Опрос
|
реклама
Быстрый переход
Учёные придумали флешку завтрашнего дня — на нанопроволоке из теллура с плотностью записи 1,9 Тбайт на квадратный сантиметр
30.11.2024 [00:11],
Геннадий Детинич
Международная группа учёных впервые экспериментально доказала проявление сегнетоэлектрического эффекта в однокомпонентном материале — теллуре. Сегнетоэлектрики обычно представляют собой соединения, что делает их применение сложнее и дороже. Учёные пошли дальше проверки явления и создали прототип полевого транзистора с каналом из нанопроволоки, открыв путь к памяти будущего и нейроморфным вычислениям. «Сегнетоэлектрические материалы — это вещества, которые могут накапливать электрический заряд и сохранять его даже при отключении питания, и их заряд можно переключать с помощью приложения внешнего электрического поля — это свойство, необходимое для устройств энергонезависимой памяти», — поясняют авторы работы, опубликованной в Nature Communications. Возможность проявления сегнетоэлектрического эффекта в однокомпонентных материалах была известна только теоретически. Учёные из Университет Тохоку (Tohoku University) вместе с коллегами из других стран показали, что эффект возможен на нанопроволоке из теллура (Te). По сути — это 2D-материал, сегнетоэлектрический эффект в котором проявляется за счёт «уникального смещения атомов в одномерной цепочечной структуре теллура». Явление было определено с помощью силовой микроскопии пьезоотклика и сканирующей просвечивающей электронной микроскопии высокого разрешения. Основываясь на сделанном открытии, учёные разработали новое устройство — сегнетоэлектрический полевой транзистор с автоматическим стробированием (SF-FET), который объединил сегнетоэлектрические и полупроводниковые свойства в одном устройстве. Экспериментальный транзистор SF-FET продемонстрировал исключительное сохранение данных, быструю скорость переключения (менее 20 нс) и впечатляющую плотность записи, превышающую 1,9 Тбайт на см2. «Наш прорыв открывает новые возможности для устройств памяти следующего поколения, где высокая мобильность нанопроволок из теллура и его уникальные электронные свойства могут помочь упростить архитектуру устройств, — поясняют авторы. — Наше устройство SF-FET также может сыграть решающую роль в будущих системах искусственного интеллекта, обеспечивая нейроморфные вычисления, имитирующие работу человеческого мозга. Кроме того, полученные результаты могут помочь снизить энергопотребление в электронных устройствах, удовлетворяя потребность в устойчивых технологиях». Представлены полностью биосовместимые с человеком ионные транзисторы — носимая электроника станет вживлённой
29.11.2024 [17:42],
Геннадий Детинич
Учёные из Оксфордского университета представили технологию изготовления логических схем, полностью совместимых с биологией человека. Вместо электронов «человеческая электроника» использует ионный обмен. Это тоже перенос зарядов, который поддаётся программированию и контролю. Из мельчайших капель гидрогеля можно создавать диоды, транзисторы, память и логические элементы, которые будут воспринимать электрические сигналы тела человека и транслировать их обратно. Исследователи даже придумали название для новой электроники — каплетроника (dropletronic). Каждая капля имеет объём в несколько нанолитров и, в зависимости от состава, может обладать катионной (p) или анионной (n) проводимостью, аналогично переходам в полупроводниках. Таким образом, из капель с различной проводимостью можно создавать диоды, транзисторы и логические схемы. В качестве примера исследователи разработали электронную схему, способную подсчитывать сердечные ритмы, используя сигналы непосредственно от сердечной мышцы. Ранее учёные уже применяли ионную проводимость для создания логических элементов, но все предыдущие работы базировались на твёрдых подложках. Разработка британских учёных отличается тем, что она полностью мягкая — ведь что может быть мягче капли гидрогеля? Это даёт новое преимущество: такая электроника будет полностью совместима с биосистемой человеческого тела как на физическом, так и на сигнальном уровне. Организм можно будет модернизировать, вживляя электронные устройства как для медицинских целей, так и для повышения качества жизни. Отдельно исследователи выразили надежду, что предложенная ими каплетроника поспособствует развитию нейроморфных вычислений, наиболее близко имитирующих работу мозга человека. Если же вживлённому вычислительному устройству будет не хватать питания, учёные уже предусмотрели решение — капельный литиево-ионный аккумулятор. Но это будет уже другая история. |