Сегодня 22 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → российские разработчики
Быстрый переход

В России раскрыли загадку удивительных оптических свойств перовскитов и объяснили, как этим пользоваться для оптоэлектроники

Совместная работа учёных МФТИ, МИСИС и ИТМО позволила в деталях объяснить появление уникальных оптических свойств у кристаллов перовскита. Это один из самых перспективных материалов для оптоэлектроники будущего, понимание основ работы с которым даёт базу для создания компонентов и решений с заданными свойствами. Работа исследователей опубликована в журнале Nano Letters и доступна по ссылке.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Ранее научные коллективы во всём мире сталкивались с тем, что оптические свойства перовскитов проявляли себя не всегда или с разным значением. Речь идёт о зависимости оптических свойств кристаллов перовскитов от выбранного направления, что называется анизотропией. Это необходимо учитывать для создания волноводов, поляризаторов, нанолазеров и других оптических приборов. В одних случаях на выращенных кристаллах анизотропия проявлялась, а в других отсутствовала. Российские учёные выяснили, в чём кроется проблема.

«Форма кристаллов перовскитов определяет степень анизотропии. Если они в плоскости выросли квадратными, то они не будут проявлять анизотропных свойств, а если они стали прямоугольными, то перовскит будут анизотропным. Это удобно — просто взглянул на форму перовскита и понял, какие у него будут оптические свойства», — пояснил научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев.

Иначе говоря, российские исследователи на примере перовскита из свинца, цезия и бора (CsPbBr3) нашли и описали взаимосвязь зависимости анизотропии выращенных кристаллов от условий выращивания и конечной формы кристаллов. Это позволит не бродить в темноте, наугад создавая тот или иной образец перовскитов для экспериментов, а целенаправленно выращивать кристаллы с заданными оптическими свойствами, что, кстати, является одним из основных критериев для массового производства.

Кроме того, учёные обнаружили, что при определённых условиях перовскиты обладают рекордно высоким уровнем оптической анизотропии для всех известных трёхмерных материалов. Это позволяет использовать перовскиты для создания высокоэффективных волноводов и других устройств, позволяющих управлять движением света, что крайне важно для создания оптических аналогов электроники.

«Мы уверены, что перовскиты станут основой посткремниевой электроники. В Лаборатории солнечной энергетики НИТУ МИСИС реализован процесс роста монокристаллов CsPbBr3 и устройств на их основе. Мы работаем над новыми разновидностями перовскитных кристаллов для оптоэлектронного применения и благодарны коллегам из ИТМО и МФТИ за сотрудничество в сложном и интересном исследовательском проекте», — отметил ведущий инженер Лаборатории перспективной солнечной энергетики Университета МИСИС Артур Иштеев.

Российский электромобиль Atom предстал на подробных фотографиях

В 2025 году должна начаться серийная сборка электрического хэтчбека Atom (Атом) российской разработки, с внешностью прототипа и его базовыми характеристиками уже удалось ознакомиться представителям ресурса Autonews. Премьера новинки состоялась на этой неделе, хотя до сих пор не сообщается, где именно в России будет налажена сборка через пару лет.

 Источник изображений: Autonews.ru

Источник изображений: Autonews.ru

Как поясняют разработчики, у электромобиля имеется некоторый экспортный потенциал, и со временем за пределами нашей страны могут быть налажены не только реализация, но и сборка таких хэтчбеков. К разработке дизайна машины с удобными для городского маневрирования габаритами 3995 × 1780 × 1615 мм были привлечены не только российские, но и итальянские дизайнеры. Передняя часть кузова выполнена в актуальном для современной автомобильной моды ключе, когда под узкой светодиодной полосой расположена основная светотехника с ходовыми огнями. Окантовка чёрным пластиком порогов и колёсных арок не должна вводить потребителя в заблуждение — изначально электромобиль будет предлагаться только с приводом на заднюю ось, хотя вопрос появления полноприводной версии тоже прорабатывается.

