Сегодня 20 декабря 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → геотермальная энергетика
Быстрый переход

Канадцы нагрели Германию: смелый геотермальный проект вышел на коммерческий режим

В небольшом баварском городке Герретсрид (Geretsried) канадская энергетическая компания Eavor Technologies реализовала смелый геотермальный проект, который может стать основой для устойчивого энергоснабжения в будущем. Проект не полагается на поиск естественных геотермальных источников, которые есть не везде, а создаёт свой — искусственный, экономичный, эффективный и бесконечный.

 Источник изображений: Eavor Technologies

Источник изображений: Eavor Technologies

Реализованный в Герретсриде канадцами проект в декабре вышел на коммерческий режим, поставив городу тепло для отопления и пар для работы электростанции. Ожидается, что в течение года искусственно созданная в земле скважина поможет выработать 8,2 МВт электроэнергии и 64 МВт тепловой энергии. Это первое в мире реализация смелой технологии с разветвлённой системой горизонтальных скважин.

Похожую технологию в США использует компания Fervo Energy. Обе они бурят по два вертикальных ствола глубиной от 3 до 5 км, а затем переходят на горизонтальное бурение стволов до 3 км длиной. Отличие в реализации заключается в том, что канадцы бурят по несколько параллельных стволов, вилкой расходящихся от вертикальной шахты. В случае Fervo Energy, которая уже создала один проект для питания ЦОД Google, от вертикальных шахт отходит только по одному стволу.

По словам канадских разработчиков, горизонтальное бурение проходило очень сложно и требовало до 100 суток на проход каждого ствола. По мере совершенствования процесса бурения далось выйти на проход двух стволов за 20 суток при работе пары буровых установок одновременно.

После завершения бурения в одну из вертикальных скважин подаётся любая доступная вода. Она нагревается на глубине и уже самотёком выходит на поверхность по другой скважине, где отдаёт тепло и снова уходит под землю для повторного нагрева. После заполнения скважин водой её рабочего расхода практически нет. Также нет необходимости в насосах для нагнетания воды, что экономит энергию.

Реализация проекта стала возможной благодаря европейским грантам на возобновляемую энергию и ввиду катастрофического положения Германии в ископаемой энергетике. Важно добавить, что геотермальная энергетика осталась разрешённой для развития также в США, где Дональд Трамп своими указами едва не похоронил всю «зелёную» энергетику. Поэтому геотермальные методы добычи тепла и электричества имеют все шансы развиться до широкого коммерческого применения (в чём также помогает развитие ИИ), и аналитики уже предрекают рост этого рынка до многих миллиардов долларов в год.

ИИ научили находить скрытые геотермальные источники под землёй — так и до золота с алмазами недалеко

Благодаря искусственному интеллекту геологическая разведка выходит на новый уровень. Если раньше для обнаружения разного рода залежей и месторождений требовались колоссальные изыскания учёных — от кабинетной работы до многомесячных экспедиций, — то сегодня с этой задачей может справиться ИИ. Для него «найти иголку в стоге сена» — это вопрос ресурсов, которые становятся всё более доступными. Стартап Zanskar из США только что это доказал.

 Источник изображения: Zanskar

Источник изображения: Zanskar

По данным источников, молодая компания Zanskar объявила о первом за десятилетия коммерчески значимом открытии «слепой» геотермальной системы в Неваде. В отличие от традиционных геотермальных полей, где горячие источники выходят на поверхность, «слепые» системы полностью скрыты под землёй и ничем не выдают своё присутствие. Специалисты Zanskar использовали машинное обучение для анализа огромных массивов геологических данных и построения моделей предсказания местоположения горячих резервуаров. И самое важное — тестовое бурение подтвердило наличие высокотемпературного геотермального источника, который, в частности, может быть пригоден для производства электроэнергии.

Это открытие может стать поворотным моментом для геотермальной энергетики США, доля генерации которой сегодня составляет менее 1 %. По оценкам экспертов, только в западных штатах «слепые» и ещё не обнаруженные подземные геотермальные поля могут обеспечить десятки или даже сотни гигаватт чистой базовой мощности. Успех Zanskar доказывает, что с помощью ИИ такие ресурсы можно находить быстро и с меньшими рисками, что способно возродить отрасль и значительно увеличить долю возобновляемой энергии в энергобалансе страны.

