Сегодня 01 апреля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → джеймс уэбб
Быстрый переход

Вселенское ДТП на скорости 3,2 млн км/ч — «Джемс Уэбб» пролил свет на столкновение галактик

Не секрет, что галактики могут сталкиваться, что ведёт к изменениям в ландшафте Вселенной и к эволюции самих галактик. Изучение последствий таких явлений позволит лучше понять основополагающие процессы мироздания и повысит точность прогнозирования. Интереснейшим объектом в этом плане остаётся самый опасный «перекрёсток» во Вселенной — так называемый Квинтет Стефана, где галактики сталкивались раньше и сталкиваются теперь.

 Комбинированные данные. Источник изображения: William Herschel Telescope Enhanced Area Velocity Explorer

Комбинированные данные. Источник изображения: William Herschel Telescope Enhanced Area Velocity Explorer

Интерес к Квинтету Стефана — группе из четырёх взаимодействующих галактик (пятая случайно оказалась в кадре) — подчёркивается тем, что «Джеймс Уэбб» запечатлел этот объект в своей самой первой сессии научных снимков, как только приступил к научной работе. Ранее Квинтет Стефана снимали другие оптические и радиотелескопы. Последние дают наиболее полное представление о распределении газа и пыли в области столкновения и поведении фронта ударной волны от столкнувшихся гало галактик.

В новой работе учёные объединили данные с радиотелескопов Low Frequency Array (LOFAR), Very Large Array и спектрометра William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE) на телескопе им. Уильяма Гершеля в Ла-Пальме (Испания) с изображениями «Джеймса Уэбба». Общие данные помогли в деталях воспроизвести место «аварии», в ходе которой галактика NGC 7318b на скорости 3,2 млн км/ч врезалась в останки предыдущих столкновений. Скорость фронта ударной волны оказалась настолько большой, что смогла сорвать электроны с орбит атомов межзвёздного газа и пыли. Возникли области плазмы, которые хорошо видны в данных радиотелескопов и на спектрометре.

«С момента своего открытия в 1877 году Квинтет Стефана пленил астрономов, потому что он представляет собой галактический перекрёсток, где прошлые столкновения между галактиками оставили после себя сложное поле обломков, — заявила Марина Арнаудова, руководитель группы и исследователь из Университета Хартфордшира. — Динамическая активность в этой группе галактик теперь возобновилась из-за того, что галактика пронеслась сквозь неё с невероятной скоростью более 2 миллионов миль в час (3,2 миллиона км/ч), что привело к чрезвычайно мощному удару, очень похожему на звуковой удар реактивного истребителя». Только этот «истребитель» двигался в 800 раз быстрее обычного...

 Квинтет Стефана на надрах «Уэбба»

Квинтет Стефана на кадрах «Уэбба»

«Наряду с деталями удара и разворачивающегося столкновения, которые мы видим в Квинтете Стефана, эти наблюдения дают замечательный взгляд на то, что может происходить в формировании и эволюции едва различимых слабых галактик, которые мы видим на пределе наших текущих возможностей», — добавил другой автор работы.

Для роботизированного спектрометра WEAVE это было первое наблюдение. Прибор начал работать с 2022 года и с тех пор занимает 70 % времени наблюдений телескопа, на который установлен. С его помощью ожидается множество новых открытий.

«Уэбб» открыл в ранней Вселенной три огромные галактики — учёные не понимают, почему они так быстро сформировались

В данных космической обсерватории им. Джеймса Уэбба учёные обнаружили трёх «Красных монстров» — три сверхмассивных для своего времени галактики, скорость формирования которых выходит за рамки современной космологии. Выборка небольшая, но она заставляет искать новые признаки нашего неточного понимания природы формирования звёзд и галактик на ранних этапах жизни Вселенной.

 Источник изображения: University of Geneva

Источник изображения: University of Geneva

Международная группа учёных во главе с астрономами из Женевского университета (UNIGE) использовала собранные «Уэббом» данные по галактикам на красных смещениях от z=5 до z=9. Для этих значений возраст Вселенной составлял 1–1,5 млрд лет. По причине ускоренного разлёта звёзд и галактик во Вселенной длина волны фотонов становится длиннее и уходит во всё более красную область, что можно определить по спектральным измерениям. «Уэбб» как раз специализируется на таком. Тем самым он позволяет с приемлемой точностью определить расстояния до объектов и их массу.

Учёные отобрали для углублённого анализа 36 далёких массивных, пыльных, звездообразующих галактик. Из этого числа 33 галактики укладывались в рамки современных представлений о скорости их формирования, однако три вышли далеко за пределы моделей. За эту уникальность и сверхбольшую массу эти три объекта назвали «Красными монстрами». Расчёты показали, что для достижения наблюдаемых масс скорость рождения звёзд в них должна была быть на 50 % больше предсказываемой.

Нельзя исключать, что в данные наблюдений могли вкрасться ошибки. И всё же, учёные не исключают возможности, что в ранней Вселенной могли складываться условия для ускорения процессов рождения звёзд. Пока фактического материала недостаточно, чтобы потрясти основы современной космологии. Формируется лишь намёк на неполноту знаний о процессах и явлениях в ранней Вселенной. «Уэбб» вряд ли станет тем инструментом, который не оставит камня на камне на предыдущих воззрениях, но сомнения он заронил, а в науке нет ничего ценнее критики и здорового скептицизма.

