подземные пустоты, так и экзотические в виде гидридов металлов. Каждое из предложенных решений, которое также включает заключение водорода в порошки, пасты и разнообразные по содержанию картриджи, имеет свои плюсы и минусы. Идеального решения так и не найдено и уголь, как ни странно, может оказаться перспективным кандидатом на роль контейнера для водорода.

Известно, что уголь хорошо абсорбирует газообразный метан. Это же свойство угля, решили учёные, можно перенести на водород. Для проверки идеи на практике была создана установка, которая создавала оптимальное давление для нагнетания водорода внутрь угля.

«Мы собрали новую и очень сложную конструкцию, — сказал Шимин Лю (Shimin Liu), доцент кафедры энергетики и минерального машиностроения в Пенсильванском университете. — Потребовались годы, чтобы понять, как это правильно сделать. Методом проб и ошибок нам пришлось разработать систему экспериментов, для чего пригодился наш предыдущий опыт с углями и сланцами».

После анализа семи марок угля из разных угольных районов США, исследователи обнаружили, что этот материал действительно исключительно хорошо хранит водород. Лучшим из них оказался битуминозный уголь с низким содержанием летучих веществ, найденный в Вирджинии, и антрацитовый уголь из Пенсильвании. Как пояснили учёные, газоулавливающая способность угля основана на его уникальном составе. Он, по сути, похож на губку, которая может удерживать гораздо больше молекул водорода по сравнению с другими неуглеродными материалами.

На этом изучение угля как контейнера для длительного хранения водорода не окончено. Учёные намерены изучить его проницаемость и диффузионную способность. Это поможет понять, как быстро водород может закачиваться в различные виды угля и извлекаться из него, что, в свою очередь, может привести к созданию эффективных водородных «батарей» на основе этого ископаемого ресурса.

Nikola собирается сосредоточиться на выпуске водородных грузовиков для Северной Америки

В сегменте коммерческого электротранспорта конкуренция пока несколько ниже, чем в легковом, но это не значит, что существующим стартапам проще выходить на рынок. Многострадальная компания Nikola, выпускающая магистральные тягачи как на аккумуляторах, так и на водородных топливных элементах, после оглашения итогов первого квартала заявила, что предпочитает сосредоточиться на рынке Северной Америки и машинах на водородных топливных ячейках.

 Источник изображения: Nikola Motor

Источник изображения: Nikola Motor

Напомним, что планы по освоению рынка Европы компания собиралась реализовать в рамках сотрудничества с Iveco, создав с этим автопроизводителем совместное предприятие. Свою долю в нём она теперь продаст за $35 млн, но при этом Iveco продолжит снабжать её профильными компонентами для производства грузовиков. Партнёры в прошлом сентябре успели представить аккумуляторную версию тягача Nikola Tre для европейского рынка, но теперь американская компания считает целесообразным сосредоточиться на домашнем рынке.

В прошедшем квартале Nikola смогла выпустить 63 аккумуляторных грузовика, половина из которых была доставлена дилерам. В дальнейшем компания намеревается выпускать аккумуляторные машины только под заказ для конкретных клиентов, а основная ставка делается на вариант грузовиков с водородными топливными ячейками. Сейчас Nikola располагает заказами на поставку 140 таких машин от 12 клиентов, но из первой партии в 10 тягачей пока готовы только два. Ещё восемь будут собраны до конца июля.

В конце мая Nikola начала переоснащать своё предприятие в Аризоне, чтобы в дальнейшем выпускать на одной линии как водородные, так и аккумуляторные грузовики. Сборка машин возобновиться в июле, и первые водородные тягачи поступят в продажу. К концу июля здесь будет локализована сборка тяговых батарей, а к концу года будет налажен выпуск водородных топливных ячеек марки Bosch.

Непосредственно первый квартал текущего года Nikola завершила с выручкой в размере $11,1 млн и чистыми убытками на сумму $169,1 млн. Запас свободных денежных средств по сравнению с аналогичным периодом прошлого года сократился с $233 до $121 млн. В условиях ограниченности финансовых ресурсов Nikola предпочитает сосредоточить их на приоритетных направлениях деятельности, к коим относит выпуск водородных грузовиков для рынка Северной Америки.

Toyota считает целесообразным использовать водородные топливные ячейки в грузовиках

В прошлом году глава Honda Motor заявил о скептическом отношении к идее широкого применения водородного топлива в легковом транспорте, хотя модель Clarity наряду с Toyota Mirai выступила в роли одного из пионеров в сегменте. Новый генеральный директор Toyota Motor придерживается схожей точки зрения, заявляя о целесообразности продвигать топливные водородные ячейки преимущество в сегменте коммерческих перевозок.

