Сегодня 08 мая 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → сверхпроводимость
Быстрый переход

Американский физик поплатился за ложное сообщение о достижении сверхпроводимости при комнатной температуре

В октябре 2020 года в журнале Nature вышла сенсационная статья, в которой группа доцента Ранга Диаса (Ranga Dias) из Университета Рочестера сообщила об открытии сверхпроводника, который демонстрировал свои свойства при температуре всего 15 °C. Статья прошла рецензирование и воспринималась как прорыв. Но вскоре посыпалась критика со стороны независимых исследователей. Изложенные в статье методики никому не удалось повторить, и после скандала в 2021 году статья была отозвана из журнала.

 Источник изображения: Adam Fenster/University of Rochester

Источник изображения: Adam Fenster/University of Rochester

Это случилось за два года до появления новостей о южнокорейском якобы «комнатном» сверхпроводнике LK-99. Группа Диаса работала над другим классом материалов и якобы достигнутая ею сверхпроводимость проявлялась при совсем не комнатном давлении. Речь шла о гидриде лютеция, легированного азотом. По утверждению Диаса, материал превращался в сверхпроводник при давлении в диапазоне от 1,4 до 2,8 млн атмосфер. Важным здесь было давление при 15 °C, чего никогда в сходных условиях не удавалось получить. Но всё это оказалось подтасовкой. Что интересно, уже после отзыва первой статьи группа опубликовала вторую работу в 2023 году о достижении сверхпроводимости при 21 °C, которая также была впоследствии отозвана.

«Университет завершил тщательное расследование, проведенное группой учёных, не связанных с университетом и обладающих опытом в этой области, — говорится в заявлении представителя Университета Рочестера Сары Миллер (Sarah Miller) ресурсу The Verge. — Комитет в соответствии с политикой университета и федеральными правилами пришел к выводу, что Диас нарушил правила проведения исследований».

Не исключено, что в отношении учёного будут применены другие методы дисциплинарного взыскания и, в первую очередь, это будет относиться к переоценке его должности и трудовым обязанностям в университете. С этим разбираются соответствующие структуры этого учебного заведения.

Учёные открыли первый в мире природный нетрадиционный сверхпроводник

Международная группа исследователей доказала существование природного нетрадиционного сверхпроводника. До сих пор такие сверхпроводники синтезировались в лаборатории, но этот оказался доступен в естественных условиях на Земле, что делает его перспективным для достижения экономически обоснованной сверхпроводимости во многих отраслях жизни, промышленности и экономики.

 Кристалл миассита. Источник изображения: Paul Canfield

Кристалл миассита. Источник изображения: Paul Canfield

Открытие сделано после серии лабораторных тестов такого минерала, как миассит (Rh17S15). Это соединение родия и серы. Оно сочетает в себе тугоплавкость и летучесть и, как выяснилось, при охлаждении до сверхнизких температур даёт ещё сверхпроводимость, когда движению электронов (куперовским парам) через материал ничего не мешает.

К сверхпроводимости учёным приходится идти фактически наугад, поэтому открытие этого эффекта в хорошо известном материале тоже стало в некотором роде удачей. Точнее, о явлении сверхпроводимости в миассите было известно раньше, только он оказался ещё и нетрадиционным сверхпроводником.

К нетрадиционным сверхпроводникам относятся материалы, которые демонстрируют сверхпроводимость вне традиционной теории Бардина-Купера-Шриффера. Этот класс материалов даёт надежду на выявление материалов с высокотемпературной сверхпроводимостью, а распространение в природе миассита делает его поистине уникальным, что может сделать его применение экономически выгодным — только добывай и используй.

«Интуитивно вы думаете, что это нечто, созданное намеренно в ходе целенаправленных поисков, и оно никак не может существовать в природе, — пояснил суть открытия физик Руслан Прозоров из Университета штата Айова. — Но оказывается, что это так».

Учёные обосновали нетрадиционные свойства миассита, проверив его в лабораторных условиях специальными тестами от оценки проникновения слабых магнитных полей в материал до контролируемого создания дефектов, которые обычно создают очаги сверхпроводимости. Что интересно, миассит изучался для использования в квантовых компьютерах, но оказался интересен также для изучения сверхпроводимости.

«Раскрытие механизмов, лежащих в основе нетрадиционной сверхпроводимости, является ключом к экономически обоснованному применению сверхпроводников», — добавил учёный.