«Джеймс Уэбб» первым в истории нашёл «зигзаг Эйнштейна» — уникальное искривление пространства-времени

Предсказанное 110 лет назад Эйнштейном гравитационное линзирование было подтверждено наблюдением через четыре года после публикации его работы. Это было сделано благодаря наблюдению искривления света звёзд гравитацией Солнца во время затмения. Десятилетия спустя, с появлением более совершенных телескопов, гравитационное линзирование стало популярным инструментом для изучения Вселенной. Но до недавнего времени никто не видел такого феномена, как «зигзаг Эйнштейна».

 Источник изображений: Frédéric Dux

Источник изображений: Frédéric Dux

Началось всё с того, что астрономов заинтересовал далёкий квазар J1721+8842. Его первые наблюдения были проведены в 2017 году с помощью панорамного обзорного телескопа и системы быстрого реагирования (Pan-STARRS), расположенной в обсерватории Халеакала на Гавайях. Объект демонстрировал явление гравитационного линзирования, представ на снимках в четырёх экземплярах.

Как объяснил ещё в 1915 году Эйнштейн, материя тесно связана с пространством-временем. Массивные объекты искажают пространство-время, заставляя свет следовать этим изгибам. Изгибы, как линзы, фокусируют и направляют свет, отчего на снимках телескопов один и тот же объект будет двоиться, троиться и быть видимым одновременно в разных точках пространства. Чаще всего наблюдаются одиночные гравитационные линзы. Может быть, потому что их проще обнаружить? Но иногда возникают причудливые явления, такие как крест или кольцо Эйнштейна, когда фокусирующая свет далёкого объекта масса (галактика или скопление галактик вместе с собранной вокруг них тёмной материей) располагаются точно выверенным образом по отношению к объекту.

Квазар J1721+8842 оказался одним из таких уникальных объектов. А подключение к его наблюдению телескопа «Уэбб» сделало открытие поистине редким и первым в истории. Чувствительность «Уэбба» позволила выявить ещё две копии далёкого квазара — всего шесть. Оказалось, что свет от квазара, расположенного на удалении 11 миллиардов световых лет от нас, преломляется двумя массами — он дважды гравитационно линзируется. Сначала его свет преломляется далёкой галактикой на удалении 10 миллиардов световых лет, а затем более близкой к нам галактикой на расстоянии 2,3 миллиарда световых лет от Земли. Все три объекта выровнены таким образом, что свет от квазара как бы совершает зигзаг в пространстве-времени, отклоняясь сначала одной галактикой, а затем другой. Такого эффекта ещё никто не наблюдал.

 Копии квазара обозначены буквами, дуги — это копии далёкой галактики (она тоже «размножилась»), в центре — ближняя галактика

Копии квазара обозначены буквами, дуги — это копии далёкой галактики (она тоже «размножилась»), в центре — ближняя галактика

Более того, уникальное расположение линзирующих масс и источника света (квазара) позволяет одновременно провести два измерения — установить ограничения на определение постоянной Хаббла и ввести ограничения в уравнения для оценки тёмной энергии. Обычно можно либо одно, либо другое. Одновременная оценка обеих спорных величин даст науке больше, чем другие измерения.

Что касается постоянной Хаббла, то есть намёки на то, что её величина отличается в местной Вселенной и в ранней. Относительно тёмной энергии вообще мало что понятно. Она «расталкивает» объекты во Вселенной и чем они дальше друг от друга, тем быстрее разлетаются в стороны. Две точки преломления света от J1721+8842 на разных концах Вселенной — это удобная возможность поискать отличия. Впрочем, учёные предупреждают, что выводы делать рано. Сначала необходима углублённая работа теоретиков с учётом полученных данных, а на это могут уйти годы.

«Джеймс Уэбб» невольно поддержал альтернативную теорию гравитации

Примерно 60 лет назад начала оформляться теория тёмной материи как нерегистрируемого вещества, играющего главную роль в зарождении объектов во Вселенной. Согласно принятой в космологии модели лямбда-CDM, звёзды и галактики на заре времён образовались благодаря «кучкованию» тёмной материи и концентрации вещества вокруг её сгустков. Альтернативной теорией стала модель MOND с переменной гравитацией. «Уэбб», говорят сторонники MOND, играет на их стороне.

 Источник изображения: NASA

Источник изображения: NASA

Инфракрасная обсерватория им. Джеймса Уэбба далеко заглянула в раннюю Вселенную. Согласно модели Лямбда-CDM, первые галактики начали оформляться через 300–400 млн лет после Большого взрыва. В их формировании (и в зарождении звёзд) ключевую роль сыграла тёмная материя, благодаря которой обычное вещество собралось вместе и под действием гравитации сначала породило звёзды, а потом галактики, скопления галактик и сверхскопления галактик.

Если бы эта теория была верна, говорят сторонники модели MOND (Модифицированная ньютоновская динамика), то «Уэбб» увидел бы в ранней Вселенной слабые и тусклые галактики, которые превратились бы в яркие объекты намного позже — через миллиард и более лет после Большого взрыва. Вместо этого «Уэбб» раз за разом находит на рубеже 500–900 млн лет после Большого взрыва большие, яркие и развитые галактики, похожие, например, на Млечный Путь. Такое может объяснить только модель MOND, в которой не предусмотрен «костыль» в виде тёмной материи.

Чтобы подтвердить это, один из давних сторонников MOND — американский учёный Стейси Макго (Stacy McGaugh), провёл моделирование с учётом собранных «Уэббом» данных. Модель просчитала процесс роста множества галактик с учетом лямбда-CDM и MOND. Расчёт показал, что модель лямбда-CDM не смогла предсказать рост галактик до наблюдаемых «Уэббом», а MOND справилась с этой задачей ощутимо лучше. По мнению учёного, это доказывает, что поиски тёмной материи — пустое дело. Необходимо искать признаки MOND — изменений гравитации в зависимости от скоростей объектов.