 Источник изображения: Toyota

Источник изображения: Toyota

Как отмечается в заявлении исполнительного вице-президента Toyota Хироки Накадзима (Hiroki Nakajima), массовое производство транспорта на водородных топливных ячейках корпорация сосредоточит в сфере коммерческих перевозок. Если быть точнее, Toyota вместе с партнёрами начнёт переводить на водородные топливные ячейки грузовой транспорт средней и большой грузоподъёмности. В прошлом году Toyota также начала разработки в сфере использования водородного топлива модифицированными двигателями внутреннего сгорания для крупнотоннажных грузовиков. К преимуществам водородного топлива Toyota относит малый вес, что для несущего полезную нагрузку коммерческого транспорта очень важно. Кроме того, пополнить запас хода путём заправки водородом удаётся гораздо быстрее, чем заряжать тяговую батарею большой ёмкости. Tesla вчера призналась, например, что её грузовые тягачи Semi в версии с запасом хода 800 км оснащаются тяговыми аккумуляторами ёмкостью 800 кВт·ч.

До сих пор, заметим, инициативы по переводу ДВС на использование водорода в качестве топлива для Toyota сосредотачивались в сфере автоспорта, где компания демонстрировала прототип гоночного хэтчбека Yaris, а в сотрудничестве с Yamaha был создан пятилитровый ДВС, способный питаться водородом и обеспечивать отдачу в 450 лошадиных сил. Его вполне можно было бы применять на грузовом транспорте, хотя изначально донором силовой установки выступило спортивное купе Lexus RC F.

Нынешнее руководство Toyota также считает важным использовать автоспорт для продвижения водородного топлива. Компания предлагает получать его не только из воды, но и путём переработки разного рода отходов, включая биологические. Эксперименты в этой сфере компания проводит не только в Японии, но и в Таиланде.

Toyota не собирается списывать со счетов и гибриды, а подзаряжаемые модификации таких транспортных средств вообще хочет позиционировать как разновидность электромобилей с повышенным удобством использования. В 2026 году компания собирается выпустить первые электромобили на платформе нового поколения, в основе которой будут лежать тяговые аккумуляторы с удвоенным запасом хода. Речь, по всей видимости, идёт о батареях с твердотельным электролитом, разработку которых японский автогигант ведёт уже несколько лет. Скорее всего, эти же батареи достанутся и подзаряжаемым гибридам Toyota, которые компания стремится обеспечить запасом хода на чистой электротяге свыше 200 км. К достоинствам гибридов компания относит и их ценовую доступность по сравнению с электромобилями.

Водородные ячейки Honda из старых электромобилей будут использовать для энергоснабжения дата-центра компании

Известный автоконцерн Honda намерен превратить старые топливные ячейки для электромобилей своего производства в резервные источники питания дата-центров. Хотя компания отказалась от выпуска машин Clarity на водородных топливных элементах, некоторые старые топливные ячейки из машин этой модели теперь заработают снова — теперь в ЦОД к югу от Лос-Анджелеса. Пока речь идёт лишь о «доказательстве концепции», но в будущем компания намерена найти технологии коммерческое применение, причём такие «зелёные» элементы питания будут применять не только в ЦОД.

 Источник изображения: Honda

Источник изображения: Honda

Известно, что бывшие в употреблении водородные ячейки, генерирующие с помощью электрохимической реакции электроэнергию, ещё поработают для обеспечения электричеством серверов в дата-центре самой компании. Ранее Honda полагалась на дизельные резервные генераторы.

Впрочем, как сообщает TechCrunch, технология оказалась не такой безопасной, как могла бы быть. Компания признала, что использует не «зелёный» водород, что означает, что как минимум часть газа была получена с помощью ископаемого топлива. Хотя водородные топливные ячейки сами по себе относительно экобезопасны и, помимо электричества, выделяют только воду и тепло, косвенно они тоже причастны к загрязнению окружающей среды, поскольку большая часть водорода сегодня поступает из «грязных» источников и требует специальной инфраструктуры для доставки водорода на места — именно поэтому многие автоконцерны не верят в водородные технологии для автопромышленности.