В MIT открыли путь к дешёвой термоядерной энергии, совершив прорыв в производстве сверхпроводящих магнитов

В серии из шести научных статей в мартовском выпуске журнала IEEE Xplore учёные Массачусетского технологического института рассказали о разработке и принципах работы новых электромагнитов на основе высокотемпературной сверхпроводимости. Эта разработка названа крупнейшим за последние 30 лет прорывом в области создания коммерчески выгодных термоядерных реакторов.

 Источник изображений: MIT

Источник изображений: MIT

Первые испытания масштабного прототипа высокотемпературного сверхпроводящего электромагнита состоялись 5 сентября 2021 года в лабораториях Центра науки о плазме и термоядерного синтеза Массачусетского технологического института (PSFC). Изделие массой около 9 тонн создало электромагнитное поле силой 20 тесла. Конструкция электромагнита была создана с нуля с использованием новых принципов и масштабные испытания должны были подтвердить правильность расчётов, моделей и самой идеи, которая на тот момент была крайне новаторской.

До появления этой разработки существующие на тот момент технологии и электромагниты уже могли создавать поля необходимой напряжённости, чтобы удерживать нагретую до 100 млн °C плазму в изоляции от стенок рабочей камеры. Однако эффективность работы подобных систем была далека от требований рентабельности. Учёные из MIT с коллегами из компании Commonwealth Fusion Systems смогли создать намного более компактные и дешёвые в производстве и поддержке электромагниты, которые позволили заявить об их впечатляющей энергоэффективности.

«За одну ночь это практически изменило стоимость ватта термоядерного реактора почти в 40 раз», как позже заявили участники эксперимента. «Теперь у термоядерного синтеза есть шанс, — утверждают учёные. — Наиболее широко используемая конструкция для экспериментальных термоядерных устройств, получила шанс стать экономичной, потому что у вас появились скачкообразные изменения в этой области». Это способность значительно уменьшить размер и стоимость объектов, которые сделали бы возможным термоядерный синтез.

Один из секретов успеха новой конструкции электромагнитов стал отказ от изоляции проводов в обмотках катушек. В это трудно поверить, но учёные использовали в обмотке голые провода без опасений пробоев и коротких замыканий. Эффект сверхпроводимости создал в обмотках такие условия, что замыканием между витками можно было пренебречь. Эксперимент подтвердил правильность выбора. Катушка электромагнита осталась надёжной и стала гораздо меньше в размерах, а также по стоимости и с точки зрения общего размера реактора.

В качестве обмотки был выбран высокотемпературный сверхпроводник REBCO — это редкоземельный оксид бария-меди, который позволяет достигать сверхпроводящего эффекта при температуре 20 К — это на 16 К выше обычной сверхпроводимости, что меняет правила игры несмотря на кажущуюся небольшую разницу в глубине охлаждения. На один электромагнит ушло 300 км полосы REBCO. Только представьте, сколько экономии пространства в катушке стало возможным благодаря отказу от изоляции этого провода. Кстати, в MIT не назвали поставщика этого провода, поэтому им вполне может оказаться китайский производитель Shanghai Superconductor, например.

Позже во время испытаний магнита на критических режимах были проверены теоретические модели его поведения вплоть до частичного разрушения (расплавления обмотки). Это было важно для улучшения конструкции и отработки эксплуатационных характеристик электромагнитов для использования в будущих термоядерных реакторах. Выход сегодня статей по разработке стал возможным после получения патентов на конструкцию электромагнитов и принципы их работы. Исследование приближает тот момент, когда на Земле может зажечься рукотворное Солнце, а энергия в электросетях станет бесконечной и практически чистой.

В Китае создали первое в мире микроволновое оружие на двигателях Стирлинга

Группа китайских учёных сообщила о разработке и испытании мощного микроволнового оружия для поражения беспилотников, самолётов и даже спутников. Но самое удивительное, что электричество для него вырабатывают четыре установленных на грузовик двигателя Стирлинга. Благодаря этому боевая платформа потребляет всего 20 % от мощности, необходимой для питания альтернативного энергетического оружия и может непрерывно работать четыре часа.

 Примерный внешний вид двигателя Стирлинга. Источник изображения: CSSC

Примерный внешний вид двигателя Стирлинга. Источник изображения: CSSC

Это первое открытое объявление о создании боевого микроволнового комплекса на двигателях Стирлинга. В Китае двигатели Стирлинга разрабатываются для электрической генерации в условиях космоса и замкнутых пространств, например, для подводных лодок. Эти двигатели работают с замкнутым объёмом рабочего тела и способны использовать для этого любое внешнее тепло.