Использование геотермальных источников из «слепых» зон будет намного безопаснее и дешевле, чем набирающая сегодня в США популярность методика усиленной геотермальной энергетики. Эту концепцию, в частности, продвигает компания Fervo Energy. Она уже создала один или два проекта для питания серверов Google. С помощью нефтяников Fervo создаёт глубоко в земле горизонтальные стволы, куда принудительно нагнетает воду; там она нагревается, и её пар направляется на турбину. Это дорого и возможно далеко не везде (хотя непосредственно природные геотермальные источники для этого не нужны). Побочный эффект у технологии Fervo — вероятность вызвать землетрясение.

До подключения к анализу геологических данных ИИ эту работу проделывали учёные. Так, вдохновителем и учителем основателей компании Zanskar был геолог Джеймс Фолдс (James Faulds) из Университета Невады. Частично на деньги Министерства энергетики США он организовывал экспедиции в начале 2000-х годов по поиску слепых геотермальных зон в Неваде. Компания Zanskar использовала его наработки для создания модели, по которой ИИ мог бы выполнять ту же работу, только намного быстрее и глубже.

Тестовое бурение предложенного ИИ места в штате подтвердило верность выбранного подхода — там действительно обнаружилась «слепая» геотермальная зона, хотя для точного анализа её пригодности для строительства электростанции придётся провести ряд изысканий. Нетрудно представить, что аналогичный подход можно реализовать для поиска других ценных ископаемых — потенциально любых.

Геотермальная энергия стоит очень дорого, но стартап Dig Energy обещает снизить затраты на 80 %

Стартап Dig Energy разработал буровую установку с гидроабразивной струёй, которая сможет настолько снизить затраты на геотермальное отопление и охлаждение, что необходимость использовать ископаемое топливо отпадёт. Установка может сократить расходы на бурение, которые составляет львиную долю всех затрат, на 80 %. Вчера компания Dig Energy получила от крупных венчурных фондов $5 млн начального финансирования для реализации проекта.

 Источник изображений: unsplash.com

Источник изображений: unsplash.com

На отопление и охлаждение помещений приходится около трети всего потребления энергии в США, а в центрах обработки данных этот показатель достигает 40 %. Геотермальная энергия может сократить потребление энергии системами отопления, вентиляции и кондиционирования воздуха, а также сэкономить операторам электросетей до $4 млрд в год. По данным Ок-Риджской национальной лаборатории, чтобы стабилизировать работу энергосистемы, США до 2050 года необходимо пробурить в общей сложности около 1,8 млн метров геотермальных скважин. Такие затраты делают стоимость геотермальной энергии заоблачной.

«В Соединённых Штатах геотермальная энергия десятилетиями составляла 1 % от общего числа установок в зданиях, — рассказала TechCrunch соучредитель и генеральный директор Dig Energy Дульси Мэдден (Dulcie Madden). — И это несмотря на низкие эксплуатационные расходы этой технологии. Всё дело в том, что первоначальные затраты очень, очень, очень высоки».

Существует два основных способа получения геотермальной энергии: сверхглубокое бурение вплоть до десятков километров и неглубокое — на несколько сотен метров. Такие компании, как Fervo и Quaise, бурят скважины максимальной глубины, чтобы достичь области высоких температур (до нескольких сотен градусов) для выработки электроэнергии. Скважины Dig Energy ограничены сотнями метров. На такой глубине поддерживается постоянная температура круглый год, что идеально подходит для отопления и охлаждения жилых и коммерческих зданий.

При использовании такой неглубокой геотермальной энергии вода (теплоноситель) по трубам транспортируется под землю, где происходит теплообмен. Летом она отдаёт избыток тепла, а охлаждённая вода возвращается на поверхность для охлаждения здания. Зимой она поглощает тепло для его обогрева. Установка контура заземления, как называют этот подземный трубопровод, составляет около 30 % от общей стоимости геотермального теплового насоса и является одной из основных причин, по которым эта технология остаётся более дорогой, чем традиционные системы отопления и кондиционирования. Сокращение этих расходов было одним из главных приоритетов Dig Energy.

