Сегодня 29 марта 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → радиотелескоп
Быстрый переход

Завалившийся в прошлом году на Луне модуль «Одиссей» принёс пользу радиоастрономии, прежде чем погибнуть

На днях в престижном астрономическом журнале The Astrophysical Journal вышла статья, которая осветила буквально научный подвиг, совершённый умирающим на Луне посадочным модулем Nova-C «Одиссей» компании Intuitive Machines. Один из научных приборов модуля собрал достаточно данных для проверки работы на спутнике настоящего радиотелескопа, что стало первым в мире примером инопланетного астрономического наблюдения.

 Источник изображений: Intuitive Machines

Наглядно о прилунении модуля «Одиссей». Источник изображений: Intuitive Machines

Героем статьи стал прибор NASA ROLSES-1 — низкочастотный радиоспектрограф, разработанный для изучения «плотности и высоты фотоэлектронной оболочки вблизи лунной поверхности». По сути, это радиотелескоп, который стал первым проведённым на Луне экспериментом по радиоастрономии. Прибор был оснащён четырьмя короткими антеннами, предназначенными для улавливания радиоволн определённых частот вблизи поверхности Луны. Его данные помогут оценить перспективы строительства на спутнике полноценного радиотелескопа для астрономических наблюдений.

На Земле радиоастрономия всё больше страдает от техногенных помех. Наибольшую угрозу для науки представляют спутники интернет-связи и системы прямого подключения к смартфонам. Телекоммуникационные системы на низкой околоземной орбите буквально могут уничтожить наземную радиоастрономию. Поэтому учёные рассматривают возможность развёртывания радиотелескопов на Луне, особенно на её обратной стороне, наиболее защищённой от помех. Эксперимент ROLSES-1 должен был собрать информацию о влиянии лунной поверхности на радиоволны в диапазонах главной линии водорода и космического фона. Аварийная посадка модуля в целом не помешала проведению эксперимента.

 Непокорная антенна

Непокорная антенна

Забавно, но одна из четырёх антенн комплекса ROLSES-1 развернулась ещё на подлёте к Луне. Это случайное событие помогло собрать данные о помехах со стороны земных радиоисточников. Прибор зафиксировал активные радиопомехи от земных радиостанций и сигналы спутников на околоземной орбите. В день, когда антенна начала собирать данные, на «радаре» оказался весь североамериканский континент. Таким образом, учёные смогли взглянуть на Землю глазами инопланетных наблюдателей, попытавшись оценить техносигнатуры цивилизации. Важно было провести эти измерения с учётом влияния ионосферы планеты на радиосигналы.

Прибор собирал данные несколько часов на подлёте к Луне и дважды включался на её поверхности, пока в аккумуляторах совершившего аварийную посадку модуля оставалась энергия. В общей сложности он проработал на Луне 20 минут, хотя изначально научная программа была рассчитана на восемь дней.

 Положение Земли в моменты работы прибора

Ориентация Земли в моменты работы прибора

«Не всё потеряно, — сказал соавтор исследования и ведущий учёный проекта ROLSES-1 Джек Бёрнс (Jack Burns) на 224-м собрании Американского астрономического общества в июне 2024 года. — Мы получили хорошее [частотное] изображение Земли, снятое с уникальной точки обзора».

Собранные ROLSES-1 данные помогут усовершенствовать эксперименты ROLSES-2 (2027 год) и LuSEE-Night (2026 год). Последний будет отправлен на обратную сторону Луны. Все эти проекты заложат основу для строительства на спутнике полноценной радиоастрономической обсерватории к концу 2030-х — началу 2040-х годов. И хотя посадка «Одиссея» прошла через пень-колоду, (миссия «Афины» в этом году тоже оказалась неудачной), учёные смогли получить данные для следующего шага вперёд.

Во Вселенной нашлось множество тусклых круглых объектов — их разглядели новейшие радиотелескопы

Новейшие высокочувствительные радиотелескопы позволяют обнаружить то, что скрыто для наблюдения в других диапазонах — в видимом и инфракрасном свете. Одними из удивительных объектов в радиодиапазоне стали тусклые объекты круглой формы, происхождение которых может быть очень разным и не всегда понятным. Таких открытий сделан не один десяток, и список продолжает пополняться.

 Источник изображений: Miroslav Filipovic

Примеры круглых тусклых радиообъектов во Вселенной. Источник изображений: Miroslav Filipovic

Венцом находок могли бы стать гипотетические сферы Дайсона, созданные могущественными инопланетными цивилизациями. Но чудес для учёных и так в избытке. Тем более что новый массив радиотелескопа ASKAP в Австралии выполнил только 25 % обзора южного неба по программе Evolutionary Map of the Universe (EMU). Это будет каталог радиообъектов на десятилетия вперёд, где астрономических загадок хватит на тысячи открытий.

Кроме ASKAP множество невидимых ранее находок в Млечном Пути и в ближайшей Вселенной сделал также новый радиотелескоп MeerKAT в Южной Африке. Оба они стали предтечами супернового и ещё не до конца построенного радиотелескопа Square Kilometre Array. Поэтому к 2030 году открытия в области астрономии хлынут нескончаемым потоком. Все эти и подобные инструменты позволяют радиоастрономам открывать новую «Вселенную с низкой поверхностной яркостью», которую иначе никак не увидеть.

Примером удивительной работы радиоастрономов может служить призрачное кольцо Kýklos (от греческого κύκλος — круг или кольцо) и объект WR16 в окружении редких и необычных звёзд Вольфа-Райе. Когда у больших звёзд заканчивается топливо, они становятся нестабильными и переходят на одну из последних стадий жизненного цикла, превращаясь в звёзды Вольфа-Райе. Они начинают пульсировать и расширяться, сбрасывая внешние слои, которые могут образовывать вокруг звезды яркие туманности.

