Сегодня 30 января 2023
18+
MWC 2018 2018 Computex IFA 2018
Теги → квантовая физика
Быстрый переход

Китайские учёные придумали «четырёхтактный» двигатель для наноботов размером с атом

Группа китайских учёных перенесла на квантовый уровень принцип работы четырёхтактного двигателя. Разработка обещает сказать новое слово в создании нанороботов атомарного масштаба. Учёные пока не сошлись в едином мнении о сути процессов, однако публикация в журнале Nature Communications однозначно говорит о потенциале работы.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Считалось, что чем сильнее проявляются квантовые свойства ионов, тем выше эффективность молекулярного теплового двигателя. Исследователи из Гуанчжоуского института промышленных технологий, Чжэнчжоуского университета и Мичиганского университета показали, что эффект зависит не только от «накачки» иона, но также от умелого подавления его квантовых характеристик. Точнее, для наиболее эффективной работы — выделения энергии ионом — требуется комбинировать как возбуждение, так и подавление ряда его квантовых характеристик.

Исследователи воздействовали на ион кальция лазерным излучением разной интенсивности и разной частоты. При этом интенсивность выделения энергии ионом в виде потока фотонов менялась таким образом, что наибольший КПД был отмечен в режиме «четырёхтактного» двигателя, когда «нагрев» и «охлаждение» чередовались в определенном порядке. До этого о росте КПД с использованием подавления квантовых свойств ионов ничего не было известно.

«Наше исследование в основном направлено на демонстрацию. Для того чтобы действительно производить пригодные для использования молекулярные двигатели или обеспечивать энергией нанороботов, нам необходимо найти подходящую рабочую среду, подобно водяному пару в паровом двигателе», — говорится в заметке об изобретении в издании SCMP.

Такая условная среда была обнаружена в процессе разностороннего воздействия на ион кальция с помощью лазера. Конечно же, это не пар. Это комплекс явлений, в котором энергия извне (с помощью лазера) трансформируется в локальную работу. Теперь учёным необходимо придумать, как использовать это явление на практике, а также обнаружить наиболее эффективные режимы облучения для выработки максимального КПД, как при «нагреве», так и при «охлаждении».

Прошлое и будущее существуют одновременно, доказали учёные, но пока только для фотонов

Экспериментально и самим фактом существования квантовых вычислителей убедительно доказано, что квантовая физика работает совсем не так, как то, что мы видим и ощущаем вокруг себя в обычном мире. Сложно понять, как единица информации может быть одновременно любым значением между 0 и 1, но в квантовом мире это так. И если существуют суперпозиции состояний, то почему бы не существовать суперпозициям процессов, подумали учёные? Например, будущего и прошлого.

 Источник изображения: Pixabay

Источник изображения: Pixabay

На сайте ArXiv появились две научные статьи, поводом для написания которых стали эксперименты с обратимым вектором времени в мире квантовых частиц. Две независимые группы учёных — одна из Оксфордского университета, а другая из Венского университета — в серии экспериментов доказали, что фотон можно привести в состояние суперпозиции процессов, идущих в противоположных направлениях времени. Сразу уточним, что это не путешествие во времени. Однако это может фундаментально изменить представление о течении времени на квантовом уровне, что обещает привести к удивительным открытиям в физике.

В одном из экспериментов фотон был помещен в суперпозицию процессов, когда он двигался через кристалл. Поскольку фотоны не имеют массы, они слабо взаимодействуют с веществом. Это, а также способность фотонов расщепляться в довольно редких процессах позволило сначала математически, а затем экспериментально показать, что фотон может двигаться в кристалле одновременно слева направо, и справа налево. Проще говоря, процессы оказались в суперпозиции, что эквивалентно суперпозиции времени.

Строго говоря, во «встречных потоках времени» двигались две виртуальные частицы, которые были одним реальным фотоном. Учёные измеряли поляризацию фотонов на обоих выходах из кристалла и статистически доказали, что квантовые перевороты времени проявляют себя с большой вероятностью. С настолько большой, что эти процессы можно взять на вооружение, например, при создании квантовых логических элементов.