Машина не может похвастать внушительным багажным отделением, чей объём ограничен 300 или 350 литрами, но в исполнении для служб доставки в салоне может быть сохранено только водительское кресло, а остальное пространство будет отдано под хранение грузов. В версии для такси машина может лишиться переднего пассажирского кресла. Прототип оснащается 18-дюймовыми колёсными дисками и выдвижными ручками дверей, которые призваны улучшать аэродинамику в соответствии с имеющимися тенденциями дизайна электромобилей.

Одним из главных откровений Atom является отсутствие в салоне центральной стойки и наличие распашных дверей, причём заднюю можно открывать независимо от передней. Многие прототипы подобным решением завлекали посетителей выставок, но в серийном исполнении его реализации обычно препятствовали соображения безопасности, поскольку те требовали усиления структуры кузова, которая при отсутствии центральной стойки серьёзно страдает с точки зрения жёсткости. Разработчики Atom надеются сохранить такую схему открывания дверей в серии.

У прототипа Atom также отсутствуют физические кнопки на панели управления, хотя в серийном исполнении они всё же появятся. Дисплей, заменяющий все приборы, расположился непосредственно на руле необычной формы, но часть показаний будет дублироваться на проекционном экране. Бортовая система позволит загружать широкий спектр приложений из фирменного магазина Atomverse, включая игровые, а за безопасность ПО отвечает Лаборатория Касперского.

Наличие камер в районе передних крыльев и других местах подразумевает возможность использования электронных систем помощи водителю. Удержание в полосе, круиз-контроль при движении в пробке, а также автоматическая парковка будут доступны в серийной версии машины. Она также сможет распознавать дорожные знаки и автоматически тормозить перед препятствиями. Восполнять заряд тяговой батареи можно будет и на станциях экспресс-зарядки.

Вообще, модульная платформа Atom позволит создавать разные модели, но в дебютном варианте хэтчбек с приводом на заднюю ось получит тяговую батарею российского производства с запасом хода около 500 км, а силовая установка позволит разгоняться до 100 км/ч за 7–8 секунд и набирать скорость до 170 км/ч. Дочерняя компания Росатома «Рэнера» разрабатывает для Atom литийионные батареи, которые в 2025 году начнут производиться на предприятии в Калининградской области. Где будет налажена сборка самих электромобилей, не уточняется, но поставками комплектующих будут заниматься не менее 90 компаний, включая партнёров из Турции, Китая и Индии. Продажи Atom будут налажены в странах бывшего СНГ, Ближнего Востока и даже в Китае.

Существующие образцы Atom пока не могут долго и быстро передвигаться, но уже в августе будет собрана партия из 10 ходовых прототипов, которые отправятся на испытания, а в конце следующего года будет представлена предсерийная версия электромобиля.

Российские и английские учёные впервые изучили кремниевые панцири водорослей — это пригодится в кремниевой фотонике, MEMS и не только

В Scientific Reports вышла статья группы авторов из Сколтеха, НИТУ МИСИС и Оксфорда с детальным описанием физических характеристик кремниевых панцирей планктона. Копируя структуру и строение панцирей, можно создать мембрану для миниатюрного сверхчувствительного и при этом потребляющего мало энергии микрофона, фотонный кристалл или нечто другое, на что у природы ушло миллиарды лет.

 Источник изображений: НИТУ МИСИС

Источник изображений: НИТУ МИСИС

Для изучения свойств и строения панцирей диатомовых водорослей — одноклеточных организмов с поразительными свойствами — исследователи задействовали самый передовой инструментарий, включая атомно-силовую микроскопию и наноиндентирование (на образец надавливают алмазной иглой и регистрируют его деформацию). Пожалуй, эта работа стала первым исследованием, в котором свойства кремниевых панцирей диаметром всего 30–40 мкм были изучены очень и очень детально.