В случае объекта WR16 предыдущий выброс вещества очистил пространство вокруг звезды, позволив текущему выбросу распространиться симметрично во всех направлениях. Получившаяся сфера из звёздного вещества выглядит как круг.

 Слева Kýklos, справа WR16

Слева Kýklos, справа WR16

На изображении ниже слева направо по часовой стрелке — остатки сверхновых Stingray 1, Perun, Ancora и Unicycle. Когда у звезды определённой большой массы заканчивается топливо, она больше не может сдерживать гравитацию. Падающая внутрь звезды материя вызывает последний взрыв, который учёные называют сверхновой. Расширяющиеся ударные волны сверхновой засасывают материал в расширяющуюся сферу, формируя красивые круглые структуры.

Со временем остаток сверхновой будет деформироваться из-за сопротивления окружающей среды. Например, если одна сторона взрыва расширится до межзвёздного облака газа и пыли, мы увидим сплющенную форму. Таким образом, почти идеальный круг во Вселенной — это особая находка. Но они тоже есть. Ниже показан Teleios, названный так в честь греческого слова Τελεɩοσ («идеальный») из-за своей почти идеально круглой формы. Этот уникальный объект никогда не наблюдался ни на одной длине волны, включая видимый свет, что демонстрирует невероятную способность радиотелескопа ASKAP обнаруживать новые объекты.

Идеальная форма оболочки сверхновой указывает на то, что Teleios остался относительно нетронутым окружающей средой. Это даёт возможность сделать выводы о первоначальном взрыве сверхновой, что позволяет получить представление о самом начале одного из самых энергичных событий во Вселенной.

С другой стороны, обнаруживаются объекты, которые позволяют открыть в них что-то совершенно новое. Например, обнаружен остаток сверхновой звезды, названный Дипротодоном в честь одних из самых известных представителей мегафауны Австралии, живших около 25 000 лет назад. Эти останки сверхновой являются одними из крупнейших объектов на небе. Они примерно в шесть раз больше Луны.

 Дипротодон. Зелёный круг показывает предыдущие наблюдения, жёлтый охватывает новые

Дипротодон. Зелёный круг показывает предыдущие наблюдения, жёлтый охватывает новые

Чувствительность массива ASKAP позволила увидеть объект во всей красе. В ходе его дальнейшего анализа были раскрыты история и физика этого объекта. Неоднородная внутренняя структура объекта обнаруживает себя, когда разные части расширяющейся оболочки врезаются в богатую материей межзвёздную среду.

Ещё один объект, который может показать, как новые данные радиотелескопов могут изменить классификацию ранее открытых объектов, — это Lagotis. Туманность VdB-80 уже наблюдалась ранее в диске нашей галактики Млечный Путь. Свет, который мы видим, был испущен близкими к объекту звёздами, а затем отразился от облака газа и пыли шарообразной формы.

 Lagotis

Lagotis

Наблюдения с помощью ASKAP помогли обнаружить связанное с объектом облако ионизированного водорода (известное как область HII). Энергия звезды заставила газообразную материю потерять электроны. Область HII по контурам совпадает с оболочкой туманности и создаёт в пространстве причудливый эффект шара.

Радиотелескопы ASKAP и MeerKAT также обнаруживаеют объекты за пределами Млечного Пути. Например, «радиокольцевые» галактики. В видимом свете это обычная плоская и равномерно заполненная звёздами дисковая галактика, тогда как в радиодиапазоне она выглядит как кольцо, у которого куда-то девалась сердцевина. Отчего так получается, учёные пока не готовы сказать, ожидая новых данных по подобным объектам.

 Слева радиокольцевая галактика, справа LMC-ORC

Слева радиокольцевая галактика, справа LMC-ORC

Наконец, объект LMC-ORC — это странный радиокруг (ORC), выдающийся новый класс объектов с необычным происхождением. Будучи видимыми только в радиодиапазоне, они, пожалуй, являются самыми загадочными из всех. Их тайна всё ещё ждёт своих первооткрывателей. И таких чудес — множество.

Астрономы наконец нашли источник таинственного радиосигнала, засечённого в 2013 году

Человеческая цивилизация излучает радиоволны в огромном диапазоне — от искры зажигания в ДВС до систем связи. Радиоастрономы давно смирились с этим и нашли способы смягчить влияние человеческого фактора на сигналы из космоса. К сожалению, эти методы не позволяют устранить влияние полностью и не во всех случаях. Но есть и хорошие новости: методы компенсации ложных сигналов становятся всё лучше, позволяя учёным продолжать работу по прослушиванию Вселенной.

 Источник изображения: Murchison Widefield Array

Источник изображения: Murchison Widefield Array

В неожиданном направлении по отсеиванию сигналов антропогенного происхождения продвинулись учёные из Университета Брауна в США (Brown University). Ещё в 2013 году австралийский радиотелескоп Широкоугольная радиоантенна Мерчисона (MWA — Murchison Widefield Array) засёк странный сигнал, происхождение которого было необъяснимым.

Массив антенн MWA расположен в отдалённом районе страны в специальной зоне радиомолчания. На территорию даже запрещено въезжать на машинах с бензиновыми двигателями, только на дизельном топливе. Сигнал почти сразу был определён как телевизионный, однако его там в принципе не должно было быть. Но был и очень сильный, что поставило учёных в тупик.

«И тут нас осенило, — говорит физик Джонатан Побер (Jonathan Pober) из Университета Брауна. — Мы сказали: "Держу пари, что сигнал отражается от самолёта". Мы наблюдали эти сигналы почти пять лет, и несколько человек предположили, что это самолёты, отражающие телевизионные передачи. Мы поняли, что, возможно, наконец-то сможем подтвердить эту теорию».

Учёные разработали метод регистрации сигналов в ближнем поле, создав соответствующую диаграмму направленности радиомассива. Предложенное решение позволило усилить отражённые от самолётов телепередачи, что открыло возможность исключить их из данных радионаблюдений за Вселенной без ущерба для научных результатов. Данные полётов за 2013 год отсутствуют, но методика, проверенная в наши дни, показала способность регистрировать пролетающие самолёты и даже определять источник трансляции.