Впрочем, Honda не намерена полностью отказываться от водородного транспорта и использование топливных ячеек в ЦОД, наоборот, в некоторой степени, служит рекламой водородных технологий в преддверии появления топливных ячеек нового поколения, разработанных совместно с General Motors. По данным автоконцерна, следующее поколение её топливных элементов будет применяться в модели на базе Honda CR-V и будет подготовлено к 2024 году.

Также компания планирует использовать новые ячейки и в качестве резервных генераторов электроэнергии, но для них, как утверждается, будет применяться только «зелёный» водород, добытый с помощью возобновляемой энергии. Помимо использования в ЦОД, генераторы смогут применять в качестве дополнительного источника питания даже промышленные предприятия в моменты пиковых нагрузок на электросеть.

«Доказательство концепции», как ожидается, должно будет вырасти в новую бизнес-модель, поскольку пилотный проект — удобный повод поговорить с СМИ о водородных технологиях вообще. Хотя рынки автомобилей захватывают электрические машины, Honda, похоже, заинтересована в сохранении водорода в повестке дня. В январе сообщалось, что Honda Motors создала подразделение, специализирующееся на электромобилях, как с аккумуляторными, так и с водородными топливными элементами.

Самолёт Dash-8 совершил полёт с самой большой в мире водородной топливной ячейкой

Модифицированный компанией Universal Hydrogen пассажирский самолёт Dash-8 совершил 15-минутный полёт в США, полагаясь на возможности самого большого в авиации водородного топливного элемента. По словам главы Universal Hydrogen Павла Ерёменко, событие знаменует наступление «нового золотого века авиации». Хотя полёт был непродолжительным, он продемонстрировал возможность водородной авиатехники выполнять полёты.

 Источник изображения: Universal Hydrogen

Источник изображения: Universal Hydrogen

Dash-8, в основном используемый для региональных перелётов, обычно перевозит до 50 пассажиров. В данном случае самолёт, получивший имя Lightning McClean, имел на борту лишь двух пилотов и инженера, а также немало дополнительной техники, включая электродвигатель и огромную топливную ячейку. В салоне находились стойки с электроникой и сенсорами, а также два бака с 30 кг водорода. Электродвигатель компании magniX приводился в действие с помощью топливной ячейки, разработанной Plug Power, мощность которой составила 800 кВт. Ерёменко не исключает, что разработка его компании может со временем стать первым водородным самолётом, сертифицированным для эксплуатации на пассажирских авиарейсах.

По имеющимся данным, сегодня на авиацию приходится 2,5 % углеродных выбросов с перспективой роста до 4 %, а электродвигатели с водородными элементами фактически экобезопасны. Впрочем, до массового распространения водородной авиации ещё далеко. Если на одном крыле использовался электрически двигатель, то на втором — обычный турбовинтовой производства Pratt and Whitney, вдвое более мощный. Такой дополнительный «резерв прочности» позволил получить от Федерального управления гражданской авиации США лицензию на испытание.

Отчасти проблема заключается в том, что топливные ячейки сложно охлаждать, поскольку электрохимическая природа топливных ячеек требует специальных решений для поддержания допустимой температуры. Впрочем, по данным Universal Hydrogen, топливная ячейка, используемая компанией, может работать весь день без перегрева благодаря большим воздухоотводам.

Ещё одной проблемой является невысокая энергоёмкость и соответственно проблема хранения водорода на борту. Даже у сжиженного водорода она вчетверо ниже, чем у обычного авиатоплива — на 15-минутный полёт ушло более половины запаса водорода, находившегося в газообразном состоянии. В этом году компания планирует перейти на более «концентрированный» жидкий водород.

 Источник изображения: Universal Hydrogen

Источник изображения: Universal Hydrogen

Для хранения жидкого водорода Universal Hydrogen занималась разработкой стандартизированных модулей, которые можно легко подключать к топливной системе автомобилей, самолётов и другой техники и заменять по мере необходимости. Существующая конструкция позволяет поддерживать водород в жидком состоянии до 100 часов. Компания уже получила заказов на $2 млрд на «топливное обслуживание» на ближайшее десятилетие.

Прототипы водородных модулей продемонстрировали в декабре, позже в текущем году компания надеется начать строительство завода в Нью-Мексико. Хотя многие сомневаются в целесообразности использования водорода, Ерёменко уверен, что заставит технологию работать, особенно с учётом субсидий, выделяемых администрацией президента США для «зелёных» водородных решений в рамках Закона о снижении инфляции.