Как открытие повлияет на будущее квантовых вычислителей, сегодня никто не берётся судить, но простор для этого определённо открывается. Также открываются новые горизонты для пересмотра множества других теорий в квантовой физике, самой значительной из которых может считаться теория гравитационного взаимодействия.

У чёрных дыр обнаружены квантовые свойства — они одновременно имеют разную массу

Группа физиков из Университета Квинсленда провела компьютерное моделирование, которое теоретически обосновало наличие у чёрных дыр квантовых свойств. Учёные взяли самую легко вычисляемую и неотъемлемую характеристику чёрной дыры — её массу, и показали, что чёрная дыра может быть одновременно тяжёлой как миллионы солнц и лёгкой как атом. Совсем как легендарный кот Шрёдингера, который и жив и мёртв одновременно.

 Источник изображения: NightCafe Creator AI

Источник изображения: NightCafe Creator AI

Гипотезу о дискретных значениях масс чёрных дыр (точнее, допустимых диапазонов масс подобно наличию энергетических уровней электронных орбит), в своё время выдвинул американо-израильский физик-теоретик Яаков Давид Бекенштейн. Новое исследование во многом подтвердило его теорию — математически у чёрных дыр действительно оказался чётко выраженный диапазон допустимых масс. Но что более важно, теоретический эксперимент показал суперпозицию по массам. Проще говоря, чёрные дыры с точки зрения математики (которая никогда не ошибается), имеют разные массы одновременно.

«Мы хотели выяснить, могут ли [чёрные дыры] одновременно иметь дико разные массы, и оказалось, что да, — сказал ведущий автор исследования Джошуа Фу (Joshua Foo), доктор физико-математических наук из Квинслендского университета. — До сих пор мы глубоко не исследовали, демонстрируют ли чёрные дыры некоторые из странных и удивительных свойств квантовой физики».

Если чёрные дыры обладают квантовыми свойствами в отношении масс, то им присущи и другие квантовые свойства. Звучит интригующе, ведь мы до сих пор были уверены, что пересечение мира субатомных частиц с его квантовой механикой невозможно с тем миром, который мы видим и осязаем вокруг себя тем или иным образом. Оказалось, хотя это пока только математика, макрообъекты потенциально могут быть одновременно и живы и мертвы, создавать квантовую запутанность и, как следствие, проявлять квантовую телепортацию.

Нобелевскую премию по физике в 2022 году получили исследователи квантовой запутанности и нарушений неравенств Белла

Нобелевский комитет присудил премию по физике 2022 года Алену Аспе (Alain Aspect), Джону Клаузеру (John F. Clauser) и Антону Цайлингеру (Anton Zeilinger). Исследуя нарушения неравенств Белла, они экспериментировали с запутанными фотонами и проводили работы по квантовой информатике. Церемония награждения состоится 10 декабря.

 Ист

Источник изображения: nobelprize.org

Исследования всех трёх учёных касаются запутанных квантовых частиц и нарушений неравенств Белла. В шестидесятые годы прошлого века ирландский физик Джон Стюарт Белл (John Stewart Bell) сформулировал неравенства, позволяющие проверить, содержит ли квантово-механическая система скрытые параметры — их невозможно измерить экспериментально, но они влияют на результаты измерений других параметров системы. Если скрытые параметры существуют, то выполняется гипотеза локального реализма, и свойства объекта существуют до их измерения, а сам объект влияет только на своё локальное окружение. Неравенства Белла поддаются экспериментальной проверке — их выполнение и невыполнение дают разные вероятности состояний.

Американец Джон Клаузер в семидесятые годы экспериментально проверил выполнение неравенств Белла и доказал, что они нарушаются, то есть в квантовой механике нет скрытых параметров. Это означает, что её вероятностная природа не является следствием неполного описания.

