Опрос
|
реклама
Быстрый переход
В Великобритании протестировали основу для квантовой навигационной системы — она станет подстраховкой для GPS
16.05.2024 [18:18],
Павел Котов
Великобритания первой в мире провела серию испытательных полётов, в которых протестировали основу для технологий перспективной квантовой навигационной системы. Она поможет предотвратить одну из наиболее потенциально опасных, но недостаточно широко освещаемых угроз — глушение и подмену сигнала GPS. ![]() Источник изображения: twitter.com/QinetiQ Система глобального позиционирования (GPS) настолько глубоко проникла в жизнь современного человека, что стала восприниматься как нечто само собой разумеющееся, но лишь до тех пор, пока спутниковый сигнал по какой-то причине не теряется или «перепрыгивает» в другую точку. Для обычного человека это неприятно, но с кораблями и самолётами дело обстоит куда более критично, особенно если речь идёт о подмене сигнала. Только в 2022 году зафиксированы 49 605 случаев, когда гражданские самолёты стали жертвами подмены сигнала GPS, гласит статистика Европейской ассоциации бизнес-авиации. Часто это происходит вблизи зон конфликта для неверной навигации вражеских самолётов или БПЛА. Но результат таких действий также может повлиять на работу авиадиспетчеров, которые полагаются на данные, поступающие напрямую от приборов на самолётах. Один из способов борьбы с этим — подключение резервных систем навигации, например, инерциальных. Это электронный просчёт пути по данным гироскопов и акселерометров, который является вполне рабочим методом. Но со временем в таких системах накапливаются ошибки, которые в случае с подводными лодками могут исчисляться милями — поэтому им приходится всплывать и сверяться с координатами по GPS. Самолёты движутся намного быстрее, и ошибки в их системах также накапливаются быстрее. Для решения этой проблемы британские компании Infleqtion, BAE Systems и QinetiQ, а также агентство по науке и инновациям UKRI решили создать собственную навигационную систему на основе квантовой механики. Квантовые навигационные системы получают данные, используя такие явления как квантовая запутанность, квантовая интерференция и сжатие квантового состояния. В сочетании с высокоточными атомными часами и специальным программным анализом для фильтрации помех они способны заменять GPS в течение длительного времени. Недавно на объекте британского Министерства обороны в графстве Уилтшир прошли испытания квантовой системы позиционирования, навигации и синхронизации (PNT) на основе компактных оптических атомных часов Tiqker и установкой на основе ультрахолодных атомов — они работали на самолёте QinetiQ RJ100. Как ожидается, PNT впоследствии будет интегрирована в полномасштабную квантовую инерциальную навигационную систему (Q-INS). Эксперимент 100-летней давности повторили на квантовом уровне, что впустит квантовые явления в наш мир
31.03.2024 [06:03],
Геннадий Детинич
Науке давно известен туннельный эффект, когда частицы преодолевают энергетический барьер, не имея для этого энергетических оснований. Это явление из квантового мира, которое нашло широкое применение в электронике. Теперь учёные расширили возможности туннелирования до группового поведения частиц, что стало повторением опыта 100-летней давности на квантовом уровне. Оказалось, группы электронов могут подталкивать одна другую к коллективному туннелированию. ![]() Образец «квантового» материала для эксперимента. Источник изображения: Lance Hayashida/Caltech В 1919 году немецкий физик Генрих Баркгаузен (Heinrich Barkhausen) поставил опыт, впоследствии названный его именем. На примере помещённого в катушку ферромагнитного материала он показал, что в процессе внешнего воздействия на материал происходит скачкообразное изменение его намагниченности. В процессе опыта Баркгаузена в подсоединённом к катушке громкоговорителе, например, возникал треск, когда к ферромагнетику подносили магнит. Намагниченность отдельных доменов затрагивала соседние, и это распространялось как лавина и, в то же время, скачками, пока материал полностью не становился намагниченным. Учёные из Калтеха (Технологического института Калифорнии) решили обнаружить такой же