Объём инвестиций в компанию приближается к $100 млн, включая поступления от Airbus, General Electric, American Airlines, JetBlue и Toyota. Уже в 2025 году стартап намерен начать поставки комплектов для переоборудования самолётов вроде Dash-8 для использования с водородным топливом. Уже имеются предварительные заказы от 16 компаний общей стоимостью более $1 млрд. Первым пользователем технологии в США должна стать Connect Airlines.

Франции разрешили производить «зелёный» водород с помощью АЭС — Германия резко против этого

Единство стран Европейского союза разошлось в вопросе считать ли атомную энергетику и всё, что с ней связано полезным для климата Земли или нет? Оспорить использование мирного атома пытается Германия и ряд поддержавших её стран, тогда как возглавляемая Францией коалиция шаг за шагом продавливает идею озеленения энергетики с помощью атомной энергии. По крайней мере, власти ЕС разрешили Франции производить «зелёный» водород энергией с АЭС.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Производство водорода с помощью атомной энергетики — это лишь часть глобальной водородной Директивы ЕС. Европейский союз вслед за США принимает меры для снижения зависимости от ископаемых источников топлива и, в первую очередь, от природного газа. В этих планах водороду отводится главная роль. Пакет мер по водородной Директиве был представлен в декабре 2021 года, а заключительное голосование по нему прошло 9 февраля.

Комитет по промышленности, исследованиям и энергетике ЕС поддержал полное соглашение 62 голосами за и двумя против. Против ряда нормативных актов Директивы голосовали 17 человек, а 54 отдали голоса в их поддержку. На следующем этапе пакет мер в рамках водородной Директивы должен быть утверждён полным составом Европейского парламента, что произойдёт в марте. После этого последуют переговоры с 27 странами участницами ЕС.

Активно против принятых мер и актов голосует Германия и возглавляемая ею коалиция. У Германии нет собственной атомной энергетики, и она пытается заблокировать любые льготы для этого сектора. Представители Германии, например, заблокировали очередной раунд переговоров по Директиве о возобновляемых источниках энергии, которая охватывает более широкий круг проблем, чем Директива о водороде. Германия утверждает, что пока нет полной ясности в отношении происхождения возобновляемого водорода, атомную энергетику нельзя считать «зелёной».

Тем не менее, Франция получила разрешение на производство именно «зелёного» или возобновляемого водорода с применением энергии от атомных электростанций. В дальнейшем такой водород будет использоваться в ЕС как источник энергии для энергетически ёмких отраслей, например для выплавки стали. Примечательно, что водород в ЕС не планируют использовать для отопления жилищ граждан. Принято, что этот сектор обеспечат тепловые насосы и возобновляемые источники энергии.

Поскольку газотранспортная система масштаба прокачки природного газа будет больше не нужна (раз она не потребуется для нужд отопления), почти вся сегодняшняя инфраструктура будет уничтожена либо сведена до минимума, лишь бы обеспечить промышленных потребителей. По этому поводу у стран ЕС есть разногласия. Зелёные считают, что газотранспортную систему необходимо полностью уничтожить, чтобы нефтегазовые компании не получили преимущества. Иначе это будет, как пустить лису в курятник. Только созданная с нуля система распределения водорода обеспечит равные конкурентные условия для развития зелёной энергетики.

Согласно принятым нормативам, на каждый килограмм выработанного с помощью АЭС водорода H2 производится 2,77 кг CO2e (эквивалента CO2). Примерно столько же углекислого газа производится при выработке водорода с помощью ветровой и солнечной энергетики. В принципе, любой водород с выработкой менее 3,38 кг CO2 на 1 кг H2 принято считать низкоуглеродным, поэтому атомная энергетика легко помещается в зелёный диапазон. Но бюрократическая борьба ещё не окончена и Германия надеется хоть в чём-то взять реванш.

Предложен способ прямой добычи водорода из морской воды без сложной фильтрации и дорогих катализаторов

Традиционный способ добычи водорода с помощью электролиза требует девять литров пресной воды для получения каждого килограмма водорода. С учётом дефицита водного ресурса курс на водород вызывает сомнения. Использование неподготовленной морской воды могло бы стать выходом, но до недавних пор приемлемой технологии для прямой добычи водорода из океанских вод не существовало.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Решение нашли учёные из Австралии в сотрудничестве с коллегами из университетов Тяньцзинь и Нанкай в Китае и Университета штата Кент в США. По словам исследователей, они разработали способ для улучшения обычных коммерческих электролизёров, который позволяет расщеплять морскую воду с «почти 100-процентной эффективностью» без какой-либо предварительной обработки кроме фильтрации.