В ранней Вселенной обнаружена чёрная дыра, поглощающая материю сверх всяких разумных пределов

В последние годы в ранней Вселенной открыто много сверхмассивных чёрных дыр (СЧД), которые не должны были успеть стать настолько большими ко времени наблюдения. Для них существует чисто физический предел по скорости поглощения массы, который они обычно не могут превзойти. Тем удивительнее было найти чёрную дыру, которая по скорости поглощения вещества превысила теоретический предел в 40 раз.

 Художественное представление неумеренно питающейся чёрной дыры. Источник изображения: NSF NOIRLab

Художественное представление неумеренно питающейся чёрной дыры. Источник изображения: NSF NOIRLab

Открытие сделала группа астрономов из США (из обсерваторий Gemini и NSF NOIRLab). Используя для своих целей космическую обсерваторию им. Джеймса Уэбба они наблюдали некоторое количество галактик в ранней Вселенной по следам наблюдений рентгеновской обсерватории «Чандра». Эти галактики были тусклыми в оптике, но яркими в рентгене, что свидетельствует об активности чёрных дыр в их центрах.

Внимание учёных привлекла галактика LID-568. Точное расположение этого объекта помог установить спектрометр «Уэбба». Галактика LID-568 оказалась на расстоянии 1,5 млрд лет после Большого взрыва. Проведенные оценки показали, что в центре галактики находится активная сверхмассивная чёрная дыра массой 7,2 млн солнечных масс. Это сравнительно небольшая масса для СЧД. Удивило другое. Так называемый предел Эддингтона для этой чёрной дыры был превышен в 40 раз!

Когда на СЧД падает вещество, оно закручивается вокруг неё по спирали. Все чёрные дыры во Вселенной вращаются, поскольку возникли из вращающихся объектов. Чёрная дыра создаёт при этом вокруг себя вращение пространства-времени, заставляя всё падающее на неё также вращаться по сжимающейся спирали (сила гравитации действует в этой области также вбок, а не только в сторону центра).

Сила гравитации и трение, наиболее сильные ближе к чёрной дыре, разогревают вещество в диске аккреции до свечения во всех диапазонах электромагнитного излучения. Это излучение создаёт изнутри давление на падающее на СЧД вещество и не даёт ему падать на чёрную дыру сверх определённой скорости. Этот порог и есть предел Эддингтона (в общем случае он введён для звёзд, удерживающих свои внешние оболочки от падения на ядро), хотя этот порог на относительно короткое время может превышаться и тогда проявляется сверхэддингтоновский эффект, когда темп аккреции значительно превышает эддингтоновский предел.

Похоже, учёные наткнулись на СЧД LID-568 в тот редкий момент, когда она потребляла вещество в режиме сверхэддингтоновского предела. Поэтому дальнейшие наблюдения за этим объектом могут принести массу открытий в эволюции чёрных дыр. Для учёных стало загадкой, как СЧД в ранней Вселенной смогли отъесться до настолько больших регистрируемых масс. К такому могла привести ситуация, когда первые чёрные дыры возникали непосредственно из коллапса облаков материи либо из невероятно огромных первых звёзд (ни одно, ни другое не наблюдалось).

Превышение эддингтоновского предела также может дать ответ на невероятную скорость откорма СЧД. Открытие галактики LID-568 в этом плане стало настоящей находкой.

Несостоявшиеся звёзды могут иметь собственные планеты, подсказывает «Джеймс Уэбб»

Коричневые карлики или несостоявшиеся звёзды, как их прозвали за неспособность запустить термоядерное горение, во многом остаются малоизученными объектами. Появление в космосе инфракрасного телескопа «Джеймс Уэбб» стало введением в строй наиболее подходящего инструмента для изучения этих относительно холодных и поэтому невидимых в оптическом диапазоне недозвёзд. «Уэбб» готов раскрывать их секреты, включая возможность появления у них планет и жизни.

 Источник изображения: NASA/ESA/CSA

Источник изображения: NASA/ESA/CSA

Ещё в первые годы наблюдений телескопом «Хаббл» в одной из близких к Земле зон звездообразования в туманности Ориона были обнаружены объекты, напоминающие протопланетные диски (проплиды). Однако только с появлением «Уэбба» в центре проплидов были выявлены объекты, которые могут считаться коричневыми карликами. Инфракрасная спектроскопия, проведённая с помощью приборов «Уэбба», позволила измерить их температуру и оценить массу, что стало подсказкой к вопросу, могут ли коричневые карлики иметь собственные планетные системы. Скорее всего, могут.

В наблюдаемой области туманности Ориона, удалённой от Земли на 1500 световых лет, «Уэбб» обнаружил более двух десятков кандидатов в коричневые карлики. Набор статистики по этим объектам многое откроет для науки. Пока считается, что масса коричневых (иначе — бурых) карликов лежит в диапазоне 0,015–0,075 солнечных масс. «Уэбб» способен засекать такие объекты и, что немаловажно, позволяет оценить их температуру, по которой можно отличить коричневого карлика от звезды.

Например, один из обнаруженных «Уэббом» кандидатов имеет массу 0,05 солнечных масс — это примерно как пять Юпитеров. И таких примеров достаточно, чтобы учёные смогли лучше понять природу коричневых карликов и, в частности, их способность к формированию собственных планетных систем.

«Новые наблюдения JWST лишь коснулись вопроса коричневых карликов в Орионе, — говорят учёные. — Туманность содержит несколько сотен слабых объектов, которые могут быть коричневыми карликами, готовыми для спектроскопии с помощью JWST. Будущие наблюдения Ориона с помощью JWST потенциально могут обнаружить гораздо больше примеров проплидов вокруг коричневых карликов и определить наименьшую массу, при которой существуют коричневые карлики. Эта информация поможет нам заполнить пробелы в наших знаниях о том, как формируются коричневые карлики и их связь со звёздами и планетами».