Очевидно, что новая методика поможет в будущих наблюдениях, хотя перед радиоастрономами стоит другая проблема — развёртывание тысячных группировок спутников на низкой орбите. У этой проблемы пока нет решения, но это уже другая история.

Обнаружен загадочный источник радиосигналов из области Вселенной, где ничего нет

Строящийся поэтапно новейший радиотелескоп ASKAP в Австралии засёк странный во всех отношениях источник радиосигналов, которому пока нет объяснения. Радиоимпульс приходит на Землю с интервалом 6,5 часов. Это настолько длительный период, что его нельзя объяснить современной теорией таких периодических источников, как пульсары, магнетары или белые карлики. И эту тайну ещё предстоит открыть.

 Художесвенное представление загадочного радиоисточника. Источник изображения: James Josephides

Художественное представление загадочного радиоисточника. Источник изображения: James Josephides

Источник ASKAP J1839-0756 находится в направлении, где нет видимых или ранее зарегистрированных астрономических объектов. Например, это мог бы быть белый карлик — ядро умершей и остывающей звезды. С определённой натяжкой этим можно было бы объяснить столь длительный интервал между радиоимпульсами, но пока привязки к подобным объектам не найдено.

Нейтронные звёзды, которые ассоциируются с периодическими радиосигналами, вращаются очень быстро — по несколько раз в секунду. Согласно теории, они прекращают испускать радиосигнал при замедлении скорости вращения примерно до одного оборота в минуту. Сами радиоимпульсы возникают из-за отклонения оси магнитных полюсов, из которых исходит сигнал, по отношению к оси вращения нейтронной звезды. Поэтому магнитный полюс совершает оборот и с определённым интервалом времени «светит» в сторону Земли. Если магнитный полюс никогда не направлен на нашу планету, мы не можем обнаружить такой источник.

Если исключить из списка подозреваемых пульсары, другим кандидатом может быть магнетар. Проблема в том, что магнетары также не могут вращаться слишком медленно. Кроме того, должны быть соблюдены определённые условия, чтобы они излучали радиосигнал. Астрономы обнаружили один магнетар, излучающий сигнал каждые 6,67 часа, но это импульсы в рентгеновском диапазоне. Радиосигналов от него не зарегистрировано.

Наконец, подозреваемым в источнике медленного радиосигнала может быть белый карлик. Эти объекты обычно вращаются намного медленнее нейтронных звёзд и, в принципе, при наличии сильных магнитных полей могут излучать в радиодиапазоне. Однако и здесь должны быть подходящие условия, например, это должна быть двойная система.

У обнаруженного медленного радиоисточника есть ещё одна редкая особенность. Его магнитный полюс ориентирован почти точно в сторону Земли. Это означает, что радиотелескопы регистрируют два импульса — по одному от каждого его полюса. После первого сигнала примерно через 3,2 часа приходит чуть более слабый второй. В подобной ориентации обнаружено лишь около 3 % всех радиоисточников.

Определённо, учёным повезло с объектом ASKAP J1839-0756. Его можно изучать буквально со всех сторон, и его непонятный статус только подогревает интерес. Поиск разгадки этого явления, безусловно, расширит наше представление о Вселенной.

Китай начал строить крупнейший в мире полноповоротный радиотелескоп — диаметр антенны составит 120 м

До сих пор крупнейшими полноповоротными радиотелескопами в мире были немецкий Эффельсбергский радиотелескоп и американский Грин-Бэнк с тарелками по 100 м. Китай намерен обойти эти инструменты, начав строить монстра со 120-м полностью управляемой антенной. Телескоп будет следить за планетами и астероидами Солнечной системы. Полноповоротная конструкция позволит делать это в любой точке неба над горизонтом в любое время дня.

 Полноповоротные антенны массива радиотелескопа МДФ в США. Источник изображения: wikipedia.org

Полноповоротные антенны массива радиотелескопа VLA в США. Источник изображения: wikipedia.org

В лице радиотелескопа в Хуадяне на северо-востоке Китая (провинция Цзилинь) планетарная оборона получит впечатляющее подкрепление. С тех пор как обрушился 300-м радиотелескоп Аресибо в Пуэрто-Рико, который также выполнял функцию планетарного радара, следящих за околоземными астероидами радиотелескопов осталось не так много.

Сегодня самая большая сплошная тарелка у китайского радиотелескопа FAST, диаметр которой достигает 500 м. Но она создана в виде так называемой земляной чаши — в естественном углублении в земле и ограниченна в наведении на объекты и в слежении за ними. Такая антенна сама не поворачивается, это происходит с помощью подстройки фаз радиосигнала. Поворотный телескоп в этом плане — это верх гибкости, но его стоимость оказывается запредельной, поскольку нужны механизмы и противовесы, чтобы обеспечивать все степени свободы движения для гигантской антенны.

Место для строительства телескопа выбрано в мае 2024 года. К сегодняшнему дню фундамент сооружения отчасти уже залит. Ввод радиотелескопа в строй ожидается в 2028 году. Работы курирует Китайская академия наук (CAS).

В России создали предельно чувствительный субмиллиметровый детектор для исследования космоса и не только

Пресс-служба Университета МИСИС сообщила, что силами сотрудников созданы и запатентованы предельно чувствительные сверхпроводящие детекторы для сигналов терагерцового диапазона. Продуманная конструкция детекторов и предложенная схемотехника позволяют собирать наиболее полные данные об астрофизических явлениях и объектах. Также новый прибор может найти применение в медицине, биологии, авиации и безопасности.