В начале восьмидесятых французский учёный Аллен Аспе в рамках работы над докторской диссертацией развил идеи Клаузера и смог сделать так, чтобы начальные условия, при которых испускается пара запутанных фотонов, не оказывала влияния на результаты измерений. Аспе также доказал, что неравенства Белла не выполняются.

Наконец, австриец Антон Цайлингер впервые в 1997 году показал возможность квантовой телепортации с использованием запутанных фотонов, то есть изменения поляризационного состояния одной частицы при изменении состояния другой, которая находилась на расстоянии от исходной.

Россия может запустить первый квантовый спутник в 2023 году

Уже в следующем году Россия может вывести на орбиту свой первый космический аппарат с оборудованием на основе квантовых технологий. Об этом сообщил заместитель директора Центра компетенций НТИ по направлению «Квантовые коммуникации» НИТУ «МИСиС» Игорь Павлов.

 Источник изображений: pixabay.com

Источник изображений: pixabay.com

Спутнику предстоит распределять квантовые ключи между Москвой и Владивостоком. Они будут использоваться для шифрования информации, которая затем сможет передаваться по различным каналам: посредством мобильной и спутниковой связи, а также через проводные линии.

«Мы в рамках работ по НТИ делали наземный приёмник, и также у нас есть партнёр — компания, которая занимается как раз разработкой оборудования для спутника. Спутниками у нас занимаются "Роскосмос", "Газпром космические системы", а мы разрабатываем оборудование, которое на спутник будет устанавливаться. Первые запуски будут, наверное, в 2023 году уже», — приводит «Газета.Ru» заявления господина Павлова.

В ближайшие пять лет запуски квантовых спутников будут осуществляться в академических целях — для оценки финансовых затрат и тестирования технологии. Затем может быть принято решение о покрытии такой сетью всей территории России.

Добавим, что квантовые коммуникации обеспечивают высочайшую степень защиты информации. Дело в том, что незаметно похитить данные, передающиеся по квантовым каналам, невозможно в силу фундаментальных законов физики.

Японцы создали сверхчистые алмазные пластины, каждая из которых может хранить до 25 Эбайт данных

Один из видов точечных дефектов алмазов позволяет использовать его в качестве квантового бита для организации вычислений или хранения данных. Мешать этому может несовершенство технологии выращивания сверхчистых алмазных дисков, что стало вызовом для учёных. Вызов приняли японцы и смогли найти интересное решение проблемы.

 Источник изображения: Saga University

Источник изображения: Saga University

Если в любом узле кристаллической решётки алмаза один из атомов углерода заменить (связать) на атом азота, то такое нарушение кристаллической структуры алмаза будет называться азото-замещённой вакансией в алмазе или NV-центром. Такой точечный дефект обладает квантовыми свойствами, которыми легко управлять светом, магнитными полями или с помощью иных воздействий даже при комнатной температуре. В частности, NV-центр можно использовать для записи и хранения данных.

Особенность алмазных структур с NV-центрами в том, что азота не должно быть слишком много. Поэтому для практического использования алмазных носителей данных необходимо либо выпускать очень большие по площади диски с допустимыми примесями азота (так сказать, «размазать» азот по большой площади), либо выращивать максимально чистые алмазы со строго контролируемым объёмом примесей, что технически намного сложнее.

До сих пор сверхчистые алмазы едва превышали по площади 4 мм2, что крайне мало. Однако японским исследователям из Университета Сага и японской компании Adamant Namiki Precision Jewelery удалось разработать технологию выращивания сверхчистых алмазных пластин диаметром 2 дюйма (5 см). Теоретически каждый такой диск может хранить до 25 Эбайт данных, что эквивалентно записи на один алмазный носитель миллиарда 25-Гбайт дисков Blu-Ray.

Секрет успеха в особой структуре подложки, на которой выращивался алмазный диск. Обычно это ровная плоская поверхность. В процессе роста и на его ранних этапах сверхчистый алмаз на такой поверхности часто ломался под собственным весом. Чтобы предотвратить растрескивание, учёные предложили ступенчатую поверхность подложки, которая распределяла бы вес растущего алмаза более равномерно. Новая подложка позволила вырастить очень и очень чистый алмаз диаметром 5 см с чистотой 3·10-9. Но на этом учёные не успокоились и теперь планируют вырастить алмаз вдвое большего диаметра.