Жёсткость, упругость, способность выдерживать деформации, вибрации и степень восстановления, а также многие другие параметры до этого никогда и никем не регистрировались. Полученные российскими и английскими учёными данные станут отправной точкой для множества других работ в этом направлении, что в конечном итоге обещает привести к появлению множества новых технологий, материалов и решений, включая оптронику, MEMS и наномеханику.

«Эволюционный успех и большое значение диатомовых для биосферы Земли говорят о том, что их структура оказалась оптимальна с точки зрения оптики, механики и биохимии одновременно, также при этом сводя к минимуму вес и расход материала», — пояснил заведующий Кафедрой физической химии НИТУ МИСИС, старший инженер-исследователь Центра системного проектирования Сколтеха Алексей Салимон.

Как говорится в статье научного коллектива в Scientific Reports, подобные стеклянному кружеву экзоскелеты диатомовых водорослей «являются неисчерпаемым источником вдохновения для разработки новых материалов и устройств». Они уже применяются для очистки воды от тяжёлых металлов, а также в качестве мягких абразивных веществ в составе зубной пасты, но сфера их применения не должна ограничиваться только этим. Учёные и инженеры могут вдохновиться совершенством этих естественных объектов и реализовать подсмотренное у природы в современном мире, включая электронику и наноустройства.

В России созданы самые эффективные перовскитные солнечные элементы — их КПД достигает 36,1 %

В новой статье в журнале Solar Energy Materials and Solar Cells учёные НИТУ МИСИС представили промышленные прототипы перовскитных солнечных элементов с рекордным КПД при разном сочетании цветов света — 36,1 %. Это позволит с одинаковой средней эффективностью вырабатывать электричество как от Солнца, так и от любых искусственных источников света. Технология готова к промышленному внедрению и ждёт своего заказчика.

 Источник изображений: НИТУ МИСИС

Источник изображений: НИТУ МИСИС

Подчеркнём, уникальность предложенного решения в способности вырабатывать электричество с максимальной эффективностью при произвольном сочетании цветов в спектре. Это может быть ранее утро, слепящий полдень или закатные лучи. Также новому элементу без разницы, какие лампы светят в помещении: светодиодные или люминесцентные — во всех случаях его КПД будет, возможно, не рекордным, но определённо выше, чем у аналогов.

Исследователи из Университета науки и технологий МИСИС изготовили прототип перовскитного солнечного элемента с повышенным содержание брома, который оказался в 2,5 раза эффективнее кремния в условиях разного сочетании цветов света. При «тёплом» освещении созданный учёными материал показал максимальный возможный на данный момент коэффициент полезного действия (КПД) для перовскитной фотовольтаики — 36,1 %.

«Перовскит с повышенным содержанием брома крайне эффективно преобразует цвета различных цветовых температур в электроэнергию при так называемом горячем освещении (1700 Кельвин). Бром, в данном случае, помогает сдвигать край спектра поглощения в область высокоэнергетических фотонов», — рассказала соавтор работы, инженер лаборатории Перспективной солнечной энергетики Университета МИСИС Нигина Талбанова.

Основной точкой приложения новой разработки исследователи считают выработку электроэнергии в помещениях. Там спектр всегда случайный и разноплановый. Датчики для «умного» дома вполне подходят для оснащения подобными фотоэлементами. К тому же, перовскит легко наносится на гибкую основу, включая пластик. И самое главное, разработка готова к промышленному масштабированию. С научными прорывами такое бывает довольно редко.

В Троицке начали строить комплекс под токамак, в котором будут испытывать термоядерные и космические технологии

В апреле с опережением графика на полигоне в московском Троицке начата выемка грунта под будущий комплекс для ряда перспективных термоядерных проектов и не только. Завершение строительства ожидается в 2024 году. После этого последует установка оборудования. Изюминкой комплекса станет токамак с реакторными технологиями (ТРТ) который станет мощным источником нейтронов и прототипом масштабной энергетической установки нового поколения.