 Источник изображений: НИТУ МИСИС

Источник изображений: НИТУ МИСИС

Находясь между дальним инфракрасным и микроволновым диапазоном, субмиллиметровый диапазон позволяет собирать значительно больше информации, чем оптический и радиодиапазон. В нём меньше всего помех, которые могут маскировать слабые сигналы, а в терагерцовом диапазоне можно зафиксировать очень слабые тепловые сигналы. Они дают представление о состоянии и распределении холодного межзвёздного газа и пыли. Поэтому субмиллиметровые телескопы незаменимы для наблюдения молекулярных облаков и ядер туманностей. Также они позволяют определить целый ряд молекул и атомов в межзвёздной среде.

«Наиболее востребованными в радиоастрономии являются сверхчувствительные охлаждаемые детекторы. Используя самые короткие волны, появляется возможность создавать устройства для апертурного синтеза [как в случае снимка чёрной дыры Телескопом горизонта событий], то есть метода радионаблюдений с высоким угловым разрешением на небольших радиотелескопах, что позволяет изучать дальнюю Вселенную, исследовать химические вещества на экзопланетах — кислород, воду и т.д.», — рассказал автор патентов, д.ф.-м.н. Сергей Шитов, заведующий лабораторией криоэлектронных систем НИТУ МИСИС, ведущий научный сотрудник Института радиотехники и электроники им. В. А. Котельникова РАН.

В микросхеме активного сверхпроводящего терагерцового детектора интегрированы два сверхпроводящих прибора: RFTES-болометр (Radio Frequency Transition Edge Sensor — радиочастотный датчик края сверхпроводящего перехода) и СВЧ-предусилитель на основе магнитного датчика — сквида постоянного тока. В микросхеме заложена чувствительность к очень малым энергиям сигнала, преобразуемого в магнитное поле.

Регистрирующим элементом выступает микромостик в сверхпроводящем состоянии, охлаждённый до температуры ниже 1 К. Как только на мостик попадает тепловое излучение, он теряет сверхпроводимость и переходит в режим высокого сопротивления. Датчики (мостики) можно изготавливать в виде матриц. Каждый элемент может либо регистрировать определённую длину волны, либо создавать «пиксельное» изображение наблюдаемой области пространства.

«Терагерцовый диапазон позволяет исследовать области, которые ранее были недоступны для оптических наблюдений. Можно изучать такие астрономические объекты, как звёзды, галактики и межзвёздные молекулы, ведь терагерцовые волны могут проникать через некоторые непрозрачные вещества, например, через пыль. С помощью нового подхода к конструкции микросхем мы смогли решить проблему теплопритока к охлаждаемым частям приемного устройства, что улучшает общую эффективность детектора», — объяснил инженер-исследователь лаборатории криоэлектронных систем Никита Руденко.

Японские учёные усомнились в точности первого фото чёрной дыры и предложили свой вариант

Поскольку первое изображение чёрной дыры в центре Млечного Пути было сделано после обработки данных, полученных одновременно с восьми радиотелескопов, оно даёт несколько условное представление о реальном облике такого объекта. В зависимости от использованного алгоритма для обработки данных, чёрная дыра каждый раз будет выглядеть иначе, заявили японские учёные и представили собственный взгляд на чёрную дыру в центре нашей галактики.

 Источник изображения: EHT

Фотография чёрной дыры Стрельца А* (Sgr A*). Источник изображения: EHT

«Фотографии» чёрной дыры M87* (первой в истории) и чёрной дыры Стрельца А* (Sgr A*) в центре нашей родной галактики были сделаны так называемым Телескопом горизонта событий (Event Horizon Telescope, EHT). Это восемь разбросанных по всей Земле радиотелескопов, которые благодаря огромной базе могли получить данные в очень высоком разрешении. Затем все они направили собранную информацию, записанную на жёстких дисках, в центр обработки, где их свели воедино. С оптическими наблюдениями такого сделать нельзя, а с радиоданными в цифре — это решаемый вопрос.

После нескольких лет обработки учёные в мае 2022 года представили изображение чёрной дыры Стрельца А* в центре Млечного Пути. В целом её вид ближе к кругу. Саму чёрную дыру увидеть нельзя, фотоны не могут покинуть её за горизонтом событий, но диск аккреции, откуда вещество падает на чёрную дыру, благодаря трению и гравитации сияет во всех диапазонах наблюдений. Собственно, именно диск аккреции представлен на всех изображениях чёрных дыр.

Исследователи из Национальной астрономической обсерватории Японии (NAOJ) посчитали, что учёные коллаборации EHT допустили неточности при обработке данных. Использованный ими алгоритм ошибочно представляет отсутствующие данные. Для более точной интерпретации следовало выбрать другой метод обработки.

«Мы предполагаем, что изображение кольца было результатом ошибок во время анализа изображений EHT, и что часть его была артефактом, а не реальной астрономической структурой», — рассказали японские астрономы.

 Источник изображения: NAOJ

«Настоящее» изображение Стрельца А*. Источник изображения: NAOJ

Обработка данных с помощью альтернативного алгоритма представила чёрную дыру Стрельца А* вытянутым с востока на запад объектом. Восточная часть выглядит ярче, что учёные объяснили эффектом Доплера — диск аккреции летит нам навстречу. Сам диск наклонён по отношению к лучу зрения с Земли на 40–45 °, а скорость его вращения достигает 60 % от скорости света. Правильная интерпретация данных дала больше информации, чем получено после представления официальной фотографии.

В то же время необходимо признать, что сегодня можно лишь с осторожностью говорить о точности той или иной интерпретации данных, с помощью которых восстанавливают облик чёрных дыр. Помимо сложностей с их получением необходимо помнить, что пространство-время в значительной степени искривлено вблизи таких объектов, и что там можно понять — это большой вопрос.

Разрешение крупнейшего в мире радиотелескопа FAST повысят в 30 раз

Завершив в 2016 году строительство радиотелескопа FAST со сплошной «тарелкой» диаметром 500 м, Китай получил наилучший в мире инструмент за наблюдениями Вселенной в радиодиапазоне. После разрушения в 2020 году 300-м радиотелескопа «Аресибо» в Пуэрто-Рико китайский инструмент стал фактически единственным большим радиотелескопом со сплошной апертурой. Теперь Китай начал модернизацию FAST, которая сделает его намного более чувствительным.