Dig Energy решили использовать для бурения струю воды под высоким давлением вместо традиционных коронок для бурения. Но эта технология не была готова к массовому использованию. «Многие технологии бурения пришли из нефтегазовой отрасли, — пояснила Мэдден. — Другими словами, они, как правило, громоздкие, дорогие и слишком мощные для чего-то вроде геотермальной энергии на небольших глубинах».

Dig Energy потратила пять лет на совершенствование конструкции своей установки. Прототип их установки успешно бурил грунт, гравий, глину, песок и различные породы, включая песчаник, известняк, гранит, сланец и сланец. При этом он значительно меньше и легче, чем широко распространённые геотермальные буровые установки, которые монтируются на тяжёлых грузовиках.

«Нам не нужно требовать от людей покупать установку за 2 миллиона долларов, это должно быть что-то более дешёвое, чтобы они могли войти в бизнес, — говорит Мэдден. — Геотермальная энергия должна быть в 100 % зданий. Она есть в 1 % зданий. Так как же нам закрыть 99%? По сути, это неосвоенный рынок».

Meta✴ нашла новый источник энергии для прожорливого ИИ —  геотермальные станции

Meta✴ подписала соглашение с компанией XGS Energy о поставке 150 МВт углеродно-нейтральной электроэнергии, производимой с использованием новых геотермальных технологий. Это поможет обеспечить потребности дата-центров компании в Нью-Мексико для обработки данных, связанных с искусственным интеллектом (ИИ).

 Источник изображения: Dima Solomin / Unsplash

Источник изображения: Dima Solomin / Unsplash

Растущие потребности Meta✴ в электроэнергии для развития ИИ стимулируют спрос на альтернативные источники, включая геотермальные. По словам Урви Парех (Urvi Parekh), руководителя энергетического направления Meta✴, развитие ИИ требует значительных энергетических ресурсов, и геотермальные технологии могут стать важным элементом инфраструктуры.

Геотермальная энергия традиционно ограничивается географическими условиями и большинство станций используют естественные подземные резервуары горячей воды или пара. При этом в США геотермальные станции обеспечивают менее 1 % всей выработки электроэнергии. Однако такие компании, как XGS Energy работают над технологиями, которые позволят использовать этот вид энергии более широко. В частности, XGS Energy разрабатывает установки, способные извлекать тепло из сухих пород, используя замкнутую систему циркуляции воды внутри стальных обсадных труб. Это позволяет минимизировать потерю воды, например, для такого засушливого региона, как Нью-Мексико, где находится дата-центр Meta✴.

 Источник изображения: Tommy Kwak / Unsplash

Геотермальная поверхность. Источник изображения: Tommy Kwak / Unsplash

Как сообщает The Verge, сумма сделки между Meta✴ и XGS Energy не раскрывается. Проект будет реализован в два этапа и должен заработать к 2030 году, что соответствует цели Meta✴ достичь нулевых выбросов парниковых газов к концу десятилетия, заявленной компанией ещё в 2020 году. Однако, несмотря на климатические обязательства, углеродный след Meta✴ продолжает расти, как и у многих крупных технологических компаний, из-за активного развития ИИ.

Ранее компания объявила о планах по возобновлению работы старого ядерного реактора для получения чистой энергии. В то же время в Луизиане (штат на юго-востоке США) рассматривается строительство трёх газовых электростанций для нового дата-центра Meta✴.

Несмотря на риск землетрясений, геотермальную энергию ждёт светлое будущее, считают учёные

Новые методы бурения и прогрессивные технологии извлечения тепла из недр Земли обещают быстро сделать геотермальную энергетику конкурентоспособным игроком на рынке выработки электричества, уверены учёные из США. Это произойдёт стремительно — всего за пару лет. Прогнозы говорят, что уже в 2027 году стоимость генерации электричества с помощью тепла недр планеты сравняется со стоимостью сегодняшнего электричества «из розетки».