 Источник изображения: ГНЦ РФ ТРИНИТИ

Источник изображения: ГНЦ РФ ТРИНИТИ

Расчистка территории под комплекс и строительство дорог и другой инфраструктуры стартовали в марте прошлого года. Непосредственно строительные работы и первая выемка грунта начались в апреле этого года. Технический старт строительству дало второе заседание координационного совета участников строительства инфраструктурных объектов, которые возводятся в рамках федерального проекта по термоядерным и плазменным технологиям комплексной программы развития атомной науки, техники и технологий (КП РТТН). Собрание прошло в Троицке в начале прошлого месяца.

 Модель прототипа модифицированного токамака с сильным полем. Источник изображения: Наука и инновации

Модель прототипа модифицированного токамака с сильным полем (ТРТ). Источник изображения: Наука и инновации

Будущий комплекс будет востребован для испытаний элементов термоядерных реакторов и плазменных ракетных двигателей. Помимо этого он также может быть задействован при производстве ряда изотопов для ядерной медицины, особенно короткоживущих.

К 2030 году в составе комплекса начнёт работать Токамак с реакторными технологиями (ТРТ). Это будет площадка для испытаний перспективных термоядерных технологий, включая выработку трития, проработку бланкетных технологий, методов дополнительного нагрева плазмы, разработку новых диагностик и, в целом, исследование поведения плазмы в близких к зажиганию квазистационарных режимах.

Первый в России за 20 лет термоядерный реактор Т-15МД получил первую плазму и «выходит на мировые параметры»

Вчера во время празднования 80-летнего юбилея Национального исследовательского центра «Курчатовский институт» глава учреждения Михаил Ковальчук сообщил, что модернизированный термоядерный реактор Т-15МД получил первую плазму. Установка поможет в исследованиях по множеству проектов от поддержки ИТЭР до создания источника нейтронов, и подтолкнёт в развитии как отечественную науку, так и партнёрские проекты за рубежом.

 Источник изображения: РИА Новости/Дмитрий Астахов

Источник изображения: РИА Новости/Дмитрий Астахов

«Получена устойчиво плазма, миллионы градусов. Он [токамак] с первого момента запустился. Сложнейшая дорогостоящая установка запустилась сразу и сейчас работает, набирает мощность и выходит на мировые параметры. <...> Устойчиво работает», — сказал Ковальчук, которого цитирует агентство ТАСС.

Токамак Т-15МД — термоядерный реактор для проведения реакций ядерного синтеза в форме тора (пончика или бублика) с магнитным удержанием плазмы — стал продолжением развития проектов токамаков в Курчатовском институте. Он построен на базе проекта установки Т-15, запущенной в институте в конце 80-х годов прошлого века, и стал первым в стране за последние 20 лет. Утверждается, что по совокупности характеристик аналогов этой установке в мире нет. В частности, Т-15МД сочетает компактность и высокую мощность.

Фактический запуск установки без получения плазмы состоялся в мае 2021 года в присутствии премьер-министра РФ Михаила Мишустина. Термоядерная энергия представляется как едва ли не бесконечный источник чистой и безопасной энергии. Для её получения нужны изотопы водорода, которых на Земле буквально океаны.

Российские учёные доказали превосходство отечественных многоуровневых кубитов над обычными

В статье в журнале Entropy группа российских учёных из НИТУ МИСИС и Российского квантового центра привели примеры квантовых вычислений на кудитах, которые резко выигрывают на фоне кубитов. Кудиты способны на порядок и даже больше улучшить качество квантовых алгоритмов. Всё что нужно для этого — это новая математика, с чем в российской науке умеют работать.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Разработчики квантовых систем в лице Google, IBM и других компаний пошли по проторенному пути, который гарантирует повышение производительности за счёт обычного увеличения числа кубитов — наименьшей единицы информации и элементарного вычислительного элемента квантового компьютера. У России, похоже, другой путь — это многоуровневые кубиты или кудиты. Математика сложнее, но зато можно запускать квантовые алгоритмы на намного меньшем количестве квантовых элементов. Это как с памятью 3D NAND — чем сложнее структура, тем больше бит можно записать в ячейку, и это работает!