На квантовом уровне время способно течь в прошлое, показало исследование

Учёные предположили, что внутри квантовых систем, находящихся в состоянии суперпозиции, время может течь в противоположных направлениях одновременно. Поставленный эксперимент частично подтвердил такую возможность. Это ставит мировую науку перед новой задачей — переосмыслить само понятие времени, что важно для развития фундаментальной физики.

 Источник изображения:  Henry Wong / SCMP

Источник изображения: Henry Wong / SCMP

Команда физиков из университетов Бристоля, Вены, Балеарских островов и Института квантовой оптики и квантовой информации (IQOQI-Vienna) показала, как квантовые системы могут одновременно развиваться по двум противоположным направлениям времени — как вперед в будущее, так и назад в прошлое. Работа опубликована в последнем номере журнала Communications Physics и свободно доступна по этой ссылке.

Мерилом времени для эксперимента с временной суперпозицией квантовой системы физики взяли энтропию. В макромире энтропия, которая в ряде физических систем может измеряться количественно, определяет меру сложности, хаотичности или неопределённости системы и в естественных условиях она только увеличивается. У энтропии в наблюдаемых на уровне человека условиях движение всегда вперёд в будущее. Если бы на квантовом уровне удалось обнаружить снижение энтропии, то это с допущениями можно было бы соотнести с движением назад в прошлое.

Поставленный международной группой физиков эксперимент на ограниченной несколькими квантовыми элементами системе показал, что находящаяся в стабильном состоянии система не только увеличивает свою энтропию, но также и снижает её, или, как делают вывод учёные, движется назад во времени. Увидеть подобные явления в макромире невозможно, в нём энтропия событий слишком большая и поэтому необратимая, но на субатомном уровне «откаты назад во времени» вполне регистрируются, что и доказал поставленный эксперимент.

Один из авторов исследования доктор Рубино сказала: «Хотя время часто рассматривается как непрерывно возрастающий параметр, наше исследование показывает, что законы, управляющие его течением в квантово-механических контекстах, гораздо сложнее. Это может говорить о том, что нам необходимо переосмыслить способ представления этой величины во всех тех случаях, где квантовые законы играют решающую роль».

Российская технология позволит существенно снизить стоимость создания квантовых линий связи

Квантовая криптография на основе распределения ключей использует основы квантовой физики, обойти которые нельзя. Но квантовые состояния в виде передаваемых данных настолько чувствительны ко всему на свете, что для передачи ключей необходимы свои собственные оптические каналы. Большую часть времени такие каналы простаивают, но их прокладка и обслуживание требуют затрат. Российские учёные выяснили, как этих расходов можно избежать.

 Источник изображения: Gerd Altmann/Pixabay

Источник изображения: Gerd Altmann / Pixabay

Как сообщает портал N + 1 со ссылкой на российскую компанию QRate, исследователи успешно провели эксперимент по передаче по одному общему оптоволокну квантового сигнала (состояния) и обычного. Трудность здесь в том, что обычный сигнал — это мощное мультиспектральное излучение, а квантовый — это одиночные фотоны, в квантовых состояниях которых зашифрован ключ. Разделение по длинам волн в данном случае ненадёжный помощник, поскольку в оптическом канале возникает эффект комбинационного рассеяния и часть фотонов из потока данных переходит в частотный диапазон ключа (одиночных фотонов).

Снизить помехи и помочь отделить «зёрна от плевел» можно значительно сузив окно приёма одиночных фотонов, а также использовав диапазон для передачи одиночных фотонов, в котором вклад комбинационного рассеяния оказывается меньше всего. Для эксперимента и выбранных для него оптоволоконных линий — это 1310 нм. Важным в этом опыте стало то, что для его проведения использовалось коммерческое оборудование, что обещает быстро привнести разработку в жизнь.