 Источник изображения: SCMP

Источник изображения: SCMP

Для повышения разрешающей способности FAST (Five-hundred-meter Aperture Spherical Telescope) — «Сферического телескопа с пятисотметровой апертурой», вокруг него будут возведены 24 радиотелескопа каждый с 40-м сплошной антенной. Весь комплекс антенн, включая 500-м, будет работать синхронно, представляя собой виртуальную радиоантенну диаметром около 10 км. Разрешение комплекса в 30 раз превысит разрешение базового радиотелескопа FAST. Китай станет лидером в наблюдательной радиоастрономии, которого догнать будет очень и очень непросто.

Превзойти FAST может только радиотелескоп горизонта событий. Это сеть радиотелескопов, разбросанных по всей Земле и принадлежащих нескольким странам, благодаря которой в 2018 году были получены первые прямые изображения чёрной дыры (M87*). Чтобы скомпилировать данные, каждая из обсерваторий записала терабайты информации, которые для обработки можно было доставить в одно место лишь самолётом. Это позволяет представить, насколько огромной пропускной способностью будет обладать модернизированный комплекс FAST, чтобы оперативно обрабатывать результаты коллективных наблюдений.

Радиотелескоп позволит учёным изучать события, связанные с эволюцией чёрных дыр, формирование и эволюцию галактик, тёмную материю, исследовать объекты эпохи реионизации и решать широкий спектр других научных задач. Этот инструмент доступен для подачи заявок на исследования учёным из других стран, что позволит сделать значительный шаг вперёд не только Китаю, но и мировой науке.

Астрономы в панике: свежие спутники Starlink создают в 32 раза больше помех радиотелескопам, чем старые

Этим летом астрономы из Нидерландского института радиоастрономии (ASTRON) на сутки запустили один из лучших в мире радиотелескопов LOFAR и были шокированы. Новые версии спутников интернет-связи Starlink буквально ослепили сверхчувствительное оборудование. Их яркость в радиодиапазоне в 32 раза превысила помехи от спутников Starlink первого поколения. Это скоро уничтожит всю наблюдательную астрономию на Земле, заключили исследователи.

 Источник изображения: Obelixlatino/pixabay.com

Источник изображения: Obelixlatino/pixabay.com

«Каждый раз, когда запускаются новые спутники с такими уровнями излучения, мы видим всё меньше и меньше неба», — сказала BBC News директор ASTRON профессор Джессика Демпси (Jessica Dempsey). «Мы пытаемся взглянуть на такие вещи, как струи, которые испускаются из чёрных дыр в центрах галактик. Мы также смотрим на некоторые из самых ранних галактик, находящихся на расстоянии миллионов световых лет от нас, а также на экзопланеты», — обрисовала круг проблем руководитель ASTRON’а.

Сегодня на низкой околоземной орбите летает чуть больше 6000 спутников сети Starlink. Эта сеть продолжит расширяться, как и «плетёт» свои сети компания OneWeb (до 1000 спутников на орбите) и готовится к её развёртыванию компания Amazon (будет до 3000 спутников до 2030 года). В целом к 2030 году специалисты ожидают до 100 тыс. спутников интернет-связи на орбите, что не просто угрожает астрономии на всех длинах волн, включая оптические, а фактически заблокирует любые наблюдения за Вселенной с Земли.

«На самом деле это угрожает всей наземной астрономии на всех длинах волн и разными способами. Если это будет продолжаться без каких-либо смягчающих мер, чтобы заставить эти спутники работать тихо, то это действительно станет реальной угрозой существованию тех видов астрономии, которыми мы занимаемся», — добавила профессор Демпси.

Это не первое заявление об угрозе астрономическим наблюдениям с Земли со стороны спутников связи. Компания Starlink как первопроходец отчасти пошла навстречу учёным и предприняла ряд мер по экранированию как оптического, так и радиочастотного излучения от спутников первого поколения. Но новые спутники оказались буквально ослепительными для радиотелескопов. Их яркость в 10 млн раз превысила мощность самых слабых детектируемых на Земле сигналов из глубин Вселенной. Это как сравнить свет самых слабых видимых глазом звёзд на небе с яркостью полной Луны, объяснили исследователи. Такое невозможно игнорировать.

 Созвездие Starlink в ночном небе. Источник изображения: Starlink

Созвездие Starlink в ночном небе. Источник изображения: Starlink

Без каких-либо активных действий по предотвращению всего этого «очень скоро единственные созвездия, которые мы увидим, будут созданы человеком», заключают специалисты.

Обнаружены крупнейшие в истории наблюдений джеты от чёрных дыр — они в 140 раз больше нашей галактики

Известно, что потоки улетающего от чёрных дыр вещества и энергии (джеты) способны быстро лишить галактику-хозяйку питания для зарождения новых звёзд и дальнейшего роста. Но теперь сделано открытие, которое заставляет заподозрить джеты во влиянии на вселенские процессы. Учёные обнаружили джеты длиной в 23 млн световых лет — от таких струй изменится архитектура целых локальных участков Вселенной, а это уже инструмент для эволюции мироздания.

 Художественное представление джетов из активной галактики в нити тёмной материи. Источник изображения: Caltech

Художественное представление джетов из активной галактики в нити тёмной материи. Источник изображения: Caltech

Найденный астрономами Калифорнийского технологического института объект из пары джетов от активной галактики простирается примерно на 7 Мпк (мегапарсек). Это примерно как пять раз слетать туда и обратно в соседнюю с нами галактику Андромеда. Выброс вынес колоссальную энергию из сверхмассивной чёрной дыры в центре галактики-хозяйки, сравнимую с энергией, выделяемой при столкновении галактических скоплений (1055 Дж). В целом учёным повезло с обнаружением этого объекта. Он выявлен на пределе чувствительности наших приборов и если бы возник чуть раньше или был чуть слабее, то явление осталось бы незамеченным.

