Опрос
|
реклама
Быстрый переход
В МФТИ создали первый российский квантовый процессор с 40 кубитами — вскоре его проверят в работе
27.03.2025 [15:53],
Геннадий Детинич
Группа учёных Московского физико-технического института (МФТИ) разработала и изготовила оригинальную схему квантового процессора, состоящего из 40 сверхпроводниковых кубитов (квантовых битов). Учёные сообщили, что провели предварительное тестирование процессора, хотя полноценные испытания ещё впереди. Только после комплексной проверки устройства в составе криогенной платформы можно будет судить о достигнутом прогрессе. ![]() Источник изображения: МФТИ «Благодаря привлечению дополнительных частных инвестиций в МФТИ были созданы комфортные условия для работы, что позволило коллективу быстро и эффективно выполнить поставленные задачи. В дальнейшем мы планируем разрабатывать и тестировать альтернативные топологии процессоров, а также наращивать интеграцию. Для последующего увеличения числа кубитов в процессоре необходимо будет обновить и расширить имеющееся экспериментальное и технологическое оборудование», — рассказала ключевой разработчик проекта, старший научный сотрудник МФТИ к.ф.-м.н. Дарья Калачева. Для дальнейшей демонстрации работы схемы испытания устройства продолжатся при криогенных температурах, что позволит определить ключевые параметры и время когерентности кубитов. Успешное изготовление оригинальной 40-кубитной схемы процессора — существенный шаг в развитии отечественных квантовых технологий, уверены разработчики. Согласно утверждённым планам правительства, в 2025 году в России ожидается создание 100-кубитного процессора и вычислительной системы на его основе. В институте поясняют, что сегодня не существует единого метода изготовления квантовых процессоров. Технология их производства — это результат сложной и кропотливой исследовательской работы, включающей последовательность технологических процессов, требующих постоянной отладки и совершенствования. Кроме того, с увеличением числа кубитов возрастают сложность технологии и требования к качеству. Созданная в МФТИ микросхема изготовлена на базе Центра коллективного пользования института по уникальной топологии, зарегистрированной в Роспатенте. Каких-либо подробностей о разработке на данный момент нет. Microsoft обвинили в мошенничестве с квантовым чипом на неоткрытых частицах, но компания готова защищать Majorana 1
12.03.2025 [15:47],
Геннадий Детинич
16 марта начнёт работу конференция American Physical Society (APS), на которой ожидаются горячие дебаты по поводу разработанного компанией Microsoft квантового процессора Majorana 1 на не открытых физиками частицах — фермионах Майораны. Все работы Microsoft по поводу разработки были настолько сомнительными, что ряд физиков открыто обвиняют компанию в мошенничестве. В научном сообществе конференцию APS ждут с нетерпением и советуют запасаться попкорном. ![]() Источник изображений: Microsoft Заявления Microsoft о прорыве в разработке квантовых процессоров были сделаны в феврале, когда компания объявила, что её собственные специалисты создали «первый в мире топопроводник — революционный тип материала, который позволяет регистрировать майорановские частицы и управлять ими для создания более надёжных и масштабируемых кубитов, которые являются строительными блоками для квантовых компьютеров». Поскольку фермионы Майораны пока ещё никто из физиков не регистрировал, множество учёных восприняли заявления Microsoft о квантовом прорыве как «ненадёжные» и «по сути мошеннические». В то же время в компании настаивают, что всё сделали правильно, и скоро поделятся ещё более впечатляющими результатами, в частности, на предстоящей конференции APS. Почему это не было сделано сразу, в компании не объясняют. Один из аргументов Microsoft заключается в том, что статья была направлена для публикации в марте 2024 года, но вышла в печать в феврале 2025 года, хотя практика исправлять статьи широко распространена, и никто не мешал внести правки перед публикацией. Microsoft и раньше делала громкие заявления о частицах Майораны, но ничем хорошим это не заканчивалось: в 2021 году исследователи из Редмонда отказались от статьи 2018 