Сегодня 14 декабря 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → квантовый процессор
Быстрый переход

Amazon представила квантовый процессор Ocelot, в котором решила одну из главных проблем квантовых вычислений

После публикации научной статьи о прорыве компании Amazon в разработке квантовых компьютеров настал черёд узнать чуть больше о квантовом процессоре для этой платформы. Это прототип под названием «Оцелот» (Ocelot), что перекликается с именем компании Amazon, ведь эти кошачьи хищники обитают вдоль одноимённой южно-американской реки. И кошки здесь к месту, поскольку в основе архитектуры процессора лежат кошачьи кубиты.

 Источник изображений: Amazon

Источник изображений: Amazon

Подробно об основах работы квантовой платформы с процессором «Оцелот» мы говорили в этой новости. Напомним, инженеры Amazon объединили в одном процессоре две разные архитектуры кубитов, за счёт чего добились радикального снижения аппаратных затрат — числа физических кубитов, необходимых для реализации схем исправления ошибок в вычислениях.

По признанию компании, схемы «Оцелота» исправляют ошибки с экономией 90 % физических кубитов по сравнению с конкурирующими платформами. Иначе говоря, прорывной квантовый процессор Amazon использует на порядок меньше аппаратных ресурсов для безошибочного исполнения квантовых алгоритмов. Нужно ли говорить, что в этом скрыт огромный потенциал для более простого наращивания числа кубитов?

 Источник изображения: Nature 2025

Источник изображения: Nature 2025

Компания Amazon так описывает схему процессора: «Логический чип памяти Ocelot, показанный на схеме выше, состоит из пяти кошачьих кубитов данных, в каждом из которых находится осциллятор, используемый для хранения квантовых данных. Опорный осциллятор каждого кошачьего кубита соединён с двумя вспомогательными трансмонными кубитами для обнаружения связанных с фазовым сдвигом ошибок, и сопряжён со специальной нелинейной буферной схемой, используемой для стабилизации состояний кошачьих кубитов и экспоненциального подавления ошибок, связанных с изменением порядка битов».

Кошачьи кубиты, названные так в честь вымышленной кошки Шрёдингера (в оригинале это кошка, а не кот), устойчивы к ошибкам переворота бита, поскольку используют группы фотонов и пренебрегают переворотами одного из них. Трансмоны служат для коррекции ошибок со сдвигом фазы и исправляют условно единственные ошибки кошачьих кубитов, которые те допускают. Тем самым гибридная архитектура более простыми средствами устраняет ошибки в квантовых вычислениях.

«Настройка устройства Ocelot включает калибровку частоты ошибок при переключении битов и фаз кошачьих кубитов в зависимости от амплитуды “кошки” (среднего количества фотонов) и оптимизацию шумового смещения вентиля C-NOT, используемого для обнаружения ошибок при переключении фаз. Наши экспериментальные результаты показывают, что мы можем добиться времени переключения битов, приближающегося к одной секунде, что более чем в тысячу раз превышает срок жизни обычных сверхпроводящих кубитов», — поясняют в Amazon.

Физически чип «Оцелот» состоит из двух электрически соединённых кристаллов, каждый из которых имеет площадь 1 см2. На поверхности каждого кремниевого микрочипа находятся тонкие слои сверхпроводящих материалов, которые образуют элементы квантовых схем. Чип Ocelot состоит из 14 основных компонентов: пять кубитов данных (кошачьих кубитов), пять «буферных схем» для стабилизации кубитов данных и четыре дополнительных кубита для обнаружения ошибок в кубитах данных (трансмона).

Квантовые биты хранят квантовые состояния, используемые для вычислений. Для этого они полагаются на компоненты, называемые осцилляторами, которые генерируют повторяющийся электрический сигнал с постоянной частотой. Высококачественные осцилляторы Ocelot изготовлены из тонкой плёнки сверхпроводящего материала под названием тантал. Специалисты AWS по материалам разработали особый способ обработки тантала на кремниевом чипе для повышения производительности осциллятора.

В целом компания заимствовала большинство технологий для производства «Оцелота» из полупроводниковой отрасли и готова быстро сократить стоимость выпуска процессоров в пять раз. Представленная Amazon передовая квантовая платформа — в корне не такая, как у всех остальных — должна на пять лет ускорить появление практичного и устойчивого к ошибкам квантового компьютера, уверены в компании.

Физики усомнились в работоспособности квантового процессора Microsoft Majorana 1 на фермионах Майораны

В среде специалистов складывается мнение, что новый топологический квантовый процессор Microsoft Majorana 1 на гипотетических майорановских фермионах, сродни сути квантовой физики, благодаря которой знаменитая кошка Шрёдингера и мертва, и жива одновременно. Фермионы Майораны пока существуют только в теории, что не помешало компании объявить о создании процессора на ещё не открытых частицах. Частиц нет, но процессор есть. Фантастика!

 Источник изображений: Microsoft

Источник изображений: Microsoft

Напомним, на этой неделе компания Microsoft представила квантовый процессор Majorana 1 («Майорана 1»). Решение названо революционным, ведь оно впервые в мире основано на топологическом материале. Топологические материалы отличаются тем, что заряд расположен на их поверхности и не проникает вглубь. Это придаёт им ряд интересных свойств, включая высочайшую помехозащищённость.

По словам компании Microsoft, процессор Majorana 1 в 800 раз устойчивее к помехам (ошибкам), чем конкурирующие разработки. Тем самым компания намекает, что готова в обозримом будущем создать квантовый компьютер, свободный от ошибок. Иными словами, квантовые вычислители станут практически значимыми со всеми вытекающими — взломом самых защищённых сегодня кодов, прорывам в материаловедении, фармакологии и вообще во всех сферах человеческой жизни и деятельности.