Для передачи обычного сигнала использовалось оборудование компании T8, а для квантового — собственное оборудование QRate. Опыты показали, что данные и ключи можно успешно передавать по общему каналу без развёртывания выделенной линии для квантовых ключей. Скорость генерации ключей при этом составила 27,1 Кбит/с для 25 км линии на волокне с низкими потерями (7,3 Кбит/с для 50 км) и 0,7 Кбит/с для 50 км стандартного волокна. Передача данных во всех случаях проводилась по двум каналам со скоростью 600 Гбит/с на одну несущую.

Данные и закрытые ключи, сгенерированные с помощью квантовых технологий, можно передавать по одним линиям на существующем оборудовании и без лишних затрат на создание выделенных линий для ключей. Скорость генерации при этом снижается, но это может быть не критично для сравнительно небольших расстояний. В то же время техника совершенствуется, и со временем все эти потери можно будет компенсировать.

В Москве в тестовом режиме запустили открытую квантовую сеть

Опытная квантовая сеть с открытым доступом введена в тестовую эксплуатацию в Москве. Об этом сообщает Московский технический университет связи и информатики (МТУСИ).

 Здесь и ниже изображения pixabay.com

Здесь и ниже изображения pixabay.com

Системы квантовых коммуникаций могут гарантировать абсолютную защиту от взлома. Незаметно перехватить данные, передаваемые по таким каналам, не удастся в силу фундаментальных законов природы.

Московская сеть соединяет университеты МТУСИ и НИТУ «МИСиС»: эта платформа доступна для внешних подключений. Сеть настроена таким образом, что допускается её использование заинтересованными организациями, в первую очередь, для разработки современных приложений в сфере информационной безопасности, основанных на применении квантовых ключей.

В настоящее время инфраструктура состоит из пяти узлов, располагающихся в зданиях МТУСИ и НИТУ «МИСиС». Сеть имеет открытую архитектуру и масштабируется по мере появления новых желающих для размещения дополнительных узлов коммутации. В проекте приняли участие специалисты ООО «КуРэйт» и ООО «Код Безопасности».

К сети могут быть подключены различные участники рынка: учебные заведения, коммерческие и государственные организации. В планах развития стоит реализация архитектуры сети с топологией «кольцо». Она позволит комплексно изучать вопросы, связанные с резервированием квантовых сетей.

«Конфигурация квантово-защищённого канала связи соответствует принятой в индустриальных сетях. Распределение квантовых ключей между доверенными узлами осуществляется оборудованием квантового-распределения ключа ООО "КуРэйт". Ключи формируются со скоростью до 30 кбит/с, чего достаточно для одновременного подключения более 10 высокоскоростных шифраторов. Их передача осуществляется по существующим оптическим линиям связи», — говорится в сообщении.

Российские физики открыли новый принцип квантового переключения для электроники — это может продлить жизнь закону Мура

Теоретическая работа по изучению квантовых контактов во внешнем осциллирующем электромагнитном поле привела к интересному открытию, которое может лечь в основу будущей наноэлектроники. Выявленные процессы могут найти применение при производстве электронных схем с «транзисторами» атомарного размера. Может так случиться, что закону Мура дадут жизнь на квантовом уровне.

Результаты теоретического исследования квантовых контактов во внешнем осциллирующем поле группа российских физиков вместе со своими зарубежными коллегами опубликовала в журнале Physical Review B при поддержке Российского научного фонда (РНФ).

Квантовые контакты, о которых идёт речь, это очень и очень маленькие двумерные точечные переходы между двумя проводниками. Размеры таких контактов не больше нескольких длин волн электрона, что сопоставимо с размерами атома. Создать такой контакт можно с помощью двумерного электронного газа, если его поместить между двумя массивными проводниками. Электроны в таком газе могут свободно двигаться только в двух направлениях.