Традиционные металлические катализаторы на основе платины и других драгоценных металлов требуют длительной и сложной подготовки морской воды для добычи водорода. Учёные смогли приспособить для этого дешёвые катализаторы из оксида кобальта и оксида хрома, но предварительно обработали их поверхность так называемой кислотой Льюиса. В обычных условиях ионы хлора из морской воды разрушают такие соединения или вода засоряет катализаторы нерастворимыми осадками соединений магния и кальция, что быстро снижает площадь рабочей поверхности. Добавление кислоты блокирует все деструктивные химические процессы и позволяет недорогим катализаторам дольше оставаться рабочими даже в такой неподготовленной среде.

«Мы разделили обычную морскую воду на кислород и водород с почти 100-процентной эффективностью, чтобы получить экологически чистый водород путём электролиза, используя недрагоценный и дешёвый катализатор в коммерческом электролизёре», — сказал профессор Шижан Цяо.

«Производительность коммерческого электролизёра с нашими катализаторами, работающего в морской воде, близка к производительности платиновых/иридиевых катализаторов, работающих на сырье из высокоочищенной деионизированной воды», — добавил другой автор работы.

Предложенный метод был испытан в лабораторных условиях на небольшой установке. На следующем этапе учёные попытаются масштабировать решение для приближения к стадии коммерческого внедрения. Самым важным в разработке представляется возможность простой доработки уже существующих электролизёров, но есть и другие не менее интересные технологии добычи водорода из неподготовленной морской воды. Рано или поздно что-то из этого придётся брать на вооружение.

Приятным бонусом к добыче водорода из морской воды идёт получение пресной воды и полезных ресурсов. Всё это расценивается, как возможность развить на побережьях морей и океанов фабрик по добыче ценных ресурсов.

Крупнейший в мире пассажирский самолёт на водородной тяге впервые взлетел — в воздухе он продержался 10 минут

Компания ZeroAvia создала и подняла в воздух крупнейший на данный момент в мире водородно-электрический пассажирский самолёт Dornier 228. Вчера 19-местный двухмоторный самолёт, оснащённый прототипом водородно-электрической силовой установки, совершил 10-минутный полёт в Великобритании.

 Источник изображения: ZeroAvia

Источник изображения: ZeroAvia

Непродолжительный полёт из аэропорта Котсуолд стал частью проекта HyFlyer II — финансируемой государством программы, предусматривающей разработку малых пассажирских самолётов, более безопасных для окружающей среды, чем используемые сегодня модели. Силовая установка питается за счёт «сжатого газообразного водорода, вырабатывавшегося с помощью находившегося на борту электролизёра». Тестовая конфигурация включала два стека топливных ячеек и литийионные аккумуляторы, на время теста размещённые в салоне.

Впрочем, при коммерческом использовании предусматривается крепление источников питания снаружи фюзеляжа, чтобы обеспечить место для пассажиров. Кроме того, на правом крыле имелся стандартный турбированый двигатель Honeywell TPE-331 для создания дополнительной тяги при взлёте, а также обеспечения «страховки» на случай сбоев в работе экспериментальных систем.

В ZeroAvia заявляют, что намерены сертифицировать технологию уже в этом году, коммерческие рейсы планируется выполнять к 2025 году. Компания также работает над программой создания силовой установки на 2‒5 МВт, что позволит использовать технологию с лайнерами, рассчитанными на 90 пассажиров. Конечной целью является расширение использования технологии на узкофюзеляжные самолёты в следующем десятилетии. Такими, например, являются авиалайнеры серии Boeing 737.

Известно, что финансирование проекта осуществляется не только за счёт государственных средств — Amazon инвестировала в разработки из собственного фонда Climate Pledge Fund, предназначенного для спонсирования экобезопасных проектов.

Ранее сообщалось, что уже в 2024 году ZeroAvia намерена организовать первые коммерческие рейсы самолётов на водородном топливе между Лондоном и Роттердамом.

Представлен первый в мире тягач, работающий на аммиаке

Молодая американская компания Amogy представила первый в мире, по её словам, тягач с нулевым выбросом, работающий на аммиаке. Баки грузового автомобиля вмещают запас топлива для выработки 900 кВт·ч энергии, что равно запасу энергии в литиевых аккумуляторах тягача Tesla Semi. При этом баки с аммиаком намного легче, а заправка длится не дольше восьми минут, чего не скажешь о зарядке аккумуляторов Tesla. Но есть нюансы.