«Джеймс Уэбб» показал впечатляющую паутину галактики Фантом

NASA опубликовало полученный космическим телескопом «Джеймс Уэбб» (JWST) снимок галактики, известной под номерами M74 и NGC 628, а также под неофициальным названием «Фантом». Впервые аппарат запечатлел её в 2022 году.

 Галактика NGC 628 — снимок на MIRI и NIRCam. Источник изображений: esawebb.org

Галактика NGC 628 — снимок на MIRI и NIRCam. Источник изображений: esawebb.org

Старое изображение было получено при помощи прибора MIRI (Mid-InfraRed Instrument) среднего инфракрасного диапазона на телескопе «Джеймс Уэбб»; в новом данные MIRI были объединены с данными прибора Near-InfraRed Camera (NIRCam), работающего в ближнем инфракрасном диапазоне. Это помогло учёным проекта Feedback in Emerging extrAgalactic Star clusTers (FEAST) изучить расположенные в этой области звёздные ясли.

 Галактика NGC 628 — снимок на NIRCam

Галактика NGC 628 — снимок на NIRCam

Звёздные ясли — области в космосе, заполненные газами и молекулярными облаками. Здесь рождаются звёзды и планеты, поэтому чаще их называют областями звездообразования. Основная задача проекта FEAST — изучать образование и взаимодействие звёзд за пределами нашей галактики. Подсчитывая объёмы энергии, которую звезды выбрасывают в окружающую среду, учёные могут лучше понять механизмы их появления.

Объединив данные MIRI и NIRCam, учёные получили основания сделать вывод, что спиральные рукава галактики M74 — наиболее активные области звездообразования в ней. Снимок NIRCam помог увидеть линии излучения водорода, которые не так сильно подвержены влиянию пыли, и которые показывают, где формируются новые массивные звёзды.

Телескоп «Джеймс Уэбб» обнаружил в ранней Вселенной невозможные квазары

Квазары — это активные ядра галактик, представляющие собой сверхмассивные чёрные дыры, которые непрерывно поглощают падающее на них вещество. Как же удивились учёные, когда в ранней Вселенной космический телескоп «Джеймс Уэбб» обнаружил квазары без регистрируемого окружения из вещества. Такое просто невозможно, чтобы сияние квазаров через миллиарды лет наблюдалось и возникло в полной пустоте.

 Художественное представление квазара. Источник изображения: NASA/JPL–Caltech

Художественное представление квазара. Источник изображения: NASA/JPL–Caltech

«Вопреки предыдущему мнению, мы обнаруживаем, что в среднем эти квазары не обязательно находятся в областях ранней Вселенной с наибольшей плотностью. Некоторые из них, кажется, находятся неизвестно где, — поделилась в заявлении доцент физики Массачусетского технологического института Анна-Кристина Эйлерс (Anna-Christina Eilers). — Трудно объяснить, как эти квазары могли вырасти такими большими, если кажется, что им нечем питаться».

Современная космология предполагает, что космическая паутина из нитей тёмной материи и её сгустков в узлах способствовала концентрации обычного вещества и его превращению в звёзды, галактики и всё остальное. Сделанные с помощью обсерватории им. Джеймса Уэбба открытия вносят неопределённость в эти гипотезы и теории. «Уэбб» смог заглянуть на глубину до 13 и более миллиардов лет назад, когда материя во Вселенной образовала первые галактики, а эти галактики, а также сверхмассивные чёрные дыры в их центрах, оказались неожиданно большими. Согласно стандартной модели, они просто не успели бы эволюционировать до регистрируемых размеров.

Мало было этих проблем, как вскрылись новые. Учёные изучили пять самых ранних из открытых квазаров на этапе 600–700 млн лет после Большого взрыва. Исследователей волновал вопрос — чем они питаются, если стали такими большими уже на ранних этапах своей эволюции? Оказалось, что некоторые квазары вообще не имеют регистрируемого вещества в пределах своего «ареала обитания». Их яркость и аккрецию вещества вообще ничем нельзя объяснить. На целом ряде длин волн учёные не обнаружили признаков материи.

Логично было бы ожидать, что квазары в ранней Вселенной обнаруживаются в областях узлов тёмной материи, где много, например, видимых галактик. Но рядом с некоторыми из наблюдаемых квазаров было всего 2 галактики, а рядом с другими — 50 и более. Это говорит о том, что супермассивные чёрные дыры (квазары) выросли на неизвестном науке механизме эволюции, который ещё предстоит открыть. Не исключено, что новые наблюдения помогут зарегистрировать рядом с квазарами холодные скопления газа и пыли, но это всё равно плохо укладывается в современные космологические представления.

«Джеймс Уэбб» обнаружил первую паровую планету — её атмосфера наполнена газообразной водой

Расположенный всего в 100 световых годах от Земли мир GJ 9827 d удивил учёных. Его атмосфера более чем на 30 % состоит из водяного пара. Учёным ещё не попадались подобные экзопланеты, атмосфера которых была бы насыщена «тяжёлыми» молекулами. Что огорчает, известная нам по Земле биологическая жизнь не сможет выжить в таких условиях — для этого там слишком горячо.

 Источник изображения:  Robert Lea / Canva / space.com

Источник изображения: Robert Lea / Canva / space.com

Экзопланета GJ 9827 d была обнаружена в 2017 году космическим телескопом «Кеплер». Она размещается всего в 8,4 млн км от своей звезды — это 6 % расстояния от Земли до Солнца. Экзопланета в два раза больше Земли и в три раза массивнее её. Такие экзопланеты называют субнептунами. В данном случае — это тёплый субнептун. Год на GJ 9827 d длится чуть больше шести земных суток. В системе обнаружены ещё две экзопланеты, но эта оказалась самой перспективной для пристального внимания учёных.