За свои размеры объект получил имя гиганта Порфириона (Porphyrion) из древнегреческой мифологии. Его джеты раскинулись на 6,4 Мпк. Истинные размеры джетов учёные оценили на уровне чуть более 7 Мпк, поскольку есть признаки того, что мы наблюдаем за ними под небольшим углом в нашу сторону. Сам объект был обнаружен в данных наблюдений радиотелескопа LOFAR за Северным полушарием. Их пропустили через систему машинного обучения и ручной отбор внештатных учёных. Всего было обнаружено свыше 11 тыс. джетов, которые были протяжённее одного Мпк.

Данные по Порфириону были проверены с помощью другого радиотелескопа — uGMRT и дополнены наблюдениями обсерватории Кека. Измерения и спектральный анализ показали, что вероятная галактика — источник джетов — находится на удалении 6,3 млрд лет от Большого взрыва. Струи вещества обычно выбрасываются из полюсов чёрной дыры, где их направляет и ускоряет её электромагнитное поле. Это естественный ускоритель частиц, который в данном случае разогнал вещество джетов (плазму) до скорости 0,012 от световой. Чтобы достичь наблюдаемых размеров струям пришлось путешествовать по Вселенной около 500 млн лет.

 Изображение следов джетов в данных радиотелескопов

Изображение следов джетов в данных радиотелескопов (яркие области означают столкновения джетов с веществом)

Поскольку джеты сохранили форму и направление, учёные делают вывод, что, во-первых, породившая их чёрная дыра не меняла ось своего вращения и, во-вторых, что галактика-хозяйка окружена войдами (пустотами). Джеты не встречали на своём пути достаточно много вещества — газа и пыли — чтобы рассеяться. Это также означает, что галактика-хозяйка находилась в нити тёмной материи, которая как паутиной пронизывает и связывает всю Вселенную и является матрицей для формирования галактик.

С учётом небывалой протяжённости обнаруженных джетов, они могли стать переносчиком массы и энергии в соседние нити и, тем самым, были способны повлиять на основы формирования ткани самой Вселенной. Не исключено, что мы просто не видим всех подобных явлений, особенно на ранних этапах формирования мироздания, когда Вселенная явно была плотнее. Если таких объектов много и они возникают достаточно часто, вероятно придётся их учитывать для моделирования эволюции галактик и Вселенной. Но для этого пока не хватает данных, так что наблюдения будут продолжены.

У самого перспективного инопланетного сигнала оказалось природное происхождение

Почти полвека учёных мучила загадка сигнала Wow!, принятого на Земле 15 августа 1977 года. Радиотелескоп «Большое Ухо» в США уловил 72-секундную радиопередачу, очень похожую на послание иного разума. Передача никогда не повторилась, но и чего-то похожего больше не было, хотя по всей Земле работают сотни радиотелескопов. Новая работа учёных Пуэрто-Рико по архивным данным разрушившегося радиотелескопа «Аресибо» приписывает сигнал «Вау!» природе.

 Историческая распечатка. Big Ear Radio Observatory and North American AstroPhysical Observatory

Историческая распечатка. Big Ear Radio Observatory and North American AstroPhysical Observatory

Сигнал «Вау!» был очень мощный и пришёл из пространства, где не было зарегистрированных объектов. В то же время источник оставался неподвижен всё время, что исключает его рождение в Солнечной системе. Также было исключено техногенное происхождение сигнала от помех на Земле. Учёные из Пуэрто-Рико взялись просеять архивные данные радиотелескопа «Аресибо» с целью поискать похожие сигнатуры в других наблюдениях, где действительно обнаружились намного более слабые, но похожие сигналы.

Так, четыре похожих по строению сигнала на частоте нейтрального водорода в 1420 МГц — самого распространённого во Вселенной вещества и, поэтому, подходящего на роль универсальной несущей для межпланетного общения — были обнаружены в районе близкого к Земле красного карлика Тигардена. Эта звезда не могла породить подобные радиосигналы — она слишком слаба. Но невидимый источник микроволнового или мягкого рентгеновского (или гамма) излучения был бы подходящим кандидатом на роль возбудителя сигнала. А кто у нас прячется во тьме космоса с такими возможностями? Это — нейтронная звезда, например, в виде магнетара.

После анализа данных и моделирования, учёные выдвинули предложение считать сигнал «Вау!» исключительно природного происхождения. Для его появления потребовалось сочетание редких, но абсолютно не нулевых возможностей: облако холодного нейтрального водорода, нейтронной звезды позади облака и направление оси вращения (оси выброса джета или излучения) в сторону Земли. Это также объясняет, почему мы больше не регистрировали похожих сигналов.

Выброс излучения нейтронной звезды послужил накачкой для облака нейтрального водорода, которое уже самостоятельно испустило радиосигнал. Тем самым мы стали свидетелями работы водородного мазера естественного происхождения. Кстати, первого в истории наблюдений, если гипотеза пуэрто-риканских учёных будет подтверждена независимыми наблюдениями. Они успели обработать данные «Аресибо» только за четыре месяца: с февраля по май 2020 года. Похожую работу могут проделать коллективы других радиообсерваторий. Будет забавно, если в результате поисков природных источников необычных сигналов обнаружатся послания инопланетян. Почему бы нет? Жизнь полна сюрпризов.

Интернет-спутники Starlink научились прицельно обходить сигналом радиотелескопы на Земле

Компания SpaceX разработала способ предоставить спутниковый интернет Starlink в так называемые «зоны радиомолчания» в Нью-Мексико и Западной Вирджинии, где расположены радиоастрономические обсерватории. В сотрудничестве с Национальным научным фондом США и Национальной радиоастрономической обсерваторией (NRAO) компания нашла возможность подключить к Starlink жителей этих регионов, не создавая помех научным исследованиям.