 Источник изображений: Amogy

Источник изображений: Amogy

Разработчик силовой платформы с аммиачным топливом не уточняет эффективность всех этапов преобразования NH3 в электричество. Аммиак необходимо превратить в чистый водород с помощью системы разложения и очистки, пропустить водород через топливные ячейки и полученное электричество направить на тяговые электродвигатели, а также подать в бортовые системы.

Даже если на всех этапах процессы будут достигать максимальной на сегодня эффективности, до двигателей дойдёт только половина из заявленного запаса энергии, что, впрочем, не так уж безнадёжно. Установить новый бак с аммиаком проще и дешевле, чем добавить ту же ёмкость набором из литиевых батарей.

Использование аммиака вместо чистого водорода значительно упростит оборот топлива, поскольку водород необходимо хранить или в виде газа под огромным давлением (около 700 атмосфер), или в жидком виде с охлаждением до -252,87 °C. Аммиак хранится в баллонах в жидком виде при обычном давлении и температуре окружающего воздуха. Тем самым с точки зрения плотности хранения энергии аммиак выигрывает у газообразного водорода примерно в три раза по объёму, а по весу в 20 раз опережает литиевые аккумуляторы.

Необходимо помнить, что в следующем десятилетии прогнозируется дефицит лития, не говоря о других важных для производства батарей металлах и минералах. Его и сейчас не хватает, если быть справедливым. Аммиак же, как и водород, можно производить экологически чистым способом, например, на атомных электростанциях или с помощью возобновляемой энергии, что делает его важным для устойчивой экономики будущего.

Свою силовую платформу с питанием на основе аммиака компания Amogy установила на серийном тягаче Freightliner Cascadia 2018 года. Автомобиль прошёл испытания в кампусе Университета штата Нью-Йорк в Стони-Бруке, а в конце этого месяца планируется провести полномасштабную оценку реальных характеристик на испытательном треке. Кроме того, в активе Amogy есть 5-КВт силовая аммиачная установка для беспилотника и 100-кВт для трактора.

Более того, Amogy работает в направлении мощнейших судовых установок для морского транспорта. К концу 2023 года она обещает показать работу буксира с силовой установкой мощностью 1 МВт, а к 2025 году обещает представить 10-МВт установку для морских контейнеровозов. И она не одна такая, ряд проектов предусматривает аммиак как косвенное и даже прямое топливо для авиационных и судовых двигателей.

В Китае научились добывать водород из морской воды без опреснителей и насосов — дешевле не бывает

Морская вода является бесконечным источником металлов, минералов, питьевой воды, кислорода и водорода. Учёные всех стран десятилетиями ищут возможность добывать эти богатства из морских и океанских глубин. Главная задача — делать работы экономически выгодно, но именно с этим связаны все барьеры на пути разработчиков. В Китае решили одну из этих проблем — научились простой добыче водорода без лишних затрат.

 Источник изображений: Nature

Источник изображений: Nature

Водород извлекается из воды в процессе электролиза. Это простая и понятная операция, но только если добывать этот газ из чистой воды. Добыча водорода непосредственно из морской воды требует предварительного опреснения или очень сложных установок. Растворённые в морской воде соли (ионы) металлов и минералов разрушают катализаторы электролизёров и другие узлы устройств, как и требуют работы насосов для прокачки морской воды.

Учёные из Нанкинского технического университета в Китае в журнале Nature рассказали об уникальной установке, которая лишена всех указанных выше недостатков. Без насосов и быстрого износа катализаторов она способна длительное время добывать водород и кислород прямо из морской воды.

«Наша стратегия реализует эффективный, гибкий по размеру и масштабируемый прямой электролиз морской воды, аналогичный расщеплению пресной воды, без заметного увеличения эксплуатационных расходов», — сказал Цзунпин Шао (Zongping Shao), профессор химической инженерии из Нанкинского технического университета в Китае.

Для защиты катализаторов от воздействия морской воды — солей и ионов — предложено интересное решение. Покрытые катализатором электроды, на которых вырабатывается водород и кислород (один на катоде, а другой на аноде), никогда не контактируют с морской водой. От этого их защищает насыщенный электролит в виде гидроксида калия, в который эти электроды погружены. Как же туда попадает вода?