Последующие наблюдения за GJ 9827 d в 2023 году с помощью телескопа «Хаббл» выявили первые намёки на присутствие в атмосфере водяного пара, что сразу повысило интерес к объекту. Использование спектральных приборов «Джеймса Уэбба» позволило более детально изучить состав окружающей её газовой оболочки. Это стало возможным в процессе прохождения экзопланеты по лику родной звезды, когда свет последней на определённых длинах волн поглощался в атмосфере GJ 9827 d. Открытием стало обнаружение не просто молекул воды в атмосфере экзопланеты — она буквально тонула в водяном паре, процентное содержимое которого учёные оценили более чем 31 %.

«Мы впервые видим нечто подобное, — сказал один из авторов работы, Эшан Рауль (Eshan Raul ). — Планета [её атмосфера], по-видимому, состоит в основном из горячего водяного пара, что делает её тем, что мы называем "паровым миром". Для ясности, эта планета не гостеприимна, по крайней мере, для тех видов жизни, с которыми мы знакомы на Земле».

Команда считает, что предстоит открыть ещё много миров, подобных GJ 9827 d, предполагая, что паровые планеты и водные миры могут оказаться очень распространёнными.

«Джеймс Уэбб» не нашёл родства между Плутоном и его спутником Хароном

Благодаря телескопу «Джеймс Уэбб» учёные впервые достоверно смогли определить ряд химических веществ на поверхности спутника Плутона Хароне. Миллиарды лет назад Харон мог отделиться от Плутона после удара астероида, как это произошло при отделении Луны от Земли. Также Харон может оказаться самостоятельным объектом, прилетевшим из пространства и застрявшим у Плутона. Изучение химического состава поверхности спутника могут помочь с этой загадкой.

 Харон вблизи. Источник изображений: NASA

Харон вблизи. Источник изображений: NASA

Вблизи Харон (и Плутон) наблюдались лишь однажды и недолго, когда рядом с ними пронеслась автоматическая станция NASA «Новые горизонты» (New Horizons). Эти данные использовались в новой работе, как и моделирование на базе изучения ледяных спутников Юпитера, а также лабораторные исследования по бомбардировке фотонами и заряжёнными частицами водяного льда и других веществ (учёных интересовали процессы фотолиза и радиолиза, которые инициируют химические реакции на окраинах Солнечной системы).

 Харон и Плутон (на переднем плане)

Харон и Плутон (на переднем плане)

Харон и Плутон имеют необычную орбиту. Она обусловлена тем, что Харон всего лишь вполовину меньше Плутона (1200 км против 2400), а его масса составляет примерно 1/8 массы Плутона. Оба они вращаются вокруг общего центра масс. Земля и Луна тоже вращаются вокруг общего центра масс, но он находится внутри Земли и Луна как бы всё равно обращается вокруг Земли. В случае Плутона и Харона общий центр масс далеко выступает за поверхность Плутона и, в частности, это стало одним из поводов, почему Плутон потерял статус планеты Солнечной системы.

 Плутон и Харон на спектральных датчиках «Уэбба». Источник изображения: NIRSpec Silvia Protopapa et al. / Nature Communications, 2024

Плутон и Харон на спектральных датчиках «Уэбба». Источник изображения: NIRSpec Silvia Protopapa et al. / Nature Communications, 2024

Наблюдение учёных Северо-Западного университета (США) за Хароном с помощью спектральных инфракрасных приборов «Уэбба» впервые позволило достоверно определить на его поверхности наличие углекислотного льда и перекиси водорода в смеси с водяным льдом (средняя температура на спутнике составляет -232 °C). Это достаточно важный шаг к пониманию, как образовалась эта по сути двойная система небесных тел. Также работа даёт понимание химических реакций на транснептуновых объектах, куда добираются лишь крохи энергии Солнца. В частности, фотоны и заряжённые частицы бомбардируют водяной лёд (и водяной лёд с добавками углекислотного льда), превращая часть его в перекись водорода.

Также исследования показали, что Харон содержит меньше аммиака и метана, чем Плутон и другие объекты за орбитой Нептуна. Это как минимум заставляет распознать в Хароне пришельца из другого уголка системы. Но это не точка в исследовании Харона, а лишь новый эпизод, за которым последует продолжение.

У экзопланеты с плотностью хлопка впервые обнаружили асимметрию атмосферы обоих полушарий

Удивительно обнаружить атмосферу у планеты за сотни световых лет от нас, но ещё удивительнее засечь разницу между характеристиками атмосферы её полушарий: западного и восточного. Благодаря космической обсерватории им. Джеймса Уэбба это стало возможным.

 Экзопланета с асимметричной атмосферой в представлнии художника. Источник изображения: University of Arizona

Экзопланета с асимметричной атмосферой в представлении художника. Источник изображения: University of Arizona

Открытие выглядит ещё более интересным, если учесть относительно низкую температуру экзопланеты WASP-107b. Она холоднее обычно более горячих сородичей класса «горячие юпитеры», но намного горячее планет-гигантов Солнечной системы. Средняя температура поверхности экзопланеты WASP-107b едва достигает 480 °C. Для наблюдений с помощью инфракрасных приборов «Уэбба» это означает, что температура планеты недостаточна для спектрального анализа её атмосферы через излучение самой экзопланеты. «Уэбб» может изучить атмосферу планеты только во время прохождения планеты по диску своей звезды, когда она подсвечена её излучением.