Несмотря на громкие заявления, специалисты относятся к заявлениям Microsoft скептически. Публично компания не привела никаких доказательств работы кубитов на майорановских фермионах и, следовательно, работа процессора Majorana 1 и платформы в целом тоже не имеет под собой никаких доказательств. За это компания подверглась критике.

«Если у вас есть какие-то новые результаты, не связанные с этой статьей, почему бы вам не подождать, пока у вас не будет достаточно материала для отдельной публикации?», — говорит Дэниел Лосс (Daniel Loss), физик из Базельского университета, Швейцария. «Не видя дополнительных данных о работе кубита, мы мало что можем прокомментировать», — вторит ему Георгиос Кацарос (Georgios Katsaros), физик из Института науки и технологий Австрии в Клостернёйбурге.

В Microsoft нашлось, что ответить на критику ранней публикации «результатов». «Мы стремимся к своевременной открытой публикации результатов наших исследований, а также к защите интеллектуальной собственности компании», — поясняют в компании. Более того, если верить Microsoft, результаты исследований были показаны избранному кругу физиков, которые нашли их интересными и перспективными.

«Поставил бы я свою жизнь на то, что они видят то, о чём думают? Нет, но это выглядит довольно неплохо, — признался Стивен Саймон (Steven Simon), физик-теоретик из Оксфордского университета, Великобритания, который был ознакомлен с результатами. — Нет однозначного доказательства, которое сразу из эксперимента подтвердило бы, что кубиты состоят из топологических состояний». Окончательно это будет доказано, если после масштабирования устройства они будут работать так, как ожидалось, добавил он.

«Мы создали кубит и показали, что вы можете не только измерить чётность в двух параллельных проводах, но и провести измерение, соединяющее два провода», — говорит в своё оправдание исследователь Microsoft.

«По мере того, как мы проводим больше типов измерений, становится всё труднее объяснять наши результаты с помощью нетопологических моделей, — говорят в компании. — Возможно, мы никогда не сможем всех в этом убедить. Но нетопологические объяснения потребуют всё большего числа тонких настроек». Иными словами, все демонстрируемые процессы будут указывать на правоту Microsoft и ошибочные представления критиков.

Также стало известно чуть больше о «кубите Майораны». Майорановские фермионы — это гипотетические частицы и ряд их характеристик можно воспроизвести в коллективных состояниях электронов или других элементарных частиц. В таком случае это будут квазичастицы. Созданный в Microsoft кубит представляет собой два нанопровода из арсенида индия, соединённых перемычкой посередине, изображая большую латинскую букву H.

Майорановские квазичастицы в виде групп электронов собраны на концах H-конструкции. Во всех случаях они состоят из Куперовских пар электронов, «спаривание» которых происходит при явлении сверхпроводимости, а кубит Microsoft — сверхпроводящий. Затем в каждый из двух нанопроводов вводятся по одному одиночному электрону, у которых нет пары. Введение дополнительного, непарного электрона создаёт возбуждённое состояние. Этот электрон в каждом нанопроводе существует в «делокализованном» состоянии (его волновая функция размазывается по двум волновым функциям майорановских квазичастиц на концах провода). Всё это якобы позволяет кубиту находится в состоянии суперпозиции.

В оригинальной статье Microsoft приводятся результаты измерений, свидетельствующие о том, что нанопроволока действительно содержит дополнительный электрон. Эти тесты «сами по себе» не гарантируют, что нанопроволока содержит две майорановские квазичастицы, предупреждают авторы, но очень на это надеются.

Добавим, ещё в 2018 году учёные из Нидерландов на деньги Microsoft провели эксперимент, на основании которого опубликовали статью о создании квазичастиц Майораны. Позже статья была отозвана из журнала Nature, где была опубликована. Один из критиков статьи, который поспособствовал её отзыву — Винсент Мурик (Vincent Mourik), физик из исследовательского центра имени Гельмгольца в Юлихе, Германия, уверен: «На фундаментальном уровне подход к созданию квантового компьютера на основе топологических кубитов Майораны в том виде, в каком он предлагается Microsoft, не сработает». Король, судя по всему, оказался голым, как в одноимённой сказке.

Microsoft представила Majorana 1 — квантовый процессор из будущего с ещё не открытой физиками частицей

Компания Microsoft объявила о революции в сфере квантовых вычислений. Специалисты компании разработали и воплотили в «железе» абсолютно новый принцип кубитов, который ранее никем не был реализован. В основе квантового процессора Majorana 1 («Майорана 1») задействованы гипотетические частицы — фермионы Майораны. Интересно, что у этой разработки можно обнаружить российские и даже советские корни.

 Источник изображений: Microsoft

Источник изображений: Microsoft

Прежде всего поясним, что фермионы Майораны существуют лишь в теории. Эти частицы ещё не были зарегистрированы в экспериментах, и их обнаружение будет равнозначно получению Нобелевской премии по физике. Пока же это мечта и цель многих учёных. Значит ли это, что Microsoft всех обманула? И да, и нет. В последние годы физики научились создавать квазичастицы, близкие по свойствам к фермионам Майораны. Это облака из сверхохлаждённых электронов, которые называют «модами нуль-энергии».

Идею квантового компьютера на основе майорановских фермионов в 1990-х годах разработал советский, российский, а позднее американский физик Алексей Китаев. Он также помогал Microsoft с продвижением этого направления. Китаев разработал теорию, объясняющую способы получения таких квазичастиц. Они образуются в присутствии топологического проводника — материала, обладающего проводимостью только по поверхности. Для создания кубитов на основе майорановских фермионов был предложен модернизированный классический джозефсоновский переход — структура, состоящая из двух сверхпроводников с изолятором между ними. Однако вместо второго сверхпроводника использовался топологический материал.