Чтобы свести размеры контакта до ещё меньших размеров, на электронный газ воздействуют внешним запирающим электромагнитным полем и чем сильнее потенциал на затворе, тем уже контакт. Это решает задачу создания настолько малого контакта между проводниками (перехода в виде двумерной области), что в нём начинают проявляться интересные квантовые явления.

Одним из таких явлений стало то, что перетекание электронов через точечный квантовый контакт из одного проводника в другой — процесс выравнивания потенциалов — оказался управляемым и управление это легко реализовать. Физики теоретически вывели, что если повышать частоту внешнего электромагнитного поля, внутри которого находится контакт, то при определённом значении частоты ток через контакт перестаёт течь. Это как если бы в двух сообщающихся сосудах с разным уровнем воды потрясли соединительный патрубок, и вода перестала бы течь в ёмкость с меньшим уровнем. На макроуровне это невозможно представить, а на квантовом вполне может работать.

Китайский оператор начал предоставлять услуги звонков с квантовым шифрованием

Один из трёх государственных телекоммуникационных гигантов Китая — компания China Telecom — объявил о новой пилотной программе, позволяющей пользователям смартфонов совершать телефонные звонки, защищённые квантовым шифрованием. Услуга доступна с первого января в провинции Аньхой, но к предоставлению будут допущены особые клиенты, а не все желающие подряд.

 Источник изображения: AP

Источник изображения: AP

Сообщается, что в процессе совершения защищённого вызова генерируются два секретных ключа с использованием «квантовой информационной технологии». Ключи используются для проверки личности звонящего и информации о вызове, обеспечивая сквозное шифрование.

Судя по всему, ключи генерирует некая квантовая система в оборудовании оператора, но речь явно не о квантовой криптографии, которая опирается на квантовое распределение ключей. Поэтому услугу China Telecom не следует путать с квантовой криптографией.

Для получения этой услуги абонент должен получить особую SIM-карту и установить приложение «Квантовый безопасный вызов» компании. Специального телефона (оборудования) на стороне абонента не нужно, что ещё раз подтверждает тот факт, что говорить о мобильной квантовой криптографии слишком рано.

 Источник изображения: gizchina.com

Источник изображения: gizchina.com

На этом фоне настоящим квантовым смартфоном выглядит прошлогодняя разработка Samsung — смартфон Galaxy A Quantum. В этот смартфон, по крайней мере, встроен чип генерации случайных чисел, основанный на элементах квантовой физики, а предложение China Telecom, вероятно, опирается на генерацию случайных чисел для сложных паролей на базе удалённого оборудования. Поэтому ни о каком квантовом шифровании, как оно сегодня понимается, речь не идёт.

Тем не менее, тенденция к появлению систем коммуникации с квантовой защитой демонстрирует уверенный рост. На горизонте маячат квантовые вычислители, которые грозят крахом современным алгоритмам шифрования. Противостоять этой угрозе могут только решения, основанные на квантовой физике. Пока в виде паролей на основе «абсолютно» случайных генераторов чисел, а позже — на базе квантового распределения ключей.

В России создан прототип самой чувствительной видеокамеры в мире

Около пятнадцати лет в России производятся однопиксельные счётчики одиночных инфракрасных фотонов собственной разработки. Эти решения открывают путь к квантовой связи и к квантовым компьютерам. А если из таких датчиков собрать матрицу из сотен или тысяч пикселей, то появится возможность сверхчувствительной инфракрасной видеосъёмки и масса новых применений в медицине, науке, сфере безопасности и не только. В России такую матрицу сделали.

 Прототип камеры. Источник изображения: НИТУ «МИСиС»

Прототип камеры. Источник изображения: НИТУ «МИСиС»

В основе прототипа сверхчувствительной инфракрасной видеокамеры лежит разработка российского физика Григория Гольцмана на базе Центра НТИ «Квантовые коммуникации» НИТУ «МИСиС». В начале 2000-х Гольцман предложил однопиксельный счётчик одиночных инфракрасных фотонов и создал компанию «Сконтел» для коммерческого продвижения разработки. Датчики «Сконтел» успешно используются в опытной российской аппаратуре для организации распределения квантовых ключей в защищённой связи. Но теперь учёный с коллегами пошёл дальше — они намерены создать видеокамеру со сверхчувствительной матрицей на 1000 пикселей.