года, в которой они утверждали, что обнаружили эти частицы. Новая статья также изобилует пробелами и неточностями, на которые специалисты начали указывать после публикации в Nature. Развёрнутый ответ на критику компания обещает дать на конференции APS в период с 16 по 21 марта. ![]() Генри Легг (Henry Legg), преподаватель теоретической физики в Сент-Эндрюсском университете в Великобритании (University of St Andrews), недавно опубликовал критический обзор в виде препринта на сайте arXiv.org, в котором утверждает, что работа гиганта программного обеспечения «ненадёжна и требует повторного рассмотрения». Винсент Мурик (Vincent Mourik), физик-экспериментатор из немецкой национальной исследовательской организации Forschungszentrum Jülich, и Сергей Фролов, профессор физики и астрономии в Университете Питтсбурга в США (University of Pittsburgh), использовали YouTube, чтобы раскритиковать «отвлекающие факторы, вызванные ненадежными научными заявлениями Microsoft Quantum». В интервью The Register Фролов пошел ещё дальше: «Эти опасения возникли довольно давно, так что [реакция сообщества] была вызвана не только этим объявлением как таковым. Оно было сделано в такой экспрессивной манере, что, я думаю, вызвало реакцию, но [не изменило] основного понимания того, что это, по сути, мошеннический проект». Фролов пояснил своё резко негативное отношение к открытию тем, что «это предполагаемая технология, основанная на фундаментальных физических законах, которые не были установлены». «Так что это довольно серьёзная проблема», — сказал учёный. Фролов также заявил, что несколько недель назад в преддверии встречи APS на следующей неделе Microsoft уже поделилась данными с избранными исследователями, и это не укрепило уверенность приглашённых на мероприятие учёных в заявлениях компании. «Меня там не было, но я поговорил с несколькими людьми, которые были там… и они были не в восторге, и было много критики», — сказал он. Физик уверен, что встреча APS на следующей неделе не решит этот вопрос по двум причинам. Во-первых, он считает, что Microsoft неправильно поняла науку: «Как физик я могу сказать, что этот кубит, о котором они говорят, просто не может работать, потому что топологический кубит требует майорановских частиц, а без майорановских частиц он не может существовать». «Если все ваши результаты по Майоране будут тщательно изучены и подвергнуты критике, то это ни в коем случае не будет топологическим кубитом. Это оставляет только один вариант: это… ненадёжная демонстрация. И именно поэтому я говорю о мошенничестве, потому что на данный момент у меня нет других слов», — продолжает свои рассуждения Фролов. По мнению профессора, формат конференции APS на следующей неделе не позволит тщательно изучить заявления Microsoft. В письме в адрес APS он пеняет организаторам за то, что они не пригласили выступить с докладом критиков Microsoft. Также в письме содержится призыв к APS раскрыть информацию о выплатах, полученных от Microsoft, и уведомить участников конференции о проблемах сообщества, связанных с заявлениями гиганта программного обеспечения. Также автор обращения желает, чтобы Microsoft поделилась исчерпывающими данными о своём исследовании, чтобы при необходимости внести исправления. Критика со стороны Генри Легга связана с его мнением, что Microsoft опирается на тесты, которые не работают. «С этим так называемым протоколом топологического зазора возникает много проблем, — объяснил Легг. — И, в конечном счёте, он не даёт никакой информации о реальной физике, которая происходит в этих устройствах. В итоге протокол чувствителен к таким вещам, как диапазоны измерений». По мнению физика, компания в разных статьях использует разные диапазоны измерений, что она никак не объясняет в последней работе. Также учёный прослеживает несоответствия в статьях Microsoft за разные годы. «У них было определение топологического [состояния], а потом они его изменили, — сказал он. — По сути, они превратили его в нечто почти бессмысленное и, безусловно, бессмысленное, когда дело доходит до создания топологического кубита». ![]() Проблема, с которой столкнулась Microsoft, объяснил Легг, схожа с проблемой, из-за которой