В случае с квантовым процессором Microsoft Majorana 1 применялась комбинация арсенида индия и алюминиевых проводов. Кубиты имеют форму буквы H, на каждом её конце в ловушках располагается по одному фермиону Майораны, представленному группой электронов. Такая конструкция обещает простое масштабирование, схожее с изготовлением транзисторов на полупроводниковых кристаллах. В настоящий момент процессор Majorana 1 содержит лишь восемь таких кубитов, однако к 2030 году Microsoft планирует увеличить их число до нескольких сотен, а в перспективе выпустить чип с миллионами кубитов всего за несколько лет, а не десятилетия.

«Мы сделали шаг назад и сказали: "Хорошо, давайте изобретём транзистор для квантовой эпохи. Какими свойствами он должен обладать?" — рассказал Четан Наяк (Chetan Nayak), технический сотрудник Microsoft. — Именно так мы пришли к нашему решению. Именно сочетание, качество и важные детали в новом наборе материалов позволили создать новый тип кубита и, в конечном счёте, всю нашу архитектуру».

Новая квантовая платформа Microsoft требует криогенного охлаждения и взаимодействия с классическими компьютерами для обработки квантовой информации. Казалось бы, в этом нет ничего нового. Прорывом стало использование топологических материалов — так называемых топопроводников (topoconductors), а также работа с квазичастицами майорановских фермионов. В Microsoft смогли разработать архитектуру, способную с высочайшей точностью регистрировать характеристики квазичастиц (определяя один электрон из миллиона) и управлять их состоянием.

Пока нельзя сказать, насколько квазичастицы фермионов Майораны будут полностью соответствовать свойствам гипотетических майорановских фермионов. В идеальном случае эти частицы должны быть чрезвычайно устойчивы к внешним воздействиям и защищены от ошибок — главной проблемы современных квантовых платформ. Если всё пойдёт по плану Microsoft, то уже к середине 2030-х годов у нас появится универсальный, помехоустойчивый квантовый компьютер, который совершит революцию в сфере сложных вычислений.

Intel нашла куда пристроить свои квантовые процессоры — они появятся в компьютерах «Made in Japan»

Компания Intel подписала меморандум о взаимопонимании с Японским национальным институтом передовой промышленной науки и технологий (AIST) о совместной работе над квантовыми компьютерами следующего поколения. Для партнёров из Японии Intel будет поставлять свои новейшие квантовые процессоры, а исследователи из AIST создадут на их основе рабочие системы для совместного распространения среди научных учреждений всего мира.

 Источник изображения: Intel

Источник изображения: Intel

Компания Intel не была особенно активной в разработке квантовых систем, хотя работала в одном из самых перспективных направлений — сфере спиновых кубитов, которые также называют кремниевыми. Такие квантовые процессоры можно производить на стандартных полупроводниковых фабриках, что обеспечивает их массовость, а также обещает достаточно простое масштабирование систем.

Свой первый квантовый процессор Tunnel Falls на 12 спиновых кубитах компания представила в июне 2023 года. В 2024 году ожидался выпуск процессора с увеличенным числом кубитов, но он так и не был представлен. Однако в мае 2024 года сотрудники Intel опубликовали в Nature развёрнутую статью, в которой объясняли превосходство квантовых процессоров компании над конкурентными разработками. В частности, Intel заявила об установлении отраслевого стандарта в области единообразия, точности и статистики измерений спиновых кубитов.

Следует отметить, что сферу разработки и эксплуатации квантовых вычислителей в Японии около пяти лет развивает компания IBM. Свой третий квантовый компьютер Q System One компания передала Токийскому университету в обмен на обязательство разработки прикладных квантовых алгоритмов.

Кроме того, IBM ещё раньше Intel подписала договор о сотрудничестве с AIST — это произошло в июне 2024 года. Тогда стало известно, что исследовательский институт заключил партнёрство с IBM по разработке квантового компьютера ёмкостью 10 000 кубит, запуск которого запланирован на 2029 год.

Возвращаясь к совместной работе Intel и AIST, добавим, что компании также договорились совместно развивать полупроводниковые и сверхпроводниковые интегральные схемы, необходимые для создания квантовых компьютеров следующего поколения. Разрабатываемые партнёрами квантовые системы будут доступны университетам в США, Японии и других странах. Остальным организациям придётся доплатить за доступ к платформам.

Кроме того, ирландское подразделение Intel по исследованиям и разработкам было названо одним из 36 партнёров, работающих над созданием европейской цепочки поставок криогенных квантовых технологий, включая криогенную фотонику, микроэлектронику и криомикросистемы. Проект, получивший название ARCTIC (Advanced Research on Cryogenic Technologies for Innovative Computing), стал первым результатом программы совместного объединения Европейского союза по производству чипов (CJU).

Канадцы построили фотонный квантовый компьютер и пообещали быстро масштабировать его до миллиона кубитов

Канадский стартап Xanadu, ранее отметившийся совместной работой с Nvidia над квантовыми симуляторами, сообщил о создании вычислительной квантовой системы на фотонах. Квантовое оборудование на фотонах можно использовать при комнатной температуре и размещать в обычных серверных стойках. Создав базовый набор стоек ничто не мешает произвести тысячи таких систем, что уже в ближайшей перспективе позволит изготовить квантовый вычислитель с миллионом кубитов.