Подобная камера, если её сделать, позволит не только видеть практически в полной темноте, но даже «смотреть» сквозь горные породы и тело человека, показывая, соответственно, расположение минералов и раковых опухолей. Также массивы сверхчувствительных пикселей помогут продвинуться в создании квантовых компьютеров и систем квантовой связи.

Представленный сегодня группой разработчиков «МИСиС» прототип состоит всего из восьми пикселей. На следующем этапе учёные планируют создать 1000-пиксельную матрицу, принцип организации и управления которой они как раз обкатывают на восьмипиксельном прототипе. Но даже на этапе прототипа, сообщают исследователи, аналогов этой разработке в мире сегодня нет.

Для получения изображений с камеры с большим разрешением, чем допускает матрица, учёные собираются применить интересный метод фиксации фотонов. Для этого матрица будет последовательно закрываться разными шаблонами, а результирующее изображение будет получено после суммирования всех паттернов. Таким образом 1000-пиксельная матрица может вывести картинку, состоящую из миллиона пикселей, и на это уйдёт довольно мало времени. Это особенно важно для приборов медицинского назначения, помогающих диагностировать онкологические заболевания.

Россия, Китай, Индия и ЮАР создадут первый в мире межконтинентальный канал квантовой связи

Холдинг «Швабе» Госкорпорации Ростех присоединился к научно-исследовательскому проекту БРИКС по квантовым коммуникациям. Российские разработчики со своими зарубежными коллегами создадут первый в мире гибридный межконтинентальный канал квантовой связи протяжённостью свыше 10 тыс. км. Зашифрованные надёжнейшим в мире способом данные будут следовать маршрутом по волоконно-оптическим линиям на земле и по радиоканалам в космосе.

Проект реализуется в рамках международного гранта БРИКС при поддержке Российского фонда фундаментальных исследований. От холдинга «Швабе» в нем участвует Государственный оптический институт им. С. И. Вавилова.

«Это действительно уникальная научно-исследовательская работа, объединившая ведущих ученых четырех стран. ЮАР выступает головным исполнителем проекта, Китай отвечает за направление спутниковой квантовой связи, Индия — за моделирование волоконно-оптических коммуникаций. Наши специалисты в составе российской научной группы разрабатывают инновационное оптическое волокно», — рассказал директор по международному сотрудничеству и региональной политике Ростеха Виктор Кладов.

Программа научно-исследовательской работы рассчитана на три года. Но она заложит основу для дальнейшего развития науки и техники в области квантовых коммуникаций. Квантовая связь, простейшей реализацией которой представляется распределение криптографических ключей, обеспечит не только надёжное шифрование данных, но также гарантирует полную осведомлённость о компрометации шифров. Это происходит по причине использования основ квантовой механики в аппаратуре по распределению ключей. Ключи передаются одиночными фотонами, и перехват любого из них информирует стороны связи о вмешательстве извне либо об ошибках передачи. Передача зашифрованного сообщения происходит только после того, как квантово-распределённый ключ передаётся без признаков вмешательства.

По итогам проекта главным его результатом станет организация квантового канала связи между университетами четырёх стран, занятых в разработке.

Новое открытие поможет продвинуться в разработке квантовых приборов

Квантовая физика, явления которой зачастую даже невозможно себе вообразить, обрастает приборами для проведения экспериментов. В этом преуспели учёные из Института квантовой оптики им. Макса Планка, которые создали самоё лёгкое в мире зеркало из двумерного метаматериала, способного пролить свет на взаимодействие фотонов с веществом и на физику самих фотонов.