исследователи компании отозвали свою статью 2018 года. По его словам, это стало необходимым, потому что описанное в ней поведение не было доказательством существования частиц Майораны, а лишь описанием нарушения в системе. «Суть в том, что системы, на которые они смотрят, по-прежнему так же неупорядочены, и качество устройств не улучшилось. Единственное, что улучшилось, — это качество пиар-кампании или, по крайней мере, уровень заявлений, которые они делают. И я бы сказал, что почти все в этой области [науки] согласны с этим», — отстаивает свою позицию учёный. В Microsoft обещают дать развёрнутый ответ на предстоящей конференции, продолжая настаивать на том, что они придерживаются научного подхода, и претензий со стороны рецензентов и редакции журнала Nature не было. Amazon представила квантовый процессор Ocelot, в котором решила одну из главных проблем квантовых вычислений
28.02.2025 [10:34],
Геннадий Детинич
После публикации научной статьи о прорыве компании Amazon в разработке квантовых компьютеров настал черёд узнать чуть больше о квантовом процессоре для этой платформы. Это прототип под названием «Оцелот» (Ocelot), что перекликается с именем компании Amazon, ведь эти кошачьи хищники обитают вдоль одноимённой южно-американской реки. И кошки здесь к месту, поскольку в основе архитектуры процессора лежат кошачьи кубиты. ![]() Источник изображений: Amazon Подробно об основах работы квантовой платформы с процессором «Оцелот» мы говорили в этой новости. Напомним, инженеры Amazon объединили в одном процессоре две разные архитектуры кубитов, за счёт чего добились радикального снижения аппаратных затрат — числа физических кубитов, необходимых для реализации схем исправления ошибок в вычислениях. ![]() По признанию компании, схемы «Оцелота» исправляют ошибки с экономией 90 % физических кубитов по сравнению с конкурирующими платформами. Иначе говоря, прорывной квантовый процессор Amazon использует на порядок меньше аппаратных ресурсов для безошибочного исполнения квантовых алгоритмов. Нужно ли говорить, что в этом скрыт огромный потенциал для более простого наращивания числа кубитов? ![]() Источник изображения: Nature 2025 Компания Amazon так описывает схему процессора: «Логический чип памяти Ocelot, показанный на схеме выше, состоит из пяти кошачьих кубитов данных, в каждом из которых находится осциллятор, используемый для хранения квантовых данных. Опорный осциллятор каждого кошачьего кубита соединён с двумя вспомогательными трансмонными кубитами для обнаружения связанных с фазовым сдвигом ошибок, и сопряжён со специальной нелинейной буферной схемой, используемой для стабилизации состояний кошачьих кубитов и экспоненциального подавления ошибок, связанных с изменением порядка битов». ![]() Кошачьи кубиты, названные так в честь вымышленной кошки Шрёдингера (в оригинале это кошка, а не кот), устойчивы к ошибкам переворота бита, поскольку используют группы фотонов и пренебрегают переворотами одного из них. Трансмоны служат для коррекции ошибок со сдвигом фазы и исправляют условно единственные ошибки кошачьих кубитов, которые те допускают. Тем самым гибридная архитектура более простыми средствами устраняет ошибки в квантовых вычислениях. «Настройка устройства Ocelot включает калибровку частоты ошибок при переключении битов и фаз кошачьих кубитов в зависимости от амплитуды “кошки” (среднего количества фотонов) и оптимизацию шумового смещения вентиля C-NOT, используемого для обнаружения ошибок при переключении фаз. Наши экспериментальные результаты показывают, что мы можем добиться времени переключения битов, приближающегося к одной секунде, что более чем в тысячу раз превышает срок жизни обычных сверхпроводящих кубитов», — поясняют в Amazon. ![]() Физически чип «Оцелот» состоит из двух электрически соединённых кристаллов, каждый из которых имеет площадь 1 см2. На поверхности каждого кремниевого микрочипа находятся тонкие слои сверхпроводящих материалов, которые образуют элементы квантовых схем. Чип Ocelot состоит из 14 основных компонентов: пять кубитов данных (кошачьих кубитов), пять «буферных схем» для стабилизации кубитов данных и четыре дополнительных кубита для обнаружения