 Источник изображения: Nature 2025

Источник изображения: Nature 2025

Сделанное компанией Xanadu Quantum Technologies заявление означает, что имеющий практическую ценность квантовый компьютер не за горами. Сама компания надеется представить квантовый вычислитель с миллионом кубитов уже к 2029 году. Ни одна серьёзная компания в сфере разработки квантовых компьютеров ещё не позволяла себе давать столь смелые обещания. Остаётся надеяться, что Xanadu хотя бы попытается его выполнить.

В опубликованной на днях в журнале Nature работе специалисты Xanadu рассказали, на чём строится работа их системы и как она будет выглядеть. Комплект под названием Aurora представлен четырьмя стандартными серверными стойками, что, безусловно, намного удобнее и практичнее использования криогенных камер для сверхпроводящих кубитов. В одной стойке собраны лазерная система для формирования опорного и модулирующего лучей, а также оптическая система для их распределения и управления ими.

Следует сказать, что квантовые «оптические чипы» Xanadu оперируют физическими состояниями лазерных лучей, учитывая их рекомбинацию и сложение. В конечном итоге результатом вычисления алгоритма будет количество фотонов в лазерном луче на выходе из системы. Однако здесь есть важный нюанс, который Xanadu не акцентирует: хотя сам вычислительный комплекс действительно работает при комнатной температуре, датчики, подсчитывающие фотоны в результирующем луче, охлаждаются до криогенных температур. Для этого в соседней со стойками комнате размещено специальное холодильное оборудование, без которого система функционировать не сможет.

На данный момент в общей сложности в трёх вычислительных стойках задействовано 35 чипов, образующих массив из 12 кубитов для запуска алгоритма. В своей работе Xanadu не раскрывает механизмов коррекции ошибок — самого слабого места квантовых вычислений. Однако компания уверенно заявляет, что её платформа легко масштабируется до миллионов кубитов. В нижней части стоек расположены оптические цепи для связи между стойками, что позволяет соединять тысячи таких модулей. По сравнению с усилиями конкурирующих компаний этот процесс масштабирования выглядит значительно проще.

В Xanadu признают, что предложенное ими решение далеко от совершенства. В частности, в процессе обработки теряется часть света (фотонов), что ведёт к увеличению частоты ошибок. Тем не менее компания обещает совершенствовать платформу и не теряет надежды создать имеющий практическую ценность квантовый компьютер к 2029 году.

Учёные сделали квантовые вычисления точнее, внедрив два кода коррекции ошибок вместо одного

Для квантовых вычислений классические методы коррекции ошибок не подходят. Причина кроется в квантовой механике, которая на базовом уровне не позволяет фиксировать промежуточные результаты для дальнейшего сравнения. Новые методы коррекции ошибок частично справляются с этой задачей, но имеют множество ограничений. Учёные из Австрии смогли реализовать механизм коррекции ошибок с подключением двух разных алгоритмов, чем повысили точность расчётов.

 Источник изображения: Helene Hainzer/

Источник изображения: Helene Hainzer/University of Innsbruck

Промежуточные квантовые состояния кубитов, задействованных в расчётах, нельзя, например, сохранить для проверки чётности. Поэтому из нескольких физических кубитов создают один логический кубит, при этом часть физических кубитов в составе логического кубита запутывают определённым образом. Это позволяет отслеживать ошибки без разрушения цепочки вычислений и корректировать их.

Основная сложность заключается в том, что для разных групп логических элементов (гейтов) требуются различные коды коррекции. Учёные из Университета Инсбрука (University of Innsbruck) разработали методику, позволяющую переключать квантовый компьютер с одного оптимального кода на другой в процессе выполнения вычислений. Это значительно снизило частоту ошибок.

Свою методику исследователи испытали на квантовом компьютере с ловушками ионов. Компьютер состоял из 16 кубитов, из которых были созданы две независимые логические цепи. Каждая цепь обрабатывалась оптимальным для неё кодом коррекции ошибок. Переключение между логическими цепями происходило без возникновения ошибок, что подтвердило возможность использования двух независимых кодов в рамках одного вычислительного цикла.

В перспективе эта методика упростит исправление ошибок при масштабировании вычислений, экономно расходуя физические кубиты, которых никогда не будет много.

«Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных

Учёные из Австралии сообщили о разработке «трёхмерных» топологических кодов коррекции ошибок квантовых вычислений. Предложенная ими схема использует для коррекции меньше физических кубитов в пересчёте на один логический кубит. Новшество обещает приблизить появление «квантовых жёстких дисков» — хранилищ квантовых состояний для вычислений с невообразимым уровнем производительности.

 Источник изображения: ИИ-генерация Кандинский 3.1/3DNews

Источник изображения: ИИ-генерация Кандинский 3.1/3DNews

Как известно, время когерентности кубитов — время удержания запутанных квантовых состояний — очень маленькое по причине их высочайшей нестабильности. И если с физикой бороться предельно сложно, то операции коррекции ошибок могут помочь в проведении безошибочных вычислений. Классические компьютеры это показали с достаточной убедительностью. Но в случае операций с кубитами всё намного сложнее — для них нужны свои коды и механизмы коррекции.

Традиционным методом исправления ошибок в квантовых вычислениях признан так называемый топологический код или поверхностный код, у которого также есть другие названия. Это своего рода таблица или матрица, которая требует физической или схемотехнической реализации логических кубитов из нескольких физических. В идеале для безошибочной работы каждого логического кубита необходимо 1000 физических кубитов, но на таком подходе масштабируемую вычислительную квантовую платформу построить нельзя.