В целом экзопланета WASP-107b странная донельзя. Она была открыта в 2017 году на удалении 200 световых лет от Земли в созвездии Девы. Размеры WASP-107b примерно соответствуют размерам Юпитера, но её масса составляет всего 12 % от массы этого газового гиганта или даже меньше. Это делает экзопланету такой же «пухлой», как хлопок. Среди более чем 5000 открытых учёными экзопланет подобных «пухлых» планет меньше десятка. Планета вращается очень близко к своей звезде (в разы ближе, чем Меркурий по отношению к Солнцу) и находится в её приливном захвате — всегда обращена одной стороной к звезде. При этом мощности излучения звезды не хватает, чтобы разогреть планету до состояния потери атмосферы.

Одной из особенностей таких планет является очень сильно раздутая атмосфера. В новом исследовании под руководством учёного из Университета Аризоны впервые было обнаружено, что экзопланета WASP-107b обладает асимметричной атмосферой, разделённой по полушариям на восток и запад, что предопределяет её климат и климатическое поведение. Это открытие позволяет уточнить модели строения и поведения подобных прохладных планет и даёт данные, которые ранее никогда не были получены учёными.

«Мы не можем наблюдать прямо почти за всеми экзопланетами, не говоря уже о том, чтобы знать, что происходит на одной её стороне по сравнению с другой, — говорят авторы работы. — Впервые мы можем получить гораздо более определённое представление о том, что происходит в атмосфере экзопланеты».

«Джеймс Уэбб» уличил чёрную дыру в уморении голодом галактики -хозяйки

Теория предполагает, что чёрные дыры в центрах галактик способны «задуть свечу их жизни» — лишить вещества для образования новых звёзд. Космическая обсерватория им. Джеймса Уэбба помогла воочию увидеть такой процесс — сверхмассивная чёрная дыра почти мгновенно в масштабах жизни Вселенной уморила голодом галактику-хозяина.

 Источник изображения: University of Cambridge

Источник изображения: University of Cambridge

Астрономы из Университета Кембриджа заинтересовались далёкой массивной галактикой GS-10578, большинство звёзд в которой образовались в период с 12,5 до 11,5 млрд лет назад. Благодаря инфракрасной чувствительности «Уэбба» такое наблюдение стало впервые возможным с невероятной детализацией. Галактика GS-10578 имеет массу около 200 млрд солнечных масс. Для юности Вселенной это примерно эквивалентно массе Млечного Пути — нашей родной галактики (масса Млечного Пути составляет 1,2–1,9 трлн солнечных масс). Удивительным стало открытие, что по масштабам Вселенной образование звёзд в GS-10578 прекратилось очень быстро. Галактика быстро разрослась до гигантских для того времени размеров и «умерла». Почему?

Инфракрасная чувствительность «Уэбба» помогла обнаружить улетающий из галактики со скоростью более 1000 км/с холодный газ. Это скорость, позволяющая веществу преодолеть гравитационное притяжение галактики GS-10578, тем самым лишая её «пищи» для зарождения новых звёзд. Облака холодного газа не проявляют себя в спектре наблюдений «Уэбба», но он смог определить их скопления и скорость улёта по ослаблению света фоновых звёзд в галактике. Ранее такие измерения (холодного газа) можно было проводить только с помощью радиотелескопов, поэтому «Уэбб» действительно удивил. Полученные данные учёные намерены уточнить с помощью массива антенных решёток радиотелескопа Atacama Large Millimeter/Submillimeter Array (ALMA). Как минимум, ALMA сможет заглянуть внутрь галактики и попытается обнаружить хоть какое-то холодное топливо для процесса рождения новых звёзд.

«Основываясь на более ранних наблюдениях, мы знали, что эта галактика находится в затухающем состоянии: в ней образуется не так много звёзд, учитывая её размер, и мы ожидали, что существует связь между чёрной дырой и окончанием звездообразования, — поясняют авторы работы. — Однако до появления «Уэбба» мы не могли изучить эту галактику достаточно подробно, чтобы подтвердить эту связь, и мы не знали, является ли это подавленное состояние временным или постоянным».

Физика происходящего процесса проста. Вещество падает на чёрную дыру и вызывает выбросы энергии и вещества в сторону от неё. От чёрной дыры постоянно «дует» поток частиц, унося молекулярные газы и пыль от центра галактики и, как мы видим, даже прочь от неё.

«Мы нашли виновника, — продолжают учёные. — Чёрная дыра убивает эту галактику и удерживает её в состоянии покоя, перекрывая источник "пищи", необходимой галактике для образования новых звёзд».

«Джеймс Уэбб» показал россыпь молодых звёзд на окраине нашей галактики

Космический телескоп NASA «Джеймс Уэбб» (James Webb) провёл детальное исследование окраин нашей галактики. Впервые были получены детальные снимки звёздных скоплений в молекулярных облаках Дигеля 1 и 2, демонстрирующие очень молодые звёзды нулевого класса, находящиеся на самой ранней стадии эволюции, молекулярные потоки и джеты, а также характерные структуры туманностей.

 Источник изображений: M. Ressler (JPL) / NASA, ESA, CSA, STScI

Источник изображений: M. Ressler (JPL) / NASA, ESA, CSA, STScI

Исследуемая область галактики расположена на расстоянии более 58 000 световых лет от галактического центра, что более чем в два раза превышает расстояние от Земли (26 000 световых лет) до центра Млечного Пути. Для наблюдений использовались два ключевых инструмента телескопа: камера ближнего (NIRCam) и среднего инфракрасного диапазона (MIRI), обеспечившие беспрецедентную детализацию изображений.