ошибок в кубитах данных (трансмона). ![]() Квантовые биты хранят квантовые состояния, используемые для вычислений. Для этого они полагаются на компоненты, называемые осцилляторами, которые генерируют повторяющийся электрический сигнал с постоянной частотой. Высококачественные осцилляторы Ocelot изготовлены из тонкой плёнки сверхпроводящего материала под названием тантал. Специалисты AWS по материалам разработали особый способ обработки тантала на кремниевом чипе для повышения производительности осциллятора. В целом компания заимствовала большинство технологий для производства «Оцелота» из полупроводниковой отрасли и готова быстро сократить стоимость выпуска процессоров в пять раз. Представленная Amazon передовая квантовая платформа — в корне не такая, как у всех остальных — должна на пять лет ускорить появление практичного и устойчивого к ошибкам квантового компьютера, уверены в компании. Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению
10.10.2024 [09:19],
Дмитрий Федоров
Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий. ![]() Источник изображений: Google, Nature Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения. Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах. ![]() Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем. ![]() Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами. ![]() В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах». ![]() Дорожная карта развития квантовых вычислений Google Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным. Найден простой способ получения сверхчистого кремния — это путь к квантовым компьютерам нового поколения
13.05.2024 [12:48],
Анжелла Марина
Ученые разработали метод получения сверхчистого кремния, который применяется для производства чипов. Используя стандартное оборудование, они добились снижения доли примесей кремния-29 в чипах до 0,0002 %. Данный способ позволит создавать более мощные квантовые компьютеры с большим количеством кубитов, сообщает New Atlas. ![]() Источник изображения: Kandinskiy Кремний заслуженно считается одним из ключевых материалов, лежащих в основе современных электронных устройств и компьютерных технологий. Его значение настолько велико, что в его честь даже названа знаменитая Кремниевая долина в Калифорнии — место, где зародились многие IT-гиганты. Однако у кремния есть и определенные недостатки, ограничивающие его применение в перспективных областях, таких как квантовые вычисления. Исследователи из Мельбурнского и Манчестерского университетов разработали метод получения сверхчистого кремния с помощью стандартного оборудования — ионного имплантатора. С помощью этой установки, которая широко применяется в полупроводниковой промышленности, компьютерный чип был «обстрелян лучом» кремния-28, в процессе чего примеси кремния-29 были заменены на более желательный кремний-28, и в результате, концентрация кремния-29 в чипе снизилась с 4,5 % до 0,0002 %. Почему чистота кремния важна для квантовых компьютеров? Дело в том, что в основе работы квантовых компьютеров лежат кубиты — квантовые биты, использующие принципы квантовой механики. Они крайне чувствительны к любым внешним воздействиям и должны находиться в состоянии квантовой когерентности. Однако натуральный кремний содержит примерно 4,5 % изотопа кремний-29, имеющего дополнительный нейтрон. Эти нейтроны ведут себя как микроскопические магниты, нарушая когерентность кубитов и вызывая ошибки в квантовых вычислениях. Таким образом, использование натурального кремния существенно ограничивает возможности квантовых компьютеров, и для их полноценной работы требуется гораздо более чистый кремний с минимальным содержанием изотопа кремний-29. Кремний с высокой чистотой может позволить значительно расширить возможности квантовых компьютеров, так как чем больше кубитов содержит квантовый чип, тем он мощнее. Сверхчистый кремний, который получили ученые, в данном случае поможет стабилизировать работу таких многокубитных систем. В дальнейшем планируется протестировать разработанные сверхчистые кремниевые структуры на реальных квантовых устройствах. А успешные результаты могут привести к появлению квантовых компьютеров нового поколения. IBM представила свой мощнейший квантовый процессор Heron и первый модульный квантовый компьютер