 Источник изображений: SpaceX

Источник изображений: SpaceX

Зоны радиомолчания выделяются на официальной карте покрытия Starlink как пара темно-синих областей без доступа к высокоскоростному спутниковому интернету компании. SpaceX вынуждена была ограничить доступ, чтобы избежать создания радиопомех местным обсерваториям, которые используют мощные радиотелескопы для проведения космических наблюдений.

Основная проблема заключалась в том, что радиосигналы Starlink попадали непосредственно на чувствительную приёмную аппаратуру радиоастрономических обсерваторий, что могло как помешать наблюдениям, так и повредить оборудование. Для предотвращения этого SpaceX разработала систему для быстрого изменения направленности спутникового сигнала в обход радиотелескопов в момент приближения орбитальных спутников компании. Этапы взаимодействия спутника и радиотелескопа показаны на иллюстрациях ниже.

«Эти методы стали возможными благодаря фреймворку обмена данными в реальном времени между Starlink и радиоастрономическими обсерваториями, которые предоставляют Starlink запланированный график наблюдений телескопа, включая направление наведения телескопа (также известное как “ось прицеливания”) и его наблюдаемую полосу частот», — сообщил представитель SpaceX.

По данным SpaceX, система уже запущена и работает в зоне радиомолчания в Сокорро, штат Нью-Мексико, где базируется телескоп Very Large Array NRAO. В результате местные жители, включая индейское племя Аламо Навахо, теперь имеют возможность пользоваться быстрым спутниковым интернетом Starlink.

 Источник изображения: National Radio Astronomy Observatory

Источник изображения: National Radio Astronomy Observatory

«Это великолепное сотрудничество между NRAO и SpaceX, демонстрирующее сосуществование передовых систем спутниковой связи и чувствительных научных приборов, использующих общий спектр», — уверен вице-президент по инжинирингу Starlink Майкл Николс (Michael Nicolls).

Подключение к Starlink также станет возможным в Грин-Бэнк, Западная Вирджиния, где находится ещё один крупный радиотелескоп.

Учёные случайно обнаружили необычную нейтронную звезду — она слишком медленно вращается

Среди 3000 открытых нейтронных звёзд нет ни одной, которая вращалась бы достаточно медленно. Обычный период вращения этих объектов составляет доли секунды. Поэтому удивлению астрофизиков не было границ, когда в данных радионаблюдения за южным небом обнаружились признаки нейтронной звезды с периодом обращения 54 минуты. Если данные подтвердятся, это заставит изменить наше представление о моделях поведения нейтронных звёзд.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Статья об исследовании вышла в сегодняшнем номере журнала Nature Astronomy. Открытие сделали астрофизики из Сиднейского университета и национального научного агентства Австралии (CSIRO), а также учёные из Манчестерского и Оксфордского университетов. Они изучали южное небо двумя новыми радиоинструментами — ASKAP и MeerKAT. Впоследствии в данных наблюдений обнаружился объект со всеми основными признаками нейтронной звезды, но его радиоизлучение имело период 54 мин, вместо свойственных этим объектам периодов масштаба секунд и долей секунды.

Период радиоимпульса нейтронной звезды соответствует одному обороту вокруг оси. Традиционно это очень и очень быстро вращающиеся объекты, которые возникают после взрыва сверхновых. Если массы ядра звезды после взрыва сверхновой не хватает на образование чёрной дыры, но она достаточно велика, появляется нейтронная звезда с невообразимо высокой плотностью с радиусом около 10 км и массой около 1,4 солнечных масс. До открытия «медленной» нейтронной звезды учёные выстроили модель, которая достаточно хорошо описывала их поведение и характеристики. Теперь в эти модели, вероятно, придётся вносить существенные коррективы.

Остаётся шанс, что учёные обнаружили не нейтронную звезду, а намагниченный белый карлик, хотя предварительные данные указывают на небольшую вероятность подобного события. Новые исследования загадочного объекта помогут пролить свет на это из ряда вон выходящее открытие.

Первый автор работы доктор Маниша Калеб (Manish Caleb) с факультета астрономии Университета Сиднея сказала: «Что интригует, так это то, что этот объект демонстрирует три различных состояния излучения, каждое со свойствами, полностью отличающимися от других. Радиотелескоп MeerKAT в Южной Африке сыграл решающую роль в разделении этих состояний. Если бы сигналы исходили не из одной и той же точки неба, мы бы не поверили, что это один и тот же объект, излучающий эти разные сигналы».

Новые спутники Starlink могут уничтожить радиоастрономию на Земле, предупреждают учёные

Ряд научных учреждений направил обращение в Федеральную комиссию связи США (FCC) с просьбой провести дополнительное изучение проблемы влияния спутниковой сотовой связи на радиоастрономию. Такие сервисы, как Starlink Direct to Cell и AST SpaceMobile, потенциально способны не только помешать радионаблюдениям, но также могут физически вывести из строя сверхчувствительную аппаратуру радиообсерваторий.

 Источник изображения: Obelixlatino/pixabay.com

Источник изображения: Obelixlatino/pixabay.com

Компания Starlink собирается до конца года развернуть спутниковый сервис сотовой связи Direct to Cell, обеспечивающий покрытие там, где нет наземных вышек сотовой связи. Аналогичные услуги готовит также компания AST SpaceMobile. Спутниковые группировки этих компаний уже оказывают помехи астрономическим наблюдениям в оптическом диапазоне. Но с этим как-то можно мириться, и, ради справедливости, скажем, что компании худо-бедно пытаются снизить оптические помехи от своих спутников. Для радиодиапазона всё может быть намного хуже как с точки зрения увеличения помех, так и в виде прямого воздействия мощного сигнала на чувствительное оборудование радиотелескопов.