Хотя облака Дигеля находятся в пределах нашей галактики, они относительно бедны элементами тяжелее водорода и гелия, что делает их похожими на карликовые галактики и наш собственный Млечный Путь в начале формирования. Поэтому команда учёных воспользовалась возможностью использовать телескоп, чтобы запечатлеть активность, происходящую в четырёх скоплениях молодых звёзд в облаках Дигеля 1 и 2: 1A, 1B, 2N и 2S.

Наиболее информативные результаты были получены при наблюдении за облаком Дигеля 2S, где телескоп зафиксировал активный кластер молодых звёзд, испускающих протяжённые джеты вдоль своих полюсов. Если раньше учёные предполагали, что внутри облака может существовать субкластер, то возможности телескопа позволили это подтвердить. Майк Ресслер (Mike Ressler), учёный из Лаборатории реактивного движения (JPL) NASA и второй автор исследования, отметил: «Что меня восхитило и поразило в данных „Уэбба“, так это то, что из этого звёздного скопления во все стороны вылетает множество джетов. Это немного похоже на фейерверк, где вы видите, как всё стреляет то в одну, то в другую сторону».

 На снимке видно плотное скопление фоновых галактик и красные туманные структуры в этой области. Цвета на изображении соответствуют различным фильтрам камер MIRI и NIRCam

На снимке видно плотное скопление фоновых галактик и красные туманные структуры в этой области. Цвета на изображении соответствуют различным фильтрам камер MIRI и NIRCam

«В прошлом мы знали об этих регионах звёздообразования, но не могли изучить их свойства. Данные „Уэбба“ основываются на том, что мы тщательно собирали в течение многих лет в ходе других наблюдений. С помощью „Уэбба“ мы можем получить очень мощные и впечатляющие изображения этих облаков. В случае с облаком Дигеля 2 я не ожидала увидеть столь активное звёздообразование и впечатляющие джеты», — заявила Нацуко Изуми (Natsuko Izumi) из Университета Гифу и Национальной астрономической обсерватории Японии (NAOJ).

Учёные намерены продолжить изучение процессов звёздообразования в этих регионах. Изуми подчеркнула важность объединения данных с различных обсерваторий и телескопов для детального анализа каждого этапа эволюционного процесса. Среди приоритетных направлений учёная отметила изучение околозвёздных дисков в крайних внешних областях галактики и нерешённый вопрос о причинах более короткого времени жизни этих структур по сравнению с аналогичными объектами в ближних звёздообразующих регионах. Особый интерес у неё вызывает кинематика джетов, обнаруженных в облаке Дигеля 2S.

Снимки «Уэбба» охватывают крайние внешние области галактики и облака Дигеля и являются лишь отправной точкой для команды учёных. Они намерены вновь осмотреть этот форпост Млечного Пути, чтобы найти ответы на целый ряд загадок.

«Джеймс Уэбб» рассмотрел космический вопросительный знак — пару галактик в процессе слияния

В прошлом году космический телескоп «Джеймс Уэбб» (JWST) случайно обнаружил на небе объект в форме вопросительного знака. Он попал в нижнюю часть снимка пары формирующихся звёзд в созвездии Паруса, расположенных примерно в 1470 световых годах от Земли. Международная группа учёных утверждает, что ей удалось разобраться в природе загадочного объекта.

 Слияние двух галактик на снимке «Джеймса Уэбба». Источник изображений: nasa.gov

Слияние двух галактик на снимке «Джеймса Уэбба». Источник изображений: nasa.gov

По красному цвету объекта астрономы уже знали, что он довольно далёк. Рабочая гипотеза гласила, что он представляет собой пару галактик, которые по спиралевидной траектории приближаются друг к другу. Это подтвердил последний снимок данного участка неба. Вопросительный знак сформировали две взаимодействующие галактики: красная пылевая отмечает изгиб вопросительного знака, а белая спиральная прижимается к петлеобразной дуге справа от неё. Точку образует третья галактика, которая не имеет отношения к первым двум — она просто оказалась в нужном месте с позиции «Джеймса Уэбба».

Согласно данным телескопа, две галактики находятся в 7 млрд световых лет от Земли и достаточно близко, чтобы взаимодействовать друг с другом. Возможно, в процессе столкновения их газовых резервуаров появились регионы звездообразования. Сильного искажения нормальной формы нет ни у одной из них, «поэтому мы, вероятно, наблюдаем начало их взаимодействия друг с другом», говорят учёные. Изображения объектов искажаются и дублируются скоплением галактик на переднем плане — оно настолько массивно, что происходит деформация пространства и времени, которая называется гравитационным линзированием. В итоге красная галактика из пары запечатлена на снимке пять раз.

 Слияние двух галактик в версии телескопа «Хаббл» (Hubble)

Слияние двух галактик в версии телескопа «Хаббл» (Hubble)

«Многозеркальное» гравитационное линзирование, эффект которого наблюдается на новом изображении «Джеймса Уэбба», встречается нечасто — оно требует особых положений наблюдателя, отдалённых галактик и линзирующего объекта. В данном случае в роли последнего выступает скопление галактик MACS-J0417.5-1154; а вид производимого им эффекта носит название «гиперболическая омбилическая гравитационная линза». Пока учёным довелось наблюдать не так много подобных явлений.

Изучая области звездообразования на последнем снимке, астрономы могут сделать выводы о развитии галактик на протяжении истории Вселенной. Он также проливает свет на прошлое и нашего Млечного Пути: массы двух галактик на снимке аналогичны массе нашей миллиарды лет назад — с этим изображением «Джеймс Уэбб» помогает нам заглянуть в её юношеские годы, рассказывают исследователи.

«Джеймс Уэбб» обнаружил шесть огромных планет-изгоев в молекулярном облаке Персея

Новая работа по поиску коричневых карликов и планет-гигантов в областях активного звездообразования выявила их гораздо большее присутствие в таких зонах, чем предсказывала теория. Инфракрасные приборы «Уэбба» буквально рассеяли пыль и газ туманностей, позволив заглянуть в их глубины как никогда раньше. Собранные данные помогут изучить границу между самыми тяжёлыми планетами и самыми лёгкими звёздами, без чего картина жизни звёзд остаётся неполной.

 Область поиска копричневых карликов в работе. Источник изображения: NASA

Область поиска коричневых карликов в работе. Источник изображения: NASA

Тип звёзд и их эволюция в основном зависят от массы, набранной в процессе формирования. Дальше в процесс вступают обычные химия и физика, которые предопределяют, к какому классу относится новорождённая звезда и каков будет её жизненный путь. Для звёзд с большой массой всё относительно просто — яркие объекты легко наблюдать и регистрировать. В нижнем диапазоне — где планеты-гиганты пересекают границу с коричневыми карликами и наоборот — всё гораздо сложнее. Это тусклые объекты, поиск которых сам по себе является непростой задачей.

Группа учёных под руководством Адама Лангевельда (Adam B. Langeveld) из Университета Джона Хопкинса (Johns Hopkins University) решила восполнить пробел в наших знаниях о маломассивных объектах в зонах активного звездообразования. Исследование было сосредоточено на так называемом молекулярном облаке Персея в одноимённом созвездии, в частности на туманности NGC 1333, находящейся на расстоянии 960 световых лет от Солнечной системы. Ранее эта область уже изучалась камерой NIRCam телескопа «Уэбб». В ходе новой работы по туманности тщательно исследовали спектрометром телескопа — прибором NIRISS.

Телескоп наблюдал 585 объектов, из которых коричневым карликам соответствовали только 114. Из этого числа 19 объектов были уже известными коричневыми карликами, но 6 кандидатов были обнаружены впервые. Подчеркнём, что речь идёт об одиночных объектах малой массы — это либо самые лёгкие звёзды, либо одиноко летящие по Вселенной планеты-изгои. Масса всех 6 кандидатов оказалась в диапазоне от 5 до 10 масс Юпитера, что недостаточно для того, чтобы планета-гигант вела себя как коричневый карлик. Это всё ещё планеты, и остаётся не до конца понятен механизм, который выбрасывает такие объекты за пределы их родных звёздных систем.

Проделанная работа пытается ввести ограничения как на количество таких объектов в туманностях, так и на их массы, чтобы определить, являются ли они планетами или уже коричневыми карликами (звёздами). Оказалось, что блуждающих планет-гигантов в молекулярном облаке Персея оказалось намного больше, чем предполагала теория. Их доля составляет примерно 10 % от всего звёздного населения туманности, и это открытие определённо заслуживает внимания.

«Мы исследуем самые границы процесса звездообразования, — пояснил в своём заявлении ведущий автор исследования Адам Лангевельд. — Если у вас есть объект, похожий на молодой Юпитер, возможно ли, что он мог бы стать звездой при правильных условиях? Это важный контекст для понимания как формирования звёзд, так и планет».


window-new
Soft
Hard
Тренды 🔥
Всего за несколько дней в Atomfall сыграло более 1,5 миллиона человек — это лучший старт в 32-летней истории разработчиков 38 мин.
ИИ-модель Llama запустили на ПК из прошлого тысячелетия на базе Windows 98 40 мин.
Telegram продал виртуальных первоапрельских кирпичей почти на 100 млн рублей 50 мин.
Nintendo подтвердила рекордную продолжительность презентации Switch 2 и устроит две демонстрации игр для консоли 2 ч.
ChatGPT остаётся самым популярным чат-ботом с ИИ, но у конкурентов аудитория тоже растёт 3 ч.
Google сделает сквозное шифрование в Gmail доступным для всех 3 ч.
Антиутопия на колёсах: новый геймплейный трейлер раскрыл дату выхода приключения Beholder: Conductor про кондуктора легендарного поезда 3 ч.
Путин запретил госорганам и банкам общаться с клиентами через иностранные мессенджеры 3 ч.
Разработчик приложений для российской ОС «Аврора» приостановил работу — сотрудникам перестали платить зарплату 4 ч.
OpenAI пообещала выпустить открытую рассуждающую ИИ-модель в ближайшие месяцы 4 ч.
В Калифорнии зарядных станций для электромобилей теперь на 48 % больше, чем бензоколонок 41 мин.
Японская Rapidus к концу апреля запустит опытное производство 2-нм чипов 3 ч.
В Лондоне появится экобезопасный ЦОД AWS для ленточных накопителей 5 ч.
Blue Origin выяснила, почему потеряла многоразовую ступень ракеты New Glenn при первом запуске 5 ч.
Arm намерена занять 50 % рынка чипов для ЦОД к концу 2025 года — NVIDIA ей в этом поможет 6 ч.
Bharti Airtel подключила Мумбаи к мировой сети с помощью кабеля 2Africa Pearls с пропускной способностью 100 Тбит/с 6 ч.
Европа технически готова построить суперколлайдер будущего, который будет втрое больше БАКа 7 ч.
Microsoft вновь заявила о намерении сотрудничать с OpenAI несмотря на план по замедлению экспансии ЦОД 7 ч.
XenData представила 1U-устройство Z20 на базе Windows 11 Pro для доступа к облачным хранилищам 7 ч.
Asus и Xbox намекнули на совместный выпуск портативной приставки с «новым уровнем гейминга» 7 ч.