04.12.2023 [18:44],
Сергей Сурабекянц
На ежегодной конференции IBM по квантовым вычислениям Quantum Summit 2023 корпорация представила новейший 133-кубитный квантовый процессор Heron и первый модульный квантовый компьютер IBM Quantum System Two на его базе. IBM также анонсировала процессор Condor с 1121 кубитом, который имеет на 50 % большую плотность кубитов. По словам главного квантового архитектора IBM Маттиаса Стефана (Mattias Stephan), усилия по созданию этого устройства «открыли путь к масштабированию» квантовых вычислений. ![]() Источник изображений: IBM Процессор Condor является частью долгосрочных исследований IBM по разработке крупномасштабных квантовых вычислительных систем. Хотя он располагает огромным количеством кубитов, производительность его сравнима с 433-кубитным устройством Osprey, дебютировавшим в 2022 году. Это связано с тем, что простое увеличение количества кубитов без изменения архитектуры не делает процессор быстрее или мощнее. По словам Стефана, опыт, полученный при разработке Condor и предыдущего 127-кубитного квантового процессора Eagle, проложил путь к прорыву в перестраиваемой архитектуре процессора Heron. ![]() «Heron — наш самый производительный квантовый процессор на сегодняшний день, он обеспечивает пятикратное снижение ошибок по сравнению с нашим флагманским устройством Eagle, — сказал Стефан. — Это было путешествие, которое готовилось четыре года. Он был разработан с учётом модульности и масштабирования». Ранее в этом году компания IBM продемонстрировала, что квантовые процессоры могут служить практическими платформами для научных исследований и решения проблем химии, физики и материаловедения, выходящих за рамки классического моделирования квантовой механики методом грубой силы. После этой демонстрации исследователи и учёные из многочисленных организаций, включая Министерство энергетики США, Токийский университет, Q-CTRL и Кёльнский университет, использовали квантовые вычисления для решения более крупных и сложных реальных проблем, таких как открытие лекарств и разработка новых материалов. «Мы твёрдо вступили в эпоху, когда квантовые компьютеры используются в качестве инструмента для исследования новых рубежей науки, — сказал Дарио Хил (Dario Gil), старший вице-президент и директор по исследованиям IBM. — Поскольку мы продолжаем совершенствовать возможности масштабирования квантовых систем и приносить пользу посредством модульной архитектуры, мы будем и дальше повышать качество стека квантовых технологий промышленного масштаба». ![]() IBM Quantum System Two размещена на объекте в Йорктаун-Хайтс, Нью-Йорк. Эта система на базе трёх квантовых процессоров Heron станет основой архитектуры квантовых вычислений IBM следующего поколения. Она сочетает в себе масштабируемую криогенную инфраструктуру и классические серверы с модульной электроникой управления кубитами. В результате систему можно будет расширять в соответствии с будущими потребностями, и «апгрейдить» при появлении следующего поколения квантовых процессоров. Стремясь облегчить разработчикам и инженерам работу с квантовыми вычислениями, IBM анонсировала выход в феврале 2024 года версии 1.0 набора программных инструментов с открытым исходным кодом Qiskit, который позволяет создавать квантовые программы и запускать их на IBM Quantum Platform или симуляторе. В дополнение к Qiskit, IBM анонсировала Qiskit Patterns — способ, позволяющий квантовым разработчикам легко создавать код и оптимизировать квантовые схемы с помощью Qiskit Runtime, а затем обрабатывать результаты. «С помощью Qiskit Patterns и Quantum Serverless вы можете создавать, развёртывать, запускать квантовые программы и в будущем предоставлять доступ к ним другим пользователям», — заявил Джей Гамбетта (Jay Gambetta), вице-президент IBM Quantum. На презентации он продемонстрировал использование генеративного ИИ на базе Watson X для создания квантовых схем при помощи базовой модели Granite, обученной на данных Qiskit. «Мы действительно видим всю мощь генеративного ИИ для облегчения труда разработчиков», — заключил Гамбетта. |