В качестве квантовых вычислительных элементов в России выбрали ионы (атомы). Ионы могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трёх (кутриты), четырёх (кукварты), пяти (куквинты) и более состояниях. На днях такая платформа не просто была показана в работе, а была запущена для вычислений через облачный интерфейс.

Как и с памятью 3D NAND, дополнительные состояния кудитов позволяют плотнее кодировать данные в физических носителях, а это прямая возможность реализовывать всё более сложные и комплексные квантовые алгоритмы без усложнения вычислительной архитектуры. Это ведёт к возрастанию мощности квантового процессора «на ровном месте» со значительным ускорением выполнения операций. Так, один куквинт заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных.

«Куквинты хороши тем, что их пространство можно рассматривать как пространство двух кубитов с общим дополнительным уровнем. Такое рассмотрение помогает одновременно и сократить число физических носителей информации [кубитов], и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей или как их еще называют — гейтов — сложных логических операций с кубитами. Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, т.е. задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСИС Алексей Федоров.

В конкретном примере учёные представили эффективную модель декомпозиции обобщенного вентиля Тоффоли (обобщенную на n кубитов версию вентиля контролируемое НЕ). Используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор.

Оказалось, что по сравнению с кубитами реализация алгоритма на куквинтах при большом числе (>5) задействованных в алгоритме кубитов требует на порядок меньше двухчастичных гейтов. В частности, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Выигрыш колоссальный и это можно с успехом развивать и применять не только к кубитам на ионах, но также на других физических носителях, например, на сверхпроводящих или спиновых кубитах.

В России впервые организовали доступ к квантовому компьютеру через облако

Сегодня группа физиков из Российского квантового центра и ФИАН им. П. Н. Лебедева РАН продемонстрировала возможность удаленного подключения к отечественному ионному квантовому компьютеру. С помощью web-интерфейса с обычного ПК были запущены ключевые квантовые алгоритмы. Удалённая квантовая система выполнила расчёт и вернула ответ, что обещает в скором будущем реализацию множества независимых проектов с использованием квантовых систем.

 Источник изображения: Фонд НТИ

Источник изображения: Фонд НТИ

Важно сразу отметить, что российский квантовый компьютер сильно отличается от платформ IBM, Google и похожих на сверхпроводящих кубитах. В основе российской квантовой платформы лежат многоуровневые кубиты или точнее кудиты на ловушках ионов. Проект стартовал в 2020 году при поддержке Фонда НТИ и Минцифры. В 2021 году был представлен четырёхкубитовый прототип, а ещё год спустя — пятикубитовая или, точнее, пятикудитовая платформа.

Ку(d)ит — это кубит с суперпозицией из более чем двух логических состояний (d). Одновременно это может быть не только 0 и 1 как для классических квантовых платформ, а целый спектр значений, благо квантовая теория предполагает равновероятностное существование всех значений между 0 и 1. Тем самым кудит как ячейка памяти 3D NAND может быть двух-, трёх- и многоуровневым, что повышает разрядность каждого вычислительного элемента. При должной чувствительности 5-кудитовый российский квантовый компьютер может превзойти по мощности десятикратно и более превосходящий его квантовый компьютер на кубитах.

Разработка аппаратной платформы, что важно, непрерывно сопровождалась созданием пакета программного обеспечения, чем все эти два года занимались специалисты Сколтеха и ФТИАН им. К. А. Валиева РАН.