В случае микроволновой пушки или излучателя установленные на автомобильную платформу четыре компактных двигателя Стирлинга не только вырабатывают электроэнергию, но также работают как холодильник, отводя тепло от сверхпроводящей катушки — сердца орудия. Катушка генерирует электромагнитное поле напряжённостью до 4 Тл (тесла). Это в 68 000 раз превышает напряжённость магнитного поля Земли и всего в два раза слабее, чем в недрах Большого адронного коллайдера. Стабильность и мощность электромагнитного поля, создаваемого сверхпроводящей катушкой, это залог штатной работы подобного вооружения.

Ограничением для работы двигателей Стирлинга была достаточно высокая допустимая нижняя граница охлаждения. Так, они перестают работать, когда до абсолютного нуля остаётся 40–50 °C. Чтобы совместить двигатели со сверхпроводящей магнитной катушкой, пришлось подбирать для её обмотки материалы с высокотемпературной сверхпроводимостью. В частности, подошла лента из материала ReBCO (редкоземельный оксид бария-меди).

Нюанс в том, что Китай закупал эту ленту американского производства. В 2018 году правительство США ввело запрет на поставку этой продукции в Китай и тому пришлось самостоятельно создавать производство этого материала. В Китае этим занялась компания Shanghai Superconductor. Менее чем за два года только она смогла ежегодно производить 400 км ленты, востребованной для целого спектра задач от вооружения до реакторов и маглевов. До конца 2024 года мощность производства будет повышена до 2000 км в год. Если верить китайским источникам, американские компании начали закупать эту ленту в Китае, отказавшись от поставщиков из США и других стран.

О своём достижении в разработке микроволнового оружия на двигателях Стирлинга учёные сообщили в статье в журнале High Power Laser and Particle Beams. За разработку отвечал сводный коллектив Северо-Западного института ядерных технологий в Сиане и Института электротехники Китайской академии наук в Пекине. Установка далека от совершенства, признаются разработчики. Однако она работает и может быть улучшена.

Китайские учёные не оставляют попыток найти «комнатную» сверхпроводимость в LK-99

На сайте препринтов arХiv.org вышла статья, в которой китайские учёные рассказали о собственных опытах с нашумевшим «сверхпроводящим» материалом LK-99. Полученные в двух независимых китайских лабораториях образцы LK-99 продемонстрировали зыбкие признаки сверхпроводимости при более низкой температуре окружающей среды, но при обычном атмосферном давлении, так что возможно, нас ждёт продолжение нашумевшей истории, если, конечно, опыт удастся повторить.

 Источник изображения: Adam Fenster/University of Rochester

Источник изображения: Adam Fenster/University of Rochester

Оригинальная работа южнокорейских исследователей наделала много шуму, поскольку вышла из научной среды в медийное пространство и стала жить собственной жизнью. Открытый учёными материал LK-99 якобы обладал сверхпроводимостью при температуре около 20 °C и нормальном атмосферном давлении. Это обещало в корне изменить энергетику, промышленность и даже медицину.

К сожалению, воспроизвести результат корейских учёных в других лабораториях не вышло. Точнее, всё было настолько туманно и неустойчиво, если говорить о проявлениях сверхпроводимости в LK-99, что работа была отозвана из научного журнала, а авторов обвинили в неумении проводить опыты и чуть ли не в малограмотности.

Тем не менее, LK-99 демонстрировал нечто, что не укладывалось в предыдущий опыт, и отдельные коллективы продолжили с ним работать. Так, китайские учёные показали, что материал может воспроизводиться, как и его заявленные свойства. Правда, судя по статье, учёные больше уделили внимание присутствию серы в образцах, тогда как в оригинальном LK-99 сера считалась загрязнителем.

Значительным отличием новых экспериментов стало то, что отдельные признаки сверхпроводимости проявились при температуре -23 °C (250 K), а не при плюсовой. Но это не страшно. Охладить оборудование и линии электропередач до -23 °C гораздо проще и дешевле, чем до более чем сотен градусов Цельсия, как это происходит сейчас для достижения сверхпроводимости. Самое главное, что материал подаёт признаки сверхпроводимости при обычном атмосферном давлении. Ранее были найдены материалы, которые демонстрировали сверхпроводимость при -20 °C, но только в случае колоссального давления.