Учёные из Австралии поставили перед собой задачу уйти от традиционного поверхностного кода и создать его трёхмерный аналог, который помог бы облегчить создание квантового вычислителя или симулятора с более эффективной коррекцией ошибок и экономным расходованием физических кубитов. Как недавно они сообщили в журнале Nature Communications, им это удалось.

«Предлагаемая нами квантовая архитектура потребует меньше кубитов для подавления большего количества ошибок, высвободив больше для полезной квантовой обработки», — говорится в заявлении ведущего автора работы Доминика Уильямсона (Dominic Williamson), исследователя из Нано-института и школы физики Университета Сиднея (University of Sydney Nano Institute and School of Physics).

«Этот прогресс имеет решающее значение для разработки масштабируемых квантовых компьютеров, поскольку позволяет создавать более компактные системы квантовой памяти, — сказано в аннотации к работе. — За счёт сокращения физических затрат на кубиты полученные результаты прокладывают путь к созданию более компактного "квантового жёсткого диска" — эффективной системы квантовой памяти, способной надёжно хранить огромные объёмы квантовой информации».

Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению

Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий.

 Источник изображений: Google, Nature

Источник изображений: Google, Nature

Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения.

Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах.

Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем.

 Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем

Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем

Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами.

В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах».

 Дорожная карта развития квантовых вычислений Google

Дорожная карта развития квантовых вычислений Google

Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным.

В России создан 50-кубитный ионный квантовый компьютер

50-кубитный квантовый ионный компьютер разработан научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН). На данный момент он является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу. Разработка велась в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является госкорпорация «Росатом».

 Источник изображений: Росатом

Источник изображений: atomic-energy.ru

Представленный квантовый компьютер базируется на уникальной кудитной технологии, которую российские учёные стали использовать третьими в мире, после Австрии и США. Впервые российский 16-кубитный компьютер был представлен в июле 2023 года на первом Форуме будущих технологий (ФБТ). На втором ФБТ в феврале 2023 года была продемонстрирована 20-кубитная машина. Менее чем за год после этого удалось увеличить количество кубитов до 50.

«За год мы полностью переделали ультрастабильный лазер и существенно модернизировали и систему адресации и считывания, поработали над стабильностью всех подсистем, автоматизировали многие калибровки. За счёт этого получилось в короткий срок поднять мощность нашего квантового компьютера и нарастить число кубит. Дальше мы планируем работать и над увеличением числа кубит, и над достоверностью двухкубитных операций. Всё это нужно для запуска более сложных квантовых алгоритмов. Потенциал для модернизации у нашей машины есть», — прокомментировал научный руководитель проекта Илья Семериков.

Эксперты полагают, что квантовые вычисления в первую очередь будут востребованы в фармацевтике для моделирования сложных соединений при создании новых лекарств. Квантовые вычисления помогут при прогнозировании эпидемий. Врачи смогут в кратчайшие сроки разработать персональные рекомендации для лечения с учётом конкретных симптомов и особенностей организма.

Квантовые вычисления обеспечат принципиально новые возможности при моделировании химических процессов, что безусловно будет востребовано в промышленном секторе. В логистических операциях использование квантовых компьютеров для составления оптимальных маршрутов и расписаний движения транспорта приведёт к сокращению задержек, удешевит и ускорит доставку грузов.

Аналитики уверены, что квантовые технологии радикально повысят возможности ИИ в области машинного обучения, распознавания и анализа, обработки больших данных при меньших энергозатратах. Постквантовое шифрование должно обеспечить необходимый уровень защиты персональных и конфиденциальных данных. В финансовом секторе квантовые вычисления помогут минимизировать риски и точнее оценить кредитоспособность клиента.

«Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование» — заявил Директор ФИАН Николай Колачевский.

«50 кубитов - это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. […] Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу», — считает сооснователь Российского квантового центра Руслан Юнусов. Ранее он озвучивал планы создания 100-кубитного квантового компьютера к 2030 году.

Россия наряду с США и Китаем сегодня входит в число стран, создавших квантовые компьютеры на всех четырёх приоритетных для квантовых вычислителей платформах: сверхпроводниках, ионах, нейтральных атомах и фотонах. И только шесть стран построили квантовые компьютеры с 50 кубитами и более: Китай, США, Канада, Россия, Япония и Франция.

США стандартизировали первые криптографические алгоритмы, стойкие к взлому на квантовых компьютерах

На сегодняшний день практически все чувствительные данные в мире защищены схемой ассиметричного шифрования RSA (Rivest-Shamir-Adleman), которую практически невозможно взломать с помощью современных компьютеров. Но появление квантовых компьютеров может кардинально изменить ситуацию. Поэтому Национальный институт стандартов и технологий США (National Institute of Standards and Technology, NIST) представил три схемы шифрования постквантовой криптографии.

 Источник изображений: unsplash.com

Источник изображений: unsplash.com

Новые стандарты должны стать важным элементом криптографической защиты данных. Предыдущие стандарты криптографии NIST, разработанные в 1970-х годах, используются практически во всех устройствах, включая интернет-маршрутизаторы, телефоны и ноутбуки. Руководитель группы криптографии NIST Лили Чен (Lily Chen) уверена в необходимости массовой миграции с RSA на новые методы шифрования: «Сегодня криптография с открытым ключом используется везде и во всех устройствах, наша задача — заменить протокол в каждом устройстве, что нелегко».