«Разработанный в рамках проекта ЛИЦ программно-аппаратный комплекс уникален для России — это единственный процессор с настроенным облачным интерфейсом, который способен оперировать кудитным регистром. Результат проекта представляет высокий научный потенциал для развития российской отрасли квантовых вычислений», — отметил генеральный директор Фонда НТИ Вадим Медведев.

В ходе демонстрации возможностей интерфейса группе экспертов Фонда НТИ был проведён запуск ряда критически важных квантовых алгоритмов. В частности, учёные удалённо запустили на процессоре алгоритм Гровера, используемый для поиска значения по неупорядоченной базе данных, а также алгоритм Бернштейна-Вазирани, применяемый в решении задачи по нахождению n-битного числа. Точность однокубитных операций достигла 90 %, а двухкубитных — 80 %.

На новом этапе команда начала работу над тестированием нового класса вариационных квантовых алгоритмов, которые представляют большой интерес для прототипирования прикладных задач из области химии, оптимизации и машинного обучения. О готовности предоставить платформу в открытый доступ пока не сообщается.

Российские учёные доказали квантовую природу графеновых транзисторов через 15 лет после их открытия

Удивительно, но за 15 лет с момента открытия двухслойного графена и транзистора на его основе природа этого явления так и не была выяснена. Точку в понимании физических явлений в p-n-переходе графенового транзистора поставила группа учёных из лаборатории оптоэлектроники двумерных материалов Центра фотоники и двумерных материалов МФТИ. Российские учёные поставили эксперимент, который доказал квантовую природу графенового p-n-перехода.

 Дмитрий Свинцов, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ. Источник изображения: Сафрон Голиков/Цифровой океан

Свинцов Д., глава лаборатории оптоэлектроники двумерных материалов МФТИ. Источник: Сафрон Голиков/Цифровой океан

Как известно, p-n-переходы могут строиться либо на преодолении электронами энергетического барьера (внутреннего электромагнитного поля) на разделе двух полупроводников с разными примесями, либо на эффекте туннельного перехода, когда электроны проходят сквозь барьер за счёт квантовых явлений при гораздо меньших затратах энергии. Разобраться с физикой p-n-перехода в двухслойном графене мешало то, что энергия переключения состояния очень и очень маленькая, что не позволяло с достоверной точностью оценить, какой из эффектов присущ графеновому переключателю.

По исполнению графеновый p-n-переход из двухслойного графена (читай — транзистор) — это простой прибор. Переключаемый переход создаётся в виде разомкнутого двухэлектродного затвора, на которые подаётся два разных напряжения. Впрочем, графен должен быть без каких-либо примесей — максимально чистым. Отсутствие совершенно чистого графена мешало определить — работает ли электронный барьер (по аналогии с примесями в полупроводниках), или туннельный эффект. Два годна назад в МФТИ научились выпускать сверхчистый графен благодаря инкапсуляции его в нитрид бора, и этот материал был использован в эксперименте.

Учёные подвергли графеновый p-n-переход терагерцовому облучению — это сродни нагреву материала, что должно было повысить энергию электронов рядом с границей перехода. Согласно хорошо изученной физике, разогретые электроны легче преодолевали бы барьер, и это привело бы к снижению его сопротивления и увеличению тока через переход. Оказалось, что этого не произошло. Сопротивление перехода падало только в «темноте».

 Источник изображения: Nano Letters

Источник изображения: Nano Letters

Подобное возможно только в том случае, если в основе явления лежит квантовое туннелирование. Для тоннельного перехода важно, чтобы энергетические уровни электронов по обеим сторонам перехода были примерно одинаковы, а «нагрев» вносил дисбаланс. Значит, в случае p-n-перехода из двухслойного графена мы имеем дело с туннельным переходом, а не с классическим преодолением энергетического барьера, о чём исследователи сообщили в статье в ведущем журнале Nano Letters.