В своей статье китайские учёные с осторожностью говорят о признаках сверхпроводимости. Они, вероятно, наблюдали эффект вытеснения электромагнитного поля из образцов при температуре -23 °C (эффект Мейснера) и при этом доказывают, что образцы не относятся к ферромагнетикам. Правда, учёные не уверены, что то, что они наблюдали является именно эффектом Мейснера, а не диамагнетизм. В прошлых исследованиях именно диамагнетизм приняли за сверхпроводимость, поэтому учёные сейчас не спешат делать громких заявлений, пока не будут получены новые результаты.

«Мы считаем, что ещё есть большой шанс наблюдать сверхпроводимость при комнатной температуре. Сигналы в нашем образце все ещё очень слабые, поэтому мы должны направить усилия на дальнейший синтез масштабируемых образцов с более активными компонентами», — подытожили учёные.

Новая статья: Главные новости 2023 года

Данные берутся из публикации Главные новости 2023 года

Учёные открыли новый тип сверхпроводимости в экзотическом материале, похожем на кристалл-сэндвич

Группа физиков из Университета Вашингтона и Министерства энергетики США (DOE), похоже, открыла новую, контролируемую разновидность сверхпроводимости в экзотическом материале, похожем на кристалл. Его сверхпроводимость можно менять в зависимости от приложенной к нему деформации, вплоть до полного отключения. Одновременно с этим, по всей видимости, был побит рекорд по тому, насколько «горячим» может быть сверхпроводник с полевым эффектом, прежде чем он потеряет способность проводить электричество, не встречая никакого сопротивления.

 Источник изображения: Henry Mühlpfordt, Wikipedia

Источник изображения: Henry Mühlpfordt, Wikipedia

В научной статье, опубликованной в журнале Science Advances, описывается синтетический кристаллоподобный сэндвич из ферромагнитного (европий) и сверхпроводящего материалов (арсенид железа), который демонстрирует возникающую сверхпроводимость при помещении вблизи достаточно сильного магнитного поля. Легированный кристалл EuFe2As2, а именно так называется материал из-за добавления молекул кобальта в процессе синтеза, использует преимущества сильного ферромагнетизма европия (Eu), чередующегося со сверхпроводящими слоями FeAs (арсенида железа) в конфигурации, напоминающей сэндвич.

В результате получается так называемый настраиваемый магнитным полем сверхпроводник — его сверхпроводимость можно активировать с помощью внешних магнитных полей. В случае легированного кристалла EuFe2As2 (с использованием специализированного оборудования и комбинации рентгеновских методов) исследовательская группа показала, как правильно выровненное внешнее магнитное поле уравновешивает магнитные поля, исходящие от ферромагнитных европиевых слоёв. Это позволяет переориентировать их — и как только первоначально хаотичные магнитные поля становятся параллельными сверхпроводящим, возникает состояние материи с нулевым сопротивлением.

Но у легированного кристалла EuFe2As2 есть ещё одно интересное свойство: его сверхпроводящие способности можно отключить даже в достаточно сильном магнитном поле. Всё, что для этого нужно, — деформировать материал с помощью криогенного тензорезистора — приложить давление с одной стороны (одноосное) с помощью специального промышленного поршня, сертифицированного для научных измерений. При этом изменяется степень сопротивления электронов при прохождении через него. При определённых уровнях деформации сверхпроводимость синтетического материала может быть повышена настолько, что для перехода в сверхпроводящее состояние не требуется внешнее магнитное поле. Но после определённого момента даже избыточное давление уже не позволяет запустить процесс.

 Легированный кобальтом EuFe2As2 состоит из слоев ферромагнитных атомов (синий) и сверхпроводящих атомов (золотой). (B) Приложение небольшого магнитного поля вызывает сверхпроводимость, а (C) приложение деформации может вызывать или подавлять сверхпроводимость. Источник изображения: Argonne National Lab / University of Washington

Легированный кобальтом EuFe2As2 состоит из слоев ферромагнитных атомов (синий) и сверхпроводящих атомов (золотой). (B) Приложение небольшого магнитного поля вызывает сверхпроводимость, а (C) приложение деформации может вызывать или подавлять сверхпроводимость. Источник изображения: Argonne National Lab / University of Washington

Исследователи отметили трудности в процессе синтеза. Так, группа не смогла определить, что помешало получить в результате синтеза стабильные образцы EuFe2As2, легированного кобальтом; вместо этого они сообщили о «значительной вариативности образцов», где под вариативностью понимается наличие или отсутствие сверхпроводимости, вызванной полем. Исследователи также указали, что трудности, скорее всего, возникли на этапе легирования кобальтом, что подтверждает, насколько сложно контролировать квантовые процессы (например, химические реакции) на уровне точности, которого требуют некоторые из этих синтетических материалов, являющихся носителями сверхпроводимости.