Хотя большинство экспертов считают, что крупномасштабные квантовые компьютеры не будут построены как минимум ещё десять лет, существуют две веские причины для беспокойства уже сегодня:

  • Во-первых, многие устройства, использующие метод RSA, такие как автомобили или компоненты «умного дома», будут использоваться ещё как минимум десятилетие. Поэтому их необходимо оснастить квантово-безопасной криптографией, прежде чем они будут выпущены в эксплуатацию.
  • Во-вторых, злоумышленник может сохранить зашифрованные данные сегодня и расшифровать их при появлении достаточно производительных квантовых компьютеров — концепция «собирай сейчас, расшифруй позже».

Поэтому эксперты по безопасности в различных отраслях призывают серьёзно относиться к угрозе, исходящей от квантовых компьютеров. Новые схемы шифрования основаны на понимании сильных и слабых сторон квантовых вычислений, так как квантовые компьютеры превосходят классические лишь в достаточно узком спектре задач. К квантово-устойчивым криптографическим методам относятся:

  • Решётчатая криптография основана на геометрической задаче о кратчайшем векторе, которая требует найти точку, ближайшую к началу координат, что невероятно сложно сделать при большом количестве измерений.
  • Изогональная криптография использует для шифрования эллиптические кривые, что обещает высокую устойчивость к дешифровке.
  • Криптография на основе кода с возможностью исправления ошибок опирается на сложность восстановления структуры кода из сообщений, содержащих случайные ошибки.
  • Криптография с открытым ключом на основе хеш-дерева позиционируется как развитие идей RSA.

На сегодняшний день наиболее перспективным методом NIST считает решётчатую криптографию. Институт ещё в 2016 году объявил публичный конкурс на лучший алгоритм постквантового шифрования. Было получено 82 заявки от команд разработчиков из 25 стран. С тех пор конкурс прошёл через четыре отборочных тура и в 2022 году завершился, назвав четыре победивших алгоритма. Были учтены мнения криптографического сообщества, промышленных и учёных кругов, а также заинтересованных государственных служб.

Четыре победивших алгоритма имели звучные названия: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ и FALCON, но после стандартизации получили типовое обозначение «Федеральный стандарт обработки информации» (Federal Information Processing Standard, FIPS) с номерами 203–206. Сегодня NIST объявил о стандартизации FIPS 203, 204 и 205. Ожидается, что FIPS 206 будет стандартизирован ближе к концу года. FIPS 203, 204 и 206 основаны на решётчатой криптографии, в то время как FIPS 205 — на хеш-функциях.

Стандарты включают компьютерный код алгоритмов шифрования, инструкции по его реализации и сценарии предполагаемого использования. Для каждого протокола существует три уровня безопасности, разработанные для обеспечения будущих стандартов в случае обнаружения в алгоритмах слабых мест или уязвимостей.

Ранее в этом году внимание криптографического сообщества привлекла публикация Или Чена (Yilei Chen) из Университета Цинхуа, которая утверждала, что решётчатая криптография на самом деле плохо защищена от квантовых атак. Но при дальнейшем рассмотрении силами сообщества в аргументации Чена были найдены ошибки, и авторитет решётчатой криптографии был восстановлен.

Этот инцидент подчеркнул базовую проблему, лежащую в основе всех криптографических схем: нет никаких доказательств того, что какие-либо из математических задач, на которых основаны схемы, на самом деле «сложные». Единственным реальным доказательством стойкости шифрования, даже для стандартных алгоритмов RSA, являются многочисленные неудачные попытки взлома в течение длительного времени.

Поскольку постквантовые стандарты криптографии пока очень «молоды», их стойкость постоянно подвергается сомнениям и попыткам взлома, причём каждая неудачная попытка только повышают доверие к ним. «Люди изо всех сил пытались взломать этот алгоритм. Многие люди пытаются, они очень стараются, и это на самом деле придаёт нам уверенности», — заявила по этому поводу Лили Чен.

Безусловно, представленные NIST новые стандарты постквантового шифрования актуальны, но работа по переводу на них всех устройств только началась. Потребуется длительное время и значительные средства, чтобы полностью защитить данные от дешифровки при помощи будущих квантовых компьютеров. Для примера, компания LGT Financial Services потратила 18 месяцев и около полумиллиона долларов лишь на частичное внедрение новых алгоритмов, а затраты на полный переход оценить затруднилась.

В США предложили создать квантовый интернет в трубах с вакуумом и с фокусирующими линзами

Учёные из Школы молекулярной инженерии им. Прицкера Чикагского университета (PME) предложили опутать США сетью особых каналов связи, ориентированных на передачу квантовых состояний кубитов. Это позволит создать квантовый интернет и реализовать распределённые квантовые вычисления, что умножит мощь и без того перспективных квантовых вычислителей. В этом поможет опыт гравитационно-волновых обсерваторий, ведь кубиты придётся передавать в вакууме.

 Источник изображения: University of Chicago

Источник изображения: University of Chicago

Исследование финансируется военными и властями США. Квантовый интернет — это не только абсолютно безопасная связь, которая не поддаётся незаметному взлому, но также экспоненциальный рост вычислений. Распределённые квантовые вычисления могут на какое-то время решить проблему с масштабированием квантовых платформ. Пока в составе каждого вычислителя физически большие кубиты и их мало, перераспределение вычислительной нагрузки поможет наращивать производительность относительно простым способом.

Учёные уже умеют и даже внедряют в практику обмен квантовыми состояниями на больших расстояниях с помощью кодирования фотонов. Благодаря этому квантовые состояния можно передавать по обычному оптоволокну и с помощью лазера по воздуху и в вакууме, например, через спутники. Однако скорость передачи при этом очень маленькая, как и велики затухания в оптоволокне.