Дмитрий Свинцов, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ, рассказал: «Обнаруженная нами ситуация оказывается очень перспективной для электроники. Во-первых, мы имеем высокую электронную подвижность в графене, что даёт возможность создания быстрых полупроводниковых приборов. Во-вторых, мы имеем туннельный характер транспорта, а это даёт возможность управлять током при малых напряжениях, то есть энергоэффективность. Подобной комбинации скорости и энергоэффективности было невозможно достичь в электронике на основе “классических” полупроводниковых материалов».

Российские учёные запатентовали оптический транзистор, реагирующий на одиночный фотон при комнатной температуре

Учёные из «Сколтеха» придумали оптический транзистор, переключаемый одним фотоном. Они получили патент на способ переключения одним единственным фотоном при комнатной температуре такого макроскопического состояния света, как поляритонный бозе-эйнштейновский конденсат. Конкурирующие разработки осуществимы либо при глубоко криогенных температурах, либо требуют для работы десятков или сотен тысяч фотонов. Реакция на один фотон — это предел технологии.

Сегодня главная проблема для оптических компьютеров — быстрых как скорость света и холодных как окружающая их среда — это невозможность непосредственного влияния светового сигнала на другой световой сигнал (модулирование, переключение и тому подобное). По крайней мере, это утверждение справедливо, если сравнивать фотоны с электронами.

Небольшое количество электронов в виде слабого тока способно переключить состояние транзистора и привести к усилению тока. Фотоны так не могут. Одиночный фотон и даже пучок фотонов не способны повлиять на оптический сигнал большей интенсивности, что сводит на нет тему энергоэффективности.

Представленный в 2019 году учёными «Сколтеха» и компании IBM оптический транзистор, работающий при комнатной температуре, для переключения состояния требовал от 10 до 100 тыс. фотонов. Но именно эта разработка стала базовой для новой технологии, которая позволила создать условия для переключения оптического «транзистора» всего лишь одним единственным фотоном.

По большому счёту, как признаются учёные, «детектирование неуловимого явления однофотонного переключения в нашем новом эксперименте стало возможным благодаря одновременному повышению чувствительности и устранению шума». На деле эксперимент строился на множестве теоретических и практических изысканий, чуть подробнее о которых можно узнать на сайте «Сколтеха» в соответствующем пресс-релизе.

Данная работа удостоилась публикации в журнале Nature. В перспективе она открывает путь к оптическим вычислениям и более быстрой электронике, которая также не будет страдать от тепловыделения. Это обеспечит как бурный рост производительности вычислителей, так и значительное сокращение потребления энергии. Остаётся вопрос, как скоро это произойдёт? Ответа на него пока нет.

Учёные из России и Южной Кореи нашли способ уменьшить светодиоды micro-LED — это позволит повысить разрешение дисплеев

Российские учёные из МИСиС совместно с коллегами из Южной Кореи разобрались с процессами, которые мешали дальнейшей миниатюризации полупроводниковых приборов и, в частности, изготовлению всё меньших по размеру светодиодов. Исследование позволит наладить выпуск micro-LED с ещё более высокими плотностью пикселей и разрешением без увеличения потребления и с минимальным браком.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Статья о работе вышла в журнале Alloys and compounds. В целом учёные исследовали техпроцессы производства электронных приборов (транзисторов и светодиодов) из так называемых широкозонных полупроводников. Эффективные светодиоды с синим излучением, например, можно изготовить только из таких материалов. Однако индустрия столкнулась с тем, что дальнейшая миниатюризация упирается в ряд проблем. Чем меньше светодиоды и транзисторы, тем ниже эффективность их работы и тем менее стабильны рабочие характеристики.

Российские учёные совместно с коллегами из университета Корё в Сеуле изучили проблему падения эффективности при миниатюризации micro-LED, используемых, например, в производстве плоскопанельных дисплеев и связали её с дефектами, образующимися на боковых стенках структуры материалов. Для этого учёные вырастили образцы micro-LED методом осаждения металлорганических соединений из газообразной фазы с диаметрами от 100 до 10 мкм.