 Геотермальная электростанция Google. Источник изображения: Google

Геотермальная электростанция Google. Источник изображения: Google

Доклад о перспективах геотермальной энергетики (EGS) представил ведущий специалист в отрасли Роланд Хорн (Roland Horne), профессор энергетики и инженерии Стэнфордского университета (Stanford University). Он начал с того, что исторически доступ к геотермальной энергии был связан исключительно с географическими факторами. Для обычных геотермальных электростанций требуются горячие, проницаемые породы и большое количество подземных жидкостей, что характерно для мест с недавней вулканической активностью, таких как Япония, Новая Зеландия, Филиппины, Кения, Сальвадор, Исландия и западная часть Соединённых Штатов.

Но это было в прошлом. За последние 50 лет придуманные нефтяниками методы бурения и разрыва пластов открыли возможность доступа к теплу недр на большей части планеты, а не только рядом с вулканами. Пока новыми технологиями воспользовались лишь единичные компании, но в них скрыт огромный потенциал для производства электрической энергии в больших масштабах. Сегодня в глобальном масштабе доля геотермальной энергетики по-прежнему составляет менее половины процента. Доля солнечной и ветряной энергии более чем в 25 раз выше, что можно исправить в обозримые сроки.

Для доступа к подземному теплу следует использовать методы бурения, разработанные для добычи сланцевого газа, включая горизонтальное бурение и гидроразрыв пластов. Закачивая в скважины жидкость под большим давлением, нефтяники расширяют существующие в породе трещины и создают новые, за счёт чего происходит приток нефти и других жидкостей к поверхности. В геотермальных системах с улучшенными характеристиками жидкость представляет собой просто горячую воду из естественных подземных резервуаров.

Другие адаптированные методы включают бурение нескольких скважин с одной площадки для повышения эффективности и снижения затрат. Синтетические алмазные буровые коронки, которые могут эффективно проходить через твёрдые породы, также оказались критически важными, позволяя завершить строительство новой геотермальной скважины за несколько недель, а не месяцев. «Ускорение бурения оказывает огромное влияние на экономику EGS в целом», — пояснил учёный.

Согласно проведённым расчётам, более высокая скорость бурения может уже к 2027 году сделать геотермальные системы конкурентоспособными по отношению к системам «наземной» выработки электричества на большей части территории США, что сегодня примерно равно $80 за МВт·ч.

В Калифорнии, которая в настоящее время получает около 5 % электроэнергии из геотермальных источников, авторы подсчитали, что с помощью EGS геотермальная мощность может увеличиться в десять раз и к 2045 году достичь 40 ГВт, что позволит заменить ископаемое топливо в качестве базовой генерации. Таким образом, EGS дополнит нестабильные возобновляемые источники энергии, такие как ветер и солнце, и повысит стабильность безуглеродной энергосистемы.

Но есть один момент, который обязательно нужно учитывать. Как и при гидроразрыве пластов для добычи нефти и газа, дробление глубинных пород для доступа к геотермальным резервуарам может вызвать землетрясения. Для снижения риска катастроф профессор рекомендует не бурить там, где риск землетрясений высокий и где проходят разломы земной коры. Также следует бурить с осторожностью и прекращать работы каждый раз, как только сейсмические события превысят определённый уровень. Если тряска будет не сильной, работы можно не останавливать.

Ещё одним способом избежать землетрясений в местах бурения может быть мягкое нагнетание воды для гидроразрыва — не под высоким давлением, а намного более слабым. «Постепенное закачивание жидкости вместо использования напора под давлением может значительно снизить риск и масштабы индуцированной сейсмической активности», — сказал Хорн.

Учёный и его коллеги надеются, что новое исследование послужит стимулом для дальнейших исследований и разработок EGS как устойчивого и надёжного источника энергии. «EGS может изменить правила игры в производстве экологически чистой энергии не только в Калифорнии, но и по всей территории США и во всём мире, — сказал Хорн. — Безопасное использование внутреннего тепла Земли может существенно повлиять на энергетику нашего будущего».