Учёные из Чикагского университета опирались на опыт многолетней работы гравитационно-волновых обсерваторий, датчики которых — это трёхкилометровые тоннели с высоким вакуумом (10-11 атмосфер). Благодаря зеркалам фотоны в тоннелях пролетают колоссальные расстояния, отзываясь на гравитационные волны. Таким же образом можно передавать на сотни и тысячи километров квантовую информацию, закодированную в состояниях фотонов. А чтобы снизить вероятность их рассеивания, необходимо предусмотреть систему фокусирования на всём протяжении маршрута.

В результате работы исследователи теоретически обосновали возможность охватить США сетью квантового интернета из вакуумных труб диаметром 20 см с фокусирующими линзами через каждые несколько километров. Расчёты показывают, что всё будет работать при среднем уровне вакуума (10-4 атмосфер). На следующем этапе учёные проведут экономическое обоснование проекта. Но даже сейчас они подчёркивают, что ради скоростной квантовой сети не жалко будет никаких денег.

Учёные создали 2D-кулер для квантовых компьютеров — он обеспечит температуру ниже, чем в открытом космосе

Швейцарские учёные разработали инновационную двумерную систему охлаждения для квантовых компьютеров, способную достигать температур до 100 милликельвинов, преобразуя тепло в электрическое напряжение. Разработка может стать прорывом в области квантовых вычислений.

 Источник изображения: LANES EPFL

Источник изображения: LANES EPFL

Исследовательская группа LANES из Швейцарской федеральной политехнической школы Лозанны (EFPL), возглавляемая Андрашем Кишем (Andras Kis), создала устройство, которое по эффективности соответствует современным технологиям охлаждения, но работает при слабых магнитных полях и сверхнизких температурах, необходимых для квантовых систем. Новая технология позволяет достигать сверхнизких температур путём преобразования тепла в электрическое напряжение, что особенно важно для вычислений, так как квантовые биты (кубиты) чрезвычайно чувствительны к теплу и требуют охлаждения до температур ниже 1 кельвина, пишет ресурс Tom's Hardware.

 Источник изображения: LANES EPFL

Источник изображения: LANES EPFL

«В настоящее время в квантовых вычислительных системах нет механизма, предотвращающего нагрев кубитов от работающей электроники», — пояснил аспирант Габриэле Паскуале (Gabriele Pasquale). Однако эта технология построена на основе двумерного материала толщиной всего в несколько атомов, и в сочетании с графеном позволяет достичь высокой производительности. Устройство работает на основе эффекта Нернста — термомагнитного явления, при котором в проводнике генерируется электрическое поле под воздействием магнитного поля и разницы температур.

Важно отметить, что новая система охлаждения может быть легко интегрирована в существующие квантовые компьютеры, так как изготовлена из доступных электронных компонентов. «Данные результаты представляют собой значительный прогресс в нанотехнологиях и открывают перспективы для разработки передовых систем охлаждения, необходимых для квантовых вычислений», — подчеркнул Паскуале.

Несмотря на достижение, исследователи отмечают, что данная технология предназначена исключительно для квантовых вычислений и не может быть использована для охлаждения обычных компьютеров.

Квантовые вычисления для всех: представлен карманный эмулятор 30-кубитовой квантовой системы Quokka

Учёные из Технологического университета Сиднея разработали и готовы продавать через компанию Eigensystems крошечные персональные эмуляторы отказоустойчивых 30-кубитовых квантовых компьютеров Quokka («Квокка»). Новинка «демократизирует» квантовые вычисления, создавая основу для появления широкого круга специалистов среди нового поколения учёных, инженеров, программистов, преподавателей и любителей.

 Источник изображений: Andy Roberts

Источник изображений: Andy Roberts

Квокка — одно из самых симпатичных сумчатых Австралии — изображён на верхней крышке корпуса эмулятора квантового компьютера, а первые две буквы названия этих животных намекают на кубиты. Платформу разработали два специалиста Центра квантового программного обеспечения и информации (QSI) Технологического университета Сиднея — Саймон Девитт (Simon Devitt) и Крис Ферри (Chris Ferrie). Решение задумано как обширная образовательная экосфера с уроками, проектами и сообществом.

«Традиционное STEM-образование основано на педагогике 100-летней давности в мире, управляемом обработкой информации. Слово "квант" не фигурирует ни в национальной, ни в какой-либо другой государственной учебной программе, — поясняют цель своей разработки учёные. — Квантовая грамотность определит передний край инноваций XXI века, но до сих пор не было ясного пути в сферу квантовых вычислений для студентов, преподавателей и любителей, чтобы исследовать эту область и открывать возможности».

Устройство Quokka представляет собой доступный по цене удобный эмулятор персонального квантового компьютера, который может запускать языки программирования, написанные для квантовых вычислений, и возвращать результаты. Компания Eigensystems начала принимать заявки на устройство, поставки которого стартуют в июле. Quokka эмулирует то, чего пока не существует — отказоустойчивый квантовый компьютер ёмкостью 30 кубит. Но он позволит уже сейчас изучать приложения квантовых вычислений, обеспечивая практику и опыт, используя самые передовые технологии.

«Это позволяет вам экспериментировать и узнавать о квантовых алгоритмах и программах, взаимодействуя с ним точно так же, как вам пришлось бы взаимодействовать с будущим отказоустойчивым квантовым компьютером», — говорят разработчики.

Базовый уровень платформы включает в себя три программных интерфейса. На продвинутом уровне представлена обширная библиотека материалов с доступом к урокам, руководствам, кураторским проектам сообщества и возможностью делиться проектами и совместно их создавать.