Значительное падение интенсивности излучения началось с образцов диаметром менее 30 мкм. Учёные предположили, что в этом виновато накопление дефектов поверхности материала, на котором был изготовлен светодиод, и объёмных дефектов на стенках самих светодиодов. Чем меньше диаметр «пикселя», тем сильнее дефекты влияют на характеристики светодиодов и тем сильнее снижают их эффективность. К транзисторам из широкозонных полупроводников это тоже относится.

Серией экспериментов эта теория была подтверждена и предложены методы по смягчению проблемы. Так, учёные рекомендовали изменить технологию травления подложки, чтобы минимизировать возникновение поверхностных дефектов, увеличить температуру отжига с 700 ˚C до 900 ˚C и задействовать процесс пассивации, чтобы закрыть поверхность материала защитным слоем и предотвратить «паразитную» рекомбинацию, в ходе которой фотоны не излучаются, а энергия рассеивается в материале.

Дальнейшая работа будет направлена на более детальное изучение влияния предложенных методов решения проблемы на эффективность светодиодов micro-LED и широкозонных полупроводников в целом. Больше подробностей можно найти в пресс-релизе на сайте НИТУ МИСиС.


window-new
Soft
Hard
Тренды 🔥
Новая статья: Верные спутники: 20+ полезных Telegram-ботов для путешественников 4 ч.
Итоги Golden Joystick Awards 2024 — Final Fantasy VII Rebirth и Helldivers 2 забрали больше всех наград, а Black Myth: Wukong стала игрой года 6 ч.
В программу сохранения классических игр от GOG вошли S.T.A.L.K.E.R. Shadow of Chernobyl и Call of Pripyat, а Clear Sky — на подходе 7 ч.
Star Wars Outlaws вышла в Steam с крупным обновлением и дополнением про Лэндо Калриссиана 8 ч.
Рекордная скидка и PvP-режим Versus обернулись для Warhammer: Vermintide 2 полумиллионом новых игроков за неделю 9 ч.
Новый трейлер раскрыл дату выхода Mandragora — метроидвании с элементами Dark Souls и нелинейной историей от соавтора Vampire: The Masquerade — Bloodlines 10 ч.
В Японии порекомендовали добавить в завещания свои логины и пароли 12 ч.
Обновления Windows 11 больше не будут перезагружать ПК, но обычных пользователей это не касается 12 ч.
VK похвасталась успехами «VK Видео» на фоне замедления YouTube 14 ч.
GTA наоборот: полицейская песочница The Precinct с «дозой нуара 80-х» не выйдет в 2024 году 16 ч.
Nvidia предупредила о возможном дефиците игровых решений в четвёртом квартале 29 мин.
Представлен внешний SSD SanDisk Extreme на 8 Тбайт за $800 и скоростной SanDisk Extreme PRO с USB4 5 ч.
Представлен безбуферный SSD WD_Black SN7100 со скоростью до 7250 Мбайт/с и внешний SSD WD_Black C50 для Xbox 5 ч.
Новая статья: Обзор ноутбука ASUS Zenbook S 16 (UM5606W): Ryzen AI в естественной среде 6 ч.
Redmi показала флагманский смартфон K80 Pro и объявила дату его премьеры 8 ч.
Астрономы впервые сфотографировали умирающую звезду за пределами нашей галактики — она выглядит не так, как ожидалось 11 ч.
Представлена технология охлаждения чипов светом — секретная и только по предварительной записи 11 ч.
Японская Hokkaido Electric Power намерена перезапустить ядерный реактор для удовлетворения потребности ЦОД в энергии 11 ч.
Грузовик «Прогресс МС-29» улетел к МКС с новогодними подарками и мандаринами для космонавтов 12 ч.
Meta планирует построить за $5 млрд кампус ЦОД в Луизиане 12 ч.