Электролит с обеих сторон электродов защищён мембраной. Богатая фтором мембрана пропускает водяной пар, но не жидкость. Через мембрану в электролит попадает только водяной пар, оставляя соли в морской воде. В электролите пар снова превращается в воду и расщепляется на водород и кислород как опреснённая вода без негативных последствий для катализаторов. Подкачка пара в электролит идёт за счёт внешнего избыточного давления и не требует насосов.

Насосы нужны разве что для прокачки морской воды, но в случае электролиза с пресной водой они тоже будут нужны, так что это не увеличивает накладные расходы. Более того, из воды с повышенной концентрацией солей удобно и выгодно добывать минералы и металлы, например, тот же литий или уран.

Исследователи на практике доказали работу инновационной установки. Демонстратор из 11 электролизных ячеек опустили в воды залива Шэньчжэнь, где он проработал без остановки 130 дней. Каждый час установка вырабатывала 386 л водорода. Затраты электричества шли только на подкачку свежей морской воды и на сам процесс электролиза. Система отлично себя показала в испытаниях, хотя о коммерческом внедрении говорить пока рано. Учёные планируют значительно повысить её эффективность, для чего необходимы эксперименты с разными составами электролита и катализаторов.

Малые атомные реакторы могут стать источником водорода — для них это будет побочный продукт

Компания Shell подписала контракт с американской компанией NuScale, которая первой получила лицензию Комиссии по ядерному регулированию США (NRC) на строительство в стране малых модульных атомных реакторов. По контракту Shell и NuScale проработают проект производства водорода на таких реакторах. Модульные АЭС обеспечат мир не только чистой электрической и тепловой энергией, но также укрепят основу водородной энергетики, которая заменит природный газ.

 Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Основной смысл производства водорода как сопутствующего продукта работы АЭС в том, что реакторы вырабатывают достаточно много избыточного тепла и электричества, чтобы хотелось использовать их с толком, а не просто рассеивать в окружающем пространстве.

Реакторы, даже малые, это инерционные машины. В случае появления излишков мощности её было бы желательно направить на выполнение полезной работы. В частности, на электролизные ячейки для получения водорода. Затем водород можно либо просто сжечь для получения тепла или электричества или использовать как топливо для транспорта и механизмов.

Наделить малые модульные реакторы решениями для баланса мощности в виде побочного производства водорода стало бы высшим пилотажем в сфере атомной энергетики. Малые реакторы ценны сами по себе, поскольку обещают такую выгоду, как быстрое тиражирование АЭС от проекта до ввода в строй без обычного перерасхода средств и затягивания строительства, чем болеют полномасштабные АЭС. И если к этому добавится возможность вырабатывать, хранить и обеспечивать транспортировку водорода, то это будет максимум, который можно будет выжать для будущей экологичной экономики.

Компании Shell и NuScale совместно оценят такую возможность. Они разработают проект установки по побочной выработке водорода модульными реакторами NuScale, испытают модели, способы интеграции, дадут оценку экономической эффективности, очертят границы возможностей и так далее. Возможно даже, что первый в США малый модульный реактор NuScale, который планируется построить на базе Национальной лаборатории в Айдахо, получит подобные установки для практического эксперимента, благо там нет ничего принципиально сложного.

Toyota показала прототип кроссовера с ДВС, который работает на водороде

Являясь крупнейшим автопроизводителем в мире, корпорация Toyota Motor до сих пор шла своим путём в части миграции на альтернативные энергоносители. Даже серьёзно продвинувшись в использовании водородных топливных ячеек, японский автогигант не забрасывает идею превращения водорода в топливо для ДВС с минимальными переделками. Очередной прототип позволяет ездить на водороде, сохраняя место в салоне для пятерых человек.

 Источник изображения: CNET, Toyota

Источник изображения: CNET, Toyota

Как поясняет CNET, компания Toyota продемонстрировала прототип кроссовера Corolla Cross Hydrogen Concept, который оснащён модифицированным под работу на водороде двигателем внутреннего сгорания. Ранее компания уже испытывала на гоночном треке версию спортивного хэтчбека Yaris с силовой установкой такого типа, но тогда её элементы занимали не только багажник, но и пространство сидений второго ряда. В случае с кроссовером Corolla Cross в салоне машины остаётся достаточно места для пятерых человек. В качестве основы силовой установки используется турбированный ДВС объёмом 1,6 литра от GR Corolla.