На уровне Quokka Stories — сборнике уроков, основанных на повествовании — происходит ориентация на образовательную программу, переосмысливающую науку, технологию, инженерное дело и математику через призму обработки информации. Поскольку люди пока плохо представляют, как и зачем использовать квантовые платформы, возможность ознакомиться с ними хотя бы на уровне простейших эмуляторов — это правильное решение, на которое стоило бы обратить внимание образовательным учреждениям.

Найден простой способ получения сверхчистого кремния — это путь к квантовым компьютерам нового поколения

Ученые разработали метод получения сверхчистого кремния, который применяется для производства чипов. Используя стандартное оборудование, они добились снижения доли примесей кремния-29 в чипах до 0,0002 %. Данный способ позволит создавать более мощные квантовые компьютеры с большим количеством кубитов, сообщает New Atlas.

 Источник изображения: Kandinskiy

Источник изображения: Kandinskiy

Кремний заслуженно считается одним из ключевых материалов, лежащих в основе современных электронных устройств и компьютерных технологий. Его значение настолько велико, что в его честь даже названа знаменитая Кремниевая долина в Калифорнии — место, где зародились многие IT-гиганты. Однако у кремния есть и определенные недостатки, ограничивающие его применение в перспективных областях, таких как квантовые вычисления.

Исследователи из Мельбурнского и Манчестерского университетов разработали метод получения сверхчистого кремния с помощью стандартного оборудования — ионного имплантатора. С помощью этой установки, которая широко применяется в полупроводниковой промышленности, компьютерный чип был «обстрелян лучом» кремния-28, в процессе чего примеси кремния-29 были заменены на более желательный кремний-28, и в результате, концентрация кремния-29 в чипе снизилась с 4,5 % до 0,0002 %.

Почему чистота кремния важна для квантовых компьютеров? Дело в том, что в основе работы квантовых компьютеров лежат кубиты — квантовые биты, использующие принципы квантовой механики. Они крайне чувствительны к любым внешним воздействиям и должны находиться в состоянии квантовой когерентности.

Однако натуральный кремний содержит примерно 4,5 % изотопа кремний-29, имеющего дополнительный нейтрон. Эти нейтроны ведут себя как микроскопические магниты, нарушая когерентность кубитов и вызывая ошибки в квантовых вычислениях. Таким образом, использование натурального кремния существенно ограничивает возможности квантовых компьютеров, и для их полноценной работы требуется гораздо более чистый кремний с минимальным содержанием изотопа кремний-29.

Кремний с высокой чистотой может позволить значительно расширить возможности квантовых компьютеров, так как чем больше кубитов содержит квантовый чип, тем он мощнее. Сверхчистый кремний, который получили ученые, в данном случае поможет стабилизировать работу таких многокубитных систем. В дальнейшем планируется протестировать разработанные сверхчистые кремниевые структуры на реальных квантовых устройствах. А успешные результаты могут привести к появлению квантовых компьютеров нового поколения.

Япония ужесточит контроль экспорта полупроводников и квантовых технологий куда бы то ни было

Японское правительство планирует расширить ограничения на экспорт ещё четырёх технологий, связанных с полупроводниками и квантовыми вычислениями. Новые меры коснутся сканирующих электронных микроскопов, используемых для анализа изображений наночастиц и транзисторов Gate all around. Потребуются лицензии на поставки криогенных КМОП-схем, используемых в квантовых компьютерах, а также на сами квантовые компьютеры.

 Источник изображения: unsplash.com

Источник изображения: unsplash.com

Поставки этих технологий во все страны, включая таких давних стратегических партнёров, как Южная Корея, Сингапур и Тайвань, потребуют одобрения чиновников экспортного контроля. Ужесточение экспортного контроля — очередной шаг Японии в глобальном стремлении контролировать поток стратегических технологий. Этот шаг призван улучшить контроль за экспортом компонентов военного назначения и согласуется с аналогичными тенденциями по всему миру, заявило в пятницу Министерство экономики, торговли и промышленности. Изменения вступят в силу в июле 2024 года, после периода общественного обсуждения до 25 мая.

В прошлом году Япония расширила ограничения на экспорт 23 видов передовых технологий производства микросхем. Эта мера последовала за попытками США ограничить доступ Китая к ключевым полупроводниковым процессам. Официальные лица Вашингтона оказывают давление на своих международных партнёров, таких как Япония и Нидерланды, требуя присоединиться к торговым санкциям в отношении Китая, который США рассматривают как геополитического и потенциально военного соперника.


window-new
Soft
Hard
Тренды 🔥
10 тысяч модов и 350 миллионов загрузок: Larian похвасталась новыми достижениями игроков Baldur’s Gate 3 6 ч.
Вызывающий привыкание роглайк Ball x Pit достиг миллиона проданных копий и в 2026 году получит новые шары 7 ч.
Соавтор Counter-Strike признался в любви к русской культуре и рассказал о «самом депрессивном» периоде за 25 лет карьеры 9 ч.
Apple резко снизила награды багхантерам — при этом рост вредоносов в macOS бьёт рекорды 9 ч.
Mortal Kombat 1, Routine и Dome Keeper возглавили первую волну декабрьских новинок Game Pass, а Mortal Kombat 11 скоро подписку покинет 10 ч.
Google закрыла 107 дыр в Android — две нулевого дня уже использовались в атаках 10 ч.
В YouTube появился Recap — пользователям расскажут, чем они занимались на платформе в течение года 10 ч.
ИИ-агенты научились взламывать смарт-контракты в блокчейне — это риск на сотни миллионов долларов 10 ч.
Инструмент YouTube для защиты блогеров от дипфейков создал риск утечки их биометрии 11 ч.
В Microsoft Teams появились «иммерсивные встречи» в метавселенной с аватарами без ног 11 ч.