 Часть установки по созданию нанозеркала (Max Planck Institute of Quantum Optics)

Часть установки по созданию нанозеркала (Max Planck Institute of Quantum Optics)

Для изготовления самого лёгкого в мире зеркала всего из нескольких сотен атомов рубидия понадобилось целых две тонны обычного научного оборудования. Размеры созданного зеркала при этом составляют около семи микрон в диаметре и несколько десятков нанометров в толщину. Чтобы получить эту микроструктуру, которую невозможно увидеть невооружённым глазом, понадобился целый комплекс сложнейших мероприятий.

Для начала атомы рубидия-87 были охлаждены в процессе лазерного охлаждения, в ходе которого бомбардировка атомов вещества фотонами привела к их замедлению. Затем с помощью испарительного охлаждения температура атомов была понижена ещё сильнее ― до –263 °C (до 10 кельвинов). Наконец, с помощью направленного магнитного поля охлаждённые атомы рубидия были выстроены в упорядоченную структуру в виде двухмерной решётки. В результате получилась плоскость с самыми выдающимися в истории отражающими свойствами.

 Для создания зеркала диаметром семь микрон понадобилось 2 тонны оборудования (Max Planck Institute of Quantum Optics)

Для создания зеркала диаметром семь микрон понадобилось 2 тонны оборудования (Max Planck Institute of Quantum Optics)

Учёные экспериментально проверили работу искусственной отражающей поверхности, направив на неё поляризованный пучок фотонов и зафиксировали отражённый свет. Интересно, что перед отражением фотоны многократно переотражаются от атомов материала зеркала, что позволяет усилить обратное излучение. Тем самым новый материал обещает стать новым мощнейшим инструментом в изучении квантово-фотонных явлений, что может привести к появлению как квантового транзистора (переключателя), так и к квантовой памяти.

В США поставлен эксперимент по запутыванию фотонов на дальности до 83 км

Десять дней назад Белый дом объявил о финансировании проектов по развёртыванию в США «квантового» Интернета. В течение следующих пяти лет должны появиться фундаментальные основы технологии и ключевые компоненты. В следующие 20 лет начнётся развёртывание квантовых каналов связи, и невероятное будущее станет реальностью.

 Схема коммуникации для установления квантовой запутаности на дальности 52 мили (83+ км)

Схема коммуникаций для установления квантовой запутанности двух фотонов на дальности 52 мили (83+ км)

В новости за 15 февраля мы уже сообщали о планах развернуть «квантовый» Интернет между всеми 17-ю национальными лабораториями в США. Уточним, речь идёт не только и не столько о защищённой квантовой связи ― о распределении квантовых ключей шифрования, а о передаче данных и о кластерах на основе квантовых компьютеров. Это совсем другое. В данном случае подразумевается передача информации с использованием законов квантовой механики, что ещё называют квантовой телепортацией.

Для осуществления квантовой телепортации ― мгновенной передачи информации на далёкое расстояние со скоростью выше скорости света ― частицы (в эксперименте это фотоны) должны быть запутаны. Это означает, что квантовые состояния двух или большего числа объектов (частиц, атомов или чего-то другого) оказываются взаимозависимыми. В такой связи состояние спина одной частицы всегда оказывается строго противоположным состоянию спина другой удалённой частицы. Также измерение состояния одной из частиц мгновенно разрушает запутанность ― происходит «телепортация» воздействия, что служит основой для передачи информации.

Учёные из национальной лаборатории Аргонн поставили эксперимент по запутыванию пары фотонов в условиях старой оптоволоконной городской кабельной сети. В опыте использовались две закольцованные петли по 26 миль каждая, всего получилась петля длиной 52 мили или свыше 83 км. Этот эксперимент важен был тем, что использовалась кабельная инфраструктура со всеми её недостатками ― температурными, механическими, шумовыми и электромагнитными воздействиями плюс годы эксплуатации.

Опыт показал, что пара фотонов сохраняла запутанность на удалении фактически 83 километров. С группой частиц (кубитов) всё будет сложнее, но факт остаётся фактом. Квантовая запутанность работает в полевых условиях и оставляет пространство для дальнейших экспериментов.

window-new
Soft
Hard
Тренды 🔥