 Источник изображения: CNET, Toyota

Источник изображения: CNET, Toyota

Известно и о совместных экспериментах Toyota с компанией Yamaha по созданию двигателей внутреннего сгорания большого объёма, способных работать на водороде. По мнению руководства японского автогиганта, использование водорода в сочетании с ДВС способствует достижению экологических целей без серьёзных потрясений для отрасли по производству таких силовых установок. Как отмечается, сейчас Toyota находится примерно на 40 % пути к выпуску серийной версии машины с таким типом двигателя, а в случае с прототипом Corolla Cross Hydrogen Concept испытания в условиях зимы должны начаться на севере Японии уже в этом году.

Hyperion развернёт в США сеть мобильных водородных заправок — они будут сами добывать газ

Разработчик и производитель водородного суперкара XP-1 — компания Hyperion готовится к развёртыванию в США сети мобильных водородных заправок, дополнительно способных служить в качестве зарядных станций для электромобилей. При этом такие заправки довольно автономны — они не требуют подвоза водорода и добывают его электролизом непосредственно из воды.

 Источник изображения: Hyperion

Источник изображения: Hyperion

Согласно статистике, в США имеется 72 296 автозаправочных станций, а по данным компании GLP Autogas, водородных заправок в стране всего 107, включая частные. Если не учитывать Калифорнию и Гавайи, водородных заправок не останется вообще. Впрочем, ситуация всё равно лучше, чем, например, в Австралии, где на всю страну имеется три водородных заправочных станции. Даже в Японии и Южной Корее, продвигающих водородные топливные элементы, таких станций пока всего 166 и 34 соответственно.

Проект компании Hyperion может столкнуться с некоторыми трудностями. Одним из главных преимуществ электромобилей является возможность заряжать их дома или на работе, поэтому возвращение к заправкам вряд ли вызовет восторг потенциальных клиентов. Тем не менее не исключено, что водородному автопрому в мировой истории придётся уделить больше внимания, чем ожидается — пока в мире элементарно не производится достаточно лития, чтобы обеспечить всё население мира аккумуляторами в ближайшие десятилетия.

 Источник изображения: Hyperion

Источник изображения: Hyperion

Впрочем, решение Hyperion, разработавшей водородный гиперкар с запасом хода 1600 км, довольно эффективно и не полагается на традиционные цепочки поставок водорода. Заправки будут производить водород из воды там, где есть её источники и электричество. Хотя заправки будут оснащаться солнечными элементами питания, этого вряд ли будет достаточно для производства газа в значимых количествах для массовой заправки машин, поэтому, вероятно, размещать их будут в зоне доступа к обычной электроэнергии.

Станции предусматривают самообслуживание. Более того, такие заправки могут служить и для зарядки обычных электромобилей, позволяя заряжать машины на электрической тяге до 80 % за 20 минут. На заправку водородом будет уходить около 5 минут.

Заправки под торговой маркой Hyper:Fuel Mobile Stations будут выпускаться на заводе компании в Огайо, а создавать сеть в США компания намерена с 2023 года. Производитель намерен размещать мобильные станции рядом с обычными автозаправками, возле больших парковок супермаркетов и в других местах с повышенным трафиком.

В Hyperion считают, что речь идёт о способе довольно быстро и недорого развернуть сеть водородных заправок с минимальными рисками и инвестициями. Для этого не понадобится приобретать землю или заключать долгосрочные контракты на её аренду, а если заправка не используется в одном месте, всегда можно перевезти её туда, где к ней проявят больше интереса.


window-new
Soft
Hard
Тренды 🔥
Xiaomi набрала 75 723 заказа на электромобиль SU7 и к июню намерена выпускать по 10 000 машин в месяц 48 мин.
У Seagate упала квартальная выручка, но компания показала чистую прибыль 50 мин.
Tesla в течение квартала инвестировала в ИИ-инфраструктуру около $1 млрд 2 ч.
Скандал в EKWB разрастается: сотрудники пожаловались на нездоровый климат в компании 2 ч.
Одноплатный компьютер ASRock SBC-262M-WT получил чип Intel Amston Lake и три коннектора M.2 2 ч.
TSMC пообещала освоить 2-нм техпроцесс в 2025 году, а 1,6-нм техпроцесс — на год позднее 4 ч.
На фоне ИИ-бума выручка SK hynix взлетела в два с половиной раза 7 ч.
Космический мусор вызвал перебои с электричеством на китайской орбитальной станции 14 ч.
Advent Diamond разработала техпроцессы для выпуска алмазных чипов, которым не страшен перегрев 14 ч.
Представлен смартфон Oppo K12 — он практически полностью повторяет OnePlus Nord CE4 15 ч.