Тонкие, субатомные изменения и взаимодействия элементов — это действительно всё, что требуется для превращения материала из полупроводника в сверхпроводник. Но за этой простотой скрывается сложное взаимодействие элементов, частиц и субатомных частиц, спинов, магнитных полей и многих других параметров, которые должны быть строго такими, как нужно — или, в случае с образцами в исследовании, находится при температуре между 4 и 10 Кельвинами.

Такой уровень разрешения и контроля за моментом «выключения» сверхпроводимости (что то же самое, что и момент «включения», но в особом, квантовом смысле) должен дать бесценные сведения о квантовой физике сверхпроводимости. По крайней мере, вновь открытый сверхпроводник может стать испытательным стендом для лучшего понимания самой сверхпроводимости. Исследование подводит к возможности увидеть молекулярный переход от обычной материи к её сверхпроводящей фазе и должна повысить нашу способность контролировать этот эффект и извлекать из него дальнейшую пользу. К примеру, это открытие может найти применение в сверхпроводящих цепях для промышленной электроники следующего поколения.

В странных металлах электричество течёт как вода, и учёные не могут понять почему

Загадочная физика так называемых странных металлов 40 лет ставит учёных в тупик. Проблески в понимании вопроса уже есть, но исследования продолжаются и открывают всё новые и новые необъяснимые свойства вещества. Свежее исследование показало, что электрический ток в странных металлах течёт с нарушением известной нам физики и учёные пока не понимают, почему это происходит.

 Источник изображения: ИИ-генерация Кандинский 2.2/3DNews

Источник изображения: ИИ-генерация Кандинский 2.2/3DNews

Странные металлы условно занимают промежуточное положение между диэлектриками и проводниками. У них уже есть свободные электроны, способные переносить электрический заряд (обеспечить течение тока), но они пока ещё не становятся проводниками в полном смысле этого слова. Начать понимать природу странных металлов помог синтез квантовой и классической физики. В то же время он показал, что тот же эффект электрического тока, например, мы понимали, скорее всего, неправильно.

В основе современной теории электрического тока лежит перенос заряда квазичастицами, представленными коллективными действиями электронов. Дискретная природа электрического тока проявляется в случае так называемого дробного шума, когда ток в сети проявляется всплесками, а не в виде равномерного переноса заряда постоянной величины. Чтобы узнать, как ток течёт в странных металлах, учёные создали такие условия, чтобы можно было следить едва ли не за каждым электроном.

В основе измерительного стенда лежали нанопроводники из соединения иттербия, родия и кремния (YbRh2Si2) шириной 200 нм и длиной 600 нм. Это соединение относится к странным металлам и, как и прочие странные металлы, обладает нетипичными свойствами вблизи абсолютного нуля. Если бы электрический ток тёк через этот материал так, как мы представляем — дискретно группами коррелированных электронов в виде квазичастиц, то ничего странного не произошло бы. Однако в ходе эксперимента учёные убедились, что ток продолжал течь плавно без свойственных дробному шуму флуктуаций как вода по широкому жёлобу.

Говоря иначе, заряд отчасти передавался как будто без участия электронов, что представляется невероятным. Возможно, в металлах происходит всё то же самое, и носителем заряда служит нечто другое помимо электронов. Несомненно в этом проявляются квантовые эффекты, но каким образом, физикам ещё предстоит объяснить.

Ответ на этот вопрос поможет приблизить открытие сверхпроводимости при обычной температуре, ведь одним из коренных свойств странных металлов является совершенно отличное от металлов поведение удельного сопротивления вблизи абсолютного нуля. У металлов оно меняется скачком от нуля до высокого, а у странных металлов вместо скачка оно растёт постепенно и линейно. Дотянуть бы его небольшим до высоких температур, и будет всем счастье в энергетике.

«Комнатной» сверхпроводимости в 2023 году не будет — статья учёных из США в Nature отозвана за подлоги и ошибки

Редакция журнала Nature сообщила об отзыве статьи об открытии группой американских учёных низкотемпературного сверхпроводника. Статья вышла в марте этого года и сообщала об открытии сверхпроводимости при 21 °C, но при очень высоком давлении. Хотя статья прошла рецензию, учёное сообщество нашло в ней множество изъянов. В сентябре соавторы исследования попросили журнал отозвать статью, и их просьба была удовлетворена.