Комиссия FCC пока не дала добро на развёртывание услуги Starlink Direct to Cell и других подобных. Тестирование технологий проводится в режиме предварительного изучения их возможностей и влияния. Тревогу, кстати, бьют не только радиоастрономы. Другие операторы спутниковых систем связи тоже обеспокоены возможным влиянием передатчиков Starlink на общедоступные спектры и частоты и даже с документами в руках пытаются доказать это той же FCC.

Исторически вокруг радиоастрономических объектов создавались зоны радиомолчания или выбирались такие районы, где помех от радиоисточников либо не было совсем, либо было ничтожно мало. С появлением спутниковой сотовой связи укрыться от неё станет практически невозможно. Достанет везде, если не сразу, то точно через какое-то небольшое количество лет по мере наращивания орбитальных группировок.

Получено первое изображение магнитных полей чёрной дыры в центре Млечного Пути

Семь лет назад стартовал грандиозный эксперимент по получению первых изображений чёрной дыры. Эти совершенно невидимые и даже сейчас всё ещё гипотетические объекты попытались запечатлеть на снимках. Первым получили изображение сверхмассивной чёрной дыры M87*, а вслед за ним снимок намного меньшей чёрной дыры в центре нашей галактики — Стрелец A* (Sgr A*). И этим дело не ограничилось.

 Источник изображения: Event Horizon Telescope

Изображение магнитных полей чёрной дыры Стрелец А* в поляризованном свете. Источник изображения: Event Horizon Telescope

Следует сказать, что чёрные дыры M87* и Sgr A* находятся на противоположных концах шкалы масс этих объектов. Чёрная дыра в центре нашей галактики имеет всего 2,6 млн солнечных масс (4,3 по другим источникам), что противостоит M87* с массой 6 млрд солнечных. Соответственно, у них такая же разная динамика. Чёрную дыру M87* на удалении 55 млн световых лет от нас можно снимать с выдержкой в несколько дней и даже недель, тогда как более мелкая и юркая чёрная дыра Sgr A* находится всего на расстоянии 27 тыс. световых лет, и снимать её нужно с выдержкой от нескольких минут до часов, иначе чётких структур на изображении не получить.

Что касается самой методики получения снимков, то также следует понимать, что напрямую увидеть объект и его тень нельзя. Объект в принципе недоступен для регистрации в любом электромагнитном диапазоне (об излучении Хокинга мы сейчас не говорим), зато его тень — окружающую чёрную дыру вещество в аккреционном диске, выбрасываемое в пространство электромагнитными полями чёрной дыры, можно легко наблюдать в радиодиапазоне. Проблема тут в низком разрешении отдельных радиотелескопов, поэтому для получения снимков чёрной дыры была создана коллаборация «Телескоп горизонта событий» (Event Horizon Telescope, EHT).

Радиоданные, в отличие от оптических данных (условно — фотографий), достаточно легко объединить в один массив. Поэтому следить за чёрной дырой можно было сразу со многих радиотелескопов, причём не обязательно полностью синхронно. Нужно было лишь точно сопоставить данные наблюдений, например, с помощью атомных часов или сигналов GPS. Потом жёсткие диски с результатами свозились в одно место и обрабатывались как единый массив, полученный виртуальным радиотелескопом размером с Землю.

Изображение M87* было собрано из данных достаточно быстро — уже в 2019 году. На обработку данных о нашей чёрной дыре Sgr A* ушло пять лет. Первое изображение обнародовали только в 2022 году. Это было, как получить чёткий снимок дерева на сильном ветру, сетовали учёные. Но у них получилось, и изображения оказались достаточно похожими, несмотря на огромнейшие различия в массе объектов.

Затем учёные провели наблюдение за M87* в поляризованном свете и синтезировали снимок электромагнитных полей вокруг этого объекта. Возникло разумное желание посмотреть, а как с этим обстоят дела в случае нашей чёрной дыры? Снова наблюдения — и первый результат, который не разочаровал. Впервые полученный в поляризованном свете снимок магнитных полей чёрной дыры Стрелец A* оказался очень и очень похожим на такое же изображение M87*. Из этого учёные делают вывод, что хотя M87* и Стрелец A* совершенно разные по набору характеристик чёрные дыры, устроены они крайне похоже.

Похожесть M87* и Стрелец A* теперь открывает путь к обнаружению джета Стрелец A*. Джет M87* обнаружен около ста лет назад и хорошо наблюдается, что позволяет вычислить скорость вращения чёрной дыры. С нашей дырой пока ничего непонятно. Нам неизвестна её ориентация и скорость вращения. Снимки в поляризованном свете обещают помочь с разгадкой этих тайн, о раскрытии которых учёные совсем недавно даже не думали.


window-new
Soft
Hard
Тренды 🔥
Представлен формат изображений Spectral JPEG XL, который эффективно сохранит данные даже о невидимом свете 29 мин.
Google выплатит $100 млн по иску рекламодателей 14-летней давности 6 ч.
ИИ-стартап xAI Илона Маска внезапно поглотил соцсеть X Илона Маска 8 ч.
Новая статья: Selaco — неоновый кураж. Предварительный обзор 14 ч.
«Яндекс» впервые отчиталась о результатах работы Yandex B2B Tech 14 ч.
Prince of Persia: The Lost Crown выйдет на новых платформах, причём совсем скоро 15 ч.
Сюжетный боевик MindsEye от студии экс-продюсера GTA получил дату выхода и взрывной трейлер — в российском Steam доступен предзаказ 17 ч.
38 миллиардов потерянных рун и 58 тысяч побед над финальным боссом: опубликована статистика игроков с тестирования Elden Ring Nightreign 19 ч.
Тестовая версия Windows 11 получила расширенную поддержку файловой системы ReFS — она сменит NTFS, но потом 19 ч.
Обнаружен вредоносный загрузчик CoffeeLoader — он прячется от антивирусов на видеокарте и прибегает к другим уловкам 20 ч.