Учёные нащупали новый источник чистой неограниченной энергии — прямо у нас под ногами

Как показывает практика, геотермальную энергию можно черпать лишь до определённой глубины и только в отдельных местах. Влезть поглубже в недра Земли мешают физика и особенности геологии. Недра становятся пластичными и текут, что исключает нормальную циркуляцию воды как носителя энергии. Учёные из Швейцарии сделали открытие, которое даёт надежду на неограниченный доступ к геотермальным источникам на запредельных глубинах.

 Источник изображения: Quaise Energy

Источник изображения: Quaise Energy

В нефтегазовой отрасли давно используется такой способ интенсификации добычи, как гидроразрыв. Но гидроразрыв работает только в том случае, если порода остаётся способной разрушаться, образуя трещины. Если порода ведёт себя как пластилин, что происходит по мере углубления, то гидроразрыв становится невозможен. Это означает, что закачать туда воду и нагреть её до температуры теплоносителя будет нельзя.

Между тем недра могут предоставить необходимое для работы геотермальной электростанции тепло практически везде, но только если решить проблему с прокачкой воды на целевой глубине. Современные геотермальные электростанции построены там, где тепло поднимается достаточно близко к поверхности или даже выходит наружу. Это районы с вулканической активностью. Проблема же получения условно бесконечной чистой энергии должна решаться в любом уголке планеты, например, на месте старой угольной электростанции со всей её электрической инфраструктурой, но сегодня это невозможно.

 Источник изображения: EPFL

Источник изображения: EPFL

Группа учёных из Федеральной политехнической школы Лозанны (EPFL) провела условно натурные эксперименты, изучая, как ведёт себя горная порода на различных глубинах и насколько глубоко возможен гидроразрыв. Исследователи не бурили сверхглубокие скважины, что само по себе стало бы научным подвигом. Они воссоздали в лаборатории условия недр на разных глубинах, устанавливая в камере с образцом соответствующее давление и температуру. После воздействия на образцы экстремальными условиями учёные с помощью приборов изучали их внутреннюю структуру.

 Осмотр образцов с помощью рентгеновской томографии

Осмотр образцов с помощью рентгеновской томографии

Как оказалось, горные породы даже на больших глубинах сохраняют способность растрескиваться. Они остаются достаточно хрупкими для применения технологии гидроразрыва до более высоких температур, чем требуется для глубинной геотермальной энергетики. Для решения энергетических проблем человечества необходимо нагревать воду до 400 °C, когда жидкость начинает вести себя как газ, оставаясь текучей. В лабораторных экспериментах учёные доказали, что теплоноситель можно будет закачивать до глубин с температурами вдвое выше. Другое дело, что соответствующих технологий и оборудования пока нет. Однако раз это в принципе возможно, прорывы в этом направлении не за горами.

Благодаря нефтяникам геотермальные электростанции с горизонтальными стволами будут строиться быстрее и дешевле

После ввода в эксплуатацию первой в мире геотермальной электростанции с горизонтальными стволами, которую в ноябре 2023 года запустила компания Google, подрядчик проекта компания Fervo Energy принялась бурить скважины для коммунального предприятия в штате Юта. Благодаря новым технологиям и передовому оборудованию нефтяников, проходка горизонтальных стволов стала на 70 % быстрее и на 50 % дешевле, что может сильно подтолкнуть развитие новой отрасли.

 На новом проекте. Источник изображения: Fervo Energy

На новом проекте. Источник изображения: Fervo Energy

По словам Fervo Energy, горизонтальная скважина для проекта Cape Station в южной части штата Юта пробурена за 21 день. Благодаря этому стоимость работ снизилась с $9,4 млн, которые заплатила компания Google за проект в штате Невада, до $4,8 млн. Работы выполнены не только быстрее, но также существенно дешевле. Помог в этом не только полученный на проекте Google опыт, но также закупленное у нефтяников самое передовое на сегодня оборудование для бурения и охлаждения рабочих скважин в процессе бурения.

Более того, скважина на новом проекте пробурена ещё на 640 м глубже, чем в проекте Google, а там она была создана на глубине более 2 км. Трансляция опыта на другие проекты обещает получить доступ к чистой геотермальной электроэнергии в местах, где нет традиционных геотермальных источников. Согласно проектам Fervo Energy, она закачивает на глубину холодную воду с поверхности и обратно поднимает уже нагретую до более чем 200 ℃. Эта вода нагревает водный контур в электростанции и полученным паром вращает турбину. Затем вода в первом контуре охлаждается и снова идёт под землю, и так до бесконечности.

В проекте Google мощность геотермальной электростанции составила 3,5 МВт. Проект в штате Юта при выходе на полную мощность в 2028 году позволит вырабатывать круглосуточно и круглогодично 400 МВт электроэнергии. Ускорение проведения буровых работ и снижение их стоимости сделает такую энергию несколько дешевле и обещает стать более привлекательной для дальнейшего тиражирования.

Бурение скважин в вулканах поднимет геотермальную энергетику на новый уровень

В 2008 году учёные предприняли попытку бурения скважины к карману с магмой под вулканом Крафла в Исландии. Камера с магмой оказалась ближе ожидаемого, поэтому она вскрылась и разрушила скважину. Но главное, что катастрофы в виде спровоцированного бурением извержения не произошло, что доказало возможность контролируемого доступа к магме и позволило надеяться на приручение в будущем энергии вулкана.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

С учётом полученного опыта учёные предпримут ещё ряд попыток подобраться как можно ближе к магматическим камерам под Крафлой. Следующее бурение запланировано на 2026 год. Проектом занимается специально созданная для этого организация Krafla Magma Testband (KMT).

«Возможность проникнуть в кору и взять пробы магмы дала бы нам огромные знания, — заявляют исследователи. — Мы надеемся, что сможем провести хотя бы прямое измерение температуры, чего никогда раньше не делалось».

Проект очень амбициозен. Предстоит разработать жаропрочные инструменты и измерительную аппаратуру, чтобы добраться до нужной глубины и контролировать условия вблизи карманов с магмой и внутри них. При этом следует понимать, что обнаружение магматических карманов и определение глубины их залегания — это нетривиальная задача. Как правило, учёные бурят почти вслепую, надеясь, что соседство с вулканом с большой вероятностью позволит рано или поздно добраться до камеры с магмой.

 Пример площадки для добычи энергии от тепла магмы. Источник изображения: Krafla Magma Testband

Пример площадки для добычи энергии от тепла магмы. Источник изображения: Krafla Magma Testband

В случае удачи проект привнесёт много нового в наши знания о вулканах и причинах извержений. Но учёные ожидают от работ также практической ценности. В 2028 году будет предпринято ещё одно бурение на склонах Крафлы, но уже с прицелом на геотермальные технологии. С помощью перегретой воды под высоким давлением, разогреваемой магмой в кармане или вблизи камеры, планируется запустить вырабатывающую электрический ток турбину. По мнению исследователей, такие мощные источники энергии как вулканы следует постепенно приручить, чтобы получить доступ к их неограниченной чистой энергии.


window-new
Soft
Hard
Тренды 🔥
10 тысяч модов и 350 миллионов загрузок: Larian похвасталась новыми достижениями игроков Baldur’s Gate 3 6 ч.
Вызывающий привыкание роглайк Ball x Pit достиг миллиона проданных копий и в 2026 году получит новые шары 7 ч.
Соавтор Counter-Strike признался в любви к русской культуре и рассказал о «самом депрессивном» периоде за 25 лет карьеры 9 ч.
Apple резко снизила награды багхантерам — при этом рост вредоносов в macOS бьёт рекорды 9 ч.
Mortal Kombat 1, Routine и Dome Keeper возглавили первую волну декабрьских новинок Game Pass, а Mortal Kombat 11 скоро подписку покинет 10 ч.
Google закрыла 107 дыр в Android — две нулевого дня уже использовались в атаках 10 ч.
В YouTube появился Recap — пользователям расскажут, чем они занимались на платформе в течение года 10 ч.
ИИ-агенты научились взламывать смарт-контракты в блокчейне — это риск на сотни миллионов долларов 10 ч.
Инструмент YouTube для защиты блогеров от дипфейков создал риск утечки их биометрии 11 ч.
В Microsoft Teams появились «иммерсивные встречи» в метавселенной с аватарами без ног 11 ч.