эффект на квантовом уровне без внешних воздействий чисто за счёт квантовых явлений. Фактически это была проверка на спонтанное групповое туннелирвоание. Они поместили в катушку такой ферромагнитный материал, как литий-гольмий-иттрий фторид, и охладили его до температуры вблизи абсолютного нуля. Катушка нужна была для измерения напряжения, которое там возникнет в случае, если в материале начнёт меняться намагниченность. После старта эксперимента учёные начали регистрировать скачки напряжения, аналогичные по природе шумам Баркгаузена. Это указало на то, что квантово-механическое туннелирование отдельных электронов привело к групповому или совместному туннелированию частиц. «Классически каждая из мини-лавин, в которых группы спинов меняют направление, происходит сама по себе, — говорят авторы работы. — Но мы обнаружили, что благодаря квантовому туннелированию две лавины синхронизируются друг с другом. Это результат взаимодействия двух больших групп электронов друг с другом, и благодаря своему взаимодействию они производят эти изменения. Этот эффект совместного туннелирования стал неожиданностью». Открытие даёт надежду на создание квантовых датчиков и других электронных приборов. Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. Физики придумали эксперимент по выявлению квантовой неопределённости в обычном мире — кошка Шрёдингера не пострадает
18.01.2024 [14:08],
Геннадий Детинич
В квантовом мире царит неопределённость, которая в момент нарушается фактом наблюдения (измерения). Достигается это на сложных установках. Можно ожидать, что в нашем обычном мире больших и тяжёлых объектов тоже есть место для квантовой неопределённости, но доказать это прямым наблюдением очень и очень сложно. Однако учёные не сдаются. ![]() Одно из зеркал детектора LIGO. Источник изображения: Caltech/MIT/LIGO Lab Принцип квантовой неопределённости часто иллюстрируют с помощью мысленного эксперимента с кошкой Шрёдингера (в оригинале это кошка, а не кот), когда до открытия коробки с животным оно ни живо, ни мертво. Это позволяет понять контринтуитивные законы квантовой механики, но это не приближает нас к детектированию квантовых явлений на макроуровне. Свой вариант натурного эксперимента по фиксации квантовой неопределённости в больших объектах предложили учёные из Университетского колледжа Лондона (UCL), Университета Саутгемптона в Великобритании и Института Бозе в Индии. Для исследования учёные предложили использовать систему гравиметрической обсерватории LIGO в США. Это два тоннеля по 4 км, соединённых под прямым углом (буквой Г). По тоннелям многократно с отражением курсирует луч лазера, который способен фиксировать искажения пространства-времени при прохождении через детектор гравитационной волны. Эту же систему можно использовать для выявления квантовой неопределённости с макрообъектами без строгих ограничений по массе и энергии, считают учёные. В каждом из тоннелей можно подвесить зеркала на концах маятников (или мишени, заслоняющие основные зеркала датчика) и запускать в них по паре вспышек лазера с заданным интервалом. Если квантовая неопределённость в нашем большом мире есть, то первый импульс нарушит движение маятника — в этом проявится так называемый эффект наблюдателя, а второй импульс зафиксирует отклонение от расчётной траектории. С математической точки зрения эксперимент должен подтвердить или опровергнуть соблюдение двух условий неравенства Леггетта-Гарга. Оно должно выполняться для всех условий классического мира. Если при взаимодействии с 10-кг зеркалами одно из этих условий не выполнится, значит, объект проявит свойства квантовой неопределённости. С точки зрения математики это будет означать, что вы в данный момент с большой вероятностью сидите на стуле перед монитором, но также с бесконечно малой (но отнюдь не нулевой) вероятностью можете находиться на Луне, Марсе или в галактике Андромеда. Главное, что для доказательства подобной возможности не придётся рисковать жизнью кошки, хотя сам по себе эксперимент с зеркалами в установке LIGO потребует нетривиального оборудования и условий. Статья об исследовании опубликована в журнале Physical Review Letters. Также она доступна на сайте arxiv.org. |