 Источник изображения: Adam Fenster/University of Rochester

Источник изображения: Adam Fenster/University of Rochester

Разбор работы американских авторов несколько поутих на фоне эпопеи с открытием южнокорейскими учёными материала LK-99, который, по их словам, обладал сверхпроводимостью при комнатной температуре и обычном атмосферном давлении. На время это «открытие» приковало к себе внимание всего мира, ведь это было почти чудо. Увы, попытки независимых коллективов воспроизвести материал и получить сверхпроводимость успехом не увенчались. Хотя перспективы у материала ещё остаются.

Представленный группой из университета Рочестера в Нью-Йорке сверхпроводник на основе редкоземельного металла лютеция, сжатого в азото-водородной среде, якобы приобретал сверхпроводимость при температуре 21 °C и давлении 10,9 т/см2. Давление представляется запредельным, но оно на два порядка меньше, чем во всех предыдущих открытиях. Иными словами, группа показала обнадёживающий результат, который задавал направление для дальнейших открытий.

В момент публикации в марте за плечами группы уже была одна отозванная статья в Nature. Это не помешало подготовить и довести до печати новую работу. Учёное сообщество вскоре начало находить грубые ошибки, и даже подлоги в статье и в сентябре соавторы работы начали открещиваться от коллеги — физика из Рочестерского университета Ранга Диаса (Ranga Dias), который готовил материалы для Nature.

Журнал провёл расследование и проанализировал многочисленные жалобы читателей и соавторов скандальной статьи. По результатам расследования статья снята с публикации. Редакция сообщила, что высказанные научным сообществом и соавторами работы опасения — о недобросовестности и неполноте работы — «заслуживают доверия, являются существенными и остаются нерешёнными».

Сверхпроводимость материала LK-99 при комнатной температуре всё же возможна, показало новое исследование

Казалось бы, научное сообщество пришло к выводу, что материал LK-99 не проявляет свойств сверхпроводимости при комнатной температуре и атмосферном давлении, но некоторые учёные всё же продолжают исследования. В новой работе, опубликованной на портале arXiv, сообщается о квантовомеханическом моделировании возможных путей сверхпроводимости LK-99, подтверждающем такую возможность. Правда, результаты в статье предварительные и она ещё не прошла рецензирование.

 Левитация немагнитного материала LK-99 в магнитном поле. Источник изображения: Hyun-Tak Kim

Левитация немагнитного материала LK-99 в магнитном поле. Источник изображения: Hyun-Tak Kim

В исследовательской работе, написанной Цзюнь Ли (Jun Li) и Ци Анем (Qi An) с факультета материаловедения и инженерии университета штата Айова, сообщается о том, что текущий экспериментальный процесс синтеза LK-99 теоретически может привести к двум конечным продуктам с различными свойствами, зависящим от того, как атомы меди и кислорода заменяют атомы свинца в исходном материале — апатите свинца.

В некоторых образцах высокосимметричное расположение фундаментальных частиц может формировать пространство, через которое беспрепятственно и без сопротивления проходят электроны, путём соединения в так называемые куперовские пары. Однако из-за хаотичности образования этих симметричных областей, они обычно «заперты» внутри несверхпроводящих зон с низкой симметрией, которые блокируют свободное перемещение электронов.

Чрезвычайно низкое число «симметричных» расположений может объяснить сложности создания сверхпроводящих образцов при синтезе LK-99 — их образуется настолько мало, что сверхпроводящее поведение вообще не проявляется. Авторы исследования полагают, что «синтез образцов LK-99 преимущественно в фазе высокой симметрии может проложить путь к созданию сверхпроводников при комнатной температуре и атмосферном давлении».

Результаты исследования, дополненные другими теоретическими изысканиями в том то же направлении, демонстрируют насколько сложно иногда перейти от теории к практике. Теоретически LK-99 может обладать свойствами сверхпроводимости при комнатной температуре и атмосферном давлении, но на практике текущий процесс синтеза пока недостаточно проработан, чтобы получить требуемый конечный результат.

Соавторы открытия сверхпроводимости при комнатной температуре стали от него открещиваться

Соавторы статьи для журнала Nature, в которой описывалось открытие явления сверхпроводимости при комнатной температуре, попросили редакцию журнала отозвать исследование, аргументируя тем, что ведущий исследователь исказил данные. Соавторы утверждают, что физик из Рочестерского университета Ранга Диас (Ranga Dias) «действовал недобросовестно в отношении подготовки и подачи рукописи» и перечисляют многочисленные недостатки статьи.

 Источник изображения: Adam Fenster/University of Rochester

Источник изображения: Adam Fenster/University of Rochester

«Мы со всем уважением просим журнал Nature опубликовать опровержение», — написали восемь из одиннадцати авторов скандальной статьи старшему редактору. Их просьба была удовлетворена, хотя Диас не собирается отказываться от результатов исследования. «Я никогда не занимался фальсификацией, манипулированием или искажением данных ни в одной из своих исследовательских работ», — заявил он. В начале сентября Диас обратился как минимум к шести соавторам, угрожая судебным иском за клевету. На его странице на сайте Университета Рочестера до сих пор опубликована информация о сделанном открытии.

В марте Диас и его команда попали в заголовки газет, сообщив, что редкоземельный металл лютеций, сжатый в азото-водородной среде, проявляет сверхпроводимость при температуре около 21° по Цельсию. Смелое заявление Диаса о сверхпроводимости при комнатной температуре сразу же было встречено в учёном мире со скептицизмом, который усилился по мере того, как сторонние исследователи внимательно изучали работу и пытались воспроизвести её результаты.

 Источник изображений: rochester.edu

Источник изображений: rochester.edu

Согласно письму соавторов Диаса в журнал Nature, некоторые из них указывали Диасу на недостатки исследования ещё до отправки статьи в журнал. Соавторы утверждают, что их «опасения в основном были отклонены доктором Диасом, и некоторые из нас получили от доктора Диаса указание не углубляться в поднятые вопросы и/или не беспокоиться о таких опасениях».

Соавторы заявляют, что «В то время доктор Диас контролировал наши личные, академические и финансовые обстоятельства как наш наставник и руководитель», намекая на тот факт, что многие из них находились в зависимой ситуации от Диаса. Но также они признают, что Диас предлагал соавторам удалить свои имена из статьи, но они не сделали этого. Возможно, соблазн прославиться оказался слишком велик.

1 сентября журнал Nature уведомил читателей, что «достоверность данных, представленных в этой рукописи, в настоящее время находится под вопросом». Это уже третье за год опровержение статей, написанных под руководством Диаса. В августе журнал Physical Review Letters отозвал исследование, в котором описывались свойства соединения марганца. В сентябре прошлого года журнал Nature отозвал статью 2020 года, описывающую сверхпроводимость материала, содержащего углерод, серу и водород.

Другие учёные ранее обвиняли Диаса в плагиате частей его докторской диссертации, написанной в Университете штата Вашингтон. Пока это обвинение не подтверждено и не опровергнуто, ведётся расследование. Руководство Университета Рочестера, в свою очередь, обратилось к сторонним экспертам с поручением изучить исследования Диаса.

Корейские учёные продолжают настаивать на «комнатной» сверхпроводимости LK-99

Казалось бы, что в деле об открытии якобы сверхпроводимости материала LK-99 при комнатных условиях поставлена точка. Достаточно авторитетные лаборатории попытались воспроизвести результаты южнокорейского открытия и потерпели крах. Отчасти в этом виноваты первооткрыватели «чудесного» материала, которые по каким-то причинам не смогли внятно описать порядок проведения опытов. Более того, они продолжают настаивать на сверхпроводимости LK-99.

 Левитация немагнитного материала LK-99 в магнитном поле. Источник изображения: Hyun-Tak Kim

Левитация немагнитного материала LK-99 в магнитном поле. Источник изображения: Hyun-Tak Kim

Сообщается, что первооткрыватели соединения LK-99 изменили текст патентной заявки. На английском языке тест пока отсутствует, а машинный перевод с корейского не даёт до конца понять все нюансы. Но представленные в патенте графики не дают сомневаться в том, что учёные обнаружили в материале LK-99 (апатите свинца, легированном медью с примесями) свойства, которые можно соотнести со сверхпроводимостью. В частности, после критической температуры около 105 °C удельное сопротивление материала скачком увеличивается от почти нулевого до весьма значительного.

Независимые исследователи критиковали этот момент, утверждая, что это температура фазового перехода сульфата меди, который естественным образом сопровождается скачком в сопротивлении материала току, а никакая не критическая температура эффекта сверхпроводимости. Но южнокорейские учёные смотрят на это со своей позиции, утверждая, что примеси важны для эффекта сверхпроводимости, но проявляют себя по-иному.

 График измененния удельного сопростивления материала LK-99 в зависимости от температуры

График изменения удельного сопротивления материала LK-99 в зависимости от температуры

В изменённом тексте патентной заявки предложены изменённые методики по синтезу LK-99. Впрочем, по первому мнению сторонних специалистов, лучше они от этого не стали. Например, теперь в процессе появились примеси кремния и железа. Также первооткрыватели материала рекомендуют прибегать к синтезу не из твёрдых фаз смесей, когда в герметичной пробирке последовательно спекаются порошки составляющих материалов, а из паровой фазы в процессе осаждения. При осаждении на стенках пробирки возникают плёнки с разным процентным содержанием примесей от богатых до бедных. Комнатной сверхпроводимостью, утверждают корейцы, обладают только плёнки, полученные в средней части области осаждения.

Авторы признают, что полученное соединение свинца с апатитом, как правило, является изолятором. Но при этом они продолжают утверждать, что легирование медью, которое приводит к замещению атомов свинца атомами меди в LK-99, является ключевым для раскрытия заявленной способности к сверхпроводимости. Согласно обновленному документу, команда наблюдала образцы, в которых соотношение сверхпроводящего апатита свинца составляло 48,9 %, не сверхпроводящих соединений свинца — 40 %, а соединений меди — 11,1 %.

Примерно равные доли «сверхпроводящих» соединений и не являющихся таковыми ведут к тому, что материал левитирует в магнитном поле лишь частично — только той стороной, где «сверхпроводящих» частей больше. Этим учёные объясняют отсутствие чистого эффекта Мейсснера. Подобная неопределённость могла помешать независимым группам обнаружить в материале LK-99 сверхпроводимость.

Также особенности материала, соглашаются авторы, создают островки магнетизма и диамагнетизма. Это могло показать ложную левитацию и создать впечатление, что авторы принимают за сверхпроводимость естественный магнетизм. В то же время наличие островков намагниченности также могло помешать обнаружить настоящий эффект Мейсснера (левитацию).

Интересно, что южнокорейских коллег продолжают поддерживать некоторые учёные из других лабораторий. Например, болгарские исследователи рассмотрели возможность сверхпроводимости LK-99 и нашли её теоретически возможной, хотя не стали утверждать, что она достигается при комнатной температуре и обычном давлении. Теоретики пока не отбросили идею сверхпроводимости LK-99 и, похоже, на эту тему выйдет ещё немало статей.

Учёные нашли объяснение «странным металлам», которые 40 лет ставили науку в тупик

Свыше 40 лет физики не могли объяснить поведение «странных металлов», которые при сильном охлаждении вели себя не так, как обычные металлы. Если в обычных металлах возникала сверхпроводимость и мгновенно исчезала на какой-то чёткой температурной отметке, то сопротивление странных металлов при изменении температуры менялось линейно. Этому не было внятного объяснения, пока это недавно не сделали физики из США.

 Источник изображения: Lucy Reading-Ikkanda/Simons Foundation

Источник изображения: Lucy Reading-Ikkanda/Simons Foundation

Комплексное обоснование теории поведения странных металлов — металлов, которые не подчиняются теории ферми-жидкости, — сделали руководитель проекта Аавишкар Патель (Aavishkar Patel) из Центра вычислительной квантовой физики (CCQ) Flatiron Institute в Нью-Йорке и физики Хаоя Гуо, Илья Эстерлис и Субир Сачдев из Гарвардского университета. Как минимум, учёные обосновали ряд характерных свойств «странных металлов». Стройная теория может помочь ответить на вопросы о достижении сверхпроводимости при высоких температурах и помочь в разработке квантовых компьютеров. Квантовая механика стала тем инструментом, который помог разобраться в вопросе.

Новая теория опирается на два ключевых свойства странных металлов. Во-первых, электроны в таких металлах могут запутываться друг с другом — переходить в абсолютно идентичные квантовые состояния — и оставаться в таком состоянии даже при удалении на значительные расстояния друг от друга. Во-вторых, странные металлы имеют неоднородное, похожее на лоскутное, расположение атомов.

«Ни одно из этих свойств по отдельности не объясняет странности “странных металлов”, но в совокупности всё становится на свои места», — пояснил глава проекта.

Неравномерность атомной структуры странного металла означает, что запутанность электронов зависит от того, в каком месте материала она произошла. Такое разнообразие вносит хаотичность в импульс электронов при их движении через материал и взаимодействии друг с другом. Вместо того чтобы течь вместе, электроны сталкиваются друг с другом во всех направлениях, что приводит к электрическому сопротивлению. Поскольку электроны сталкиваются тем чаще, чем горячее материал, электрическое сопротивление растёт вместе с температурой, что и наблюдается на практике. Там где у обычных металлов происходит скачок при переходе от сверхпроводимости к резкому увеличению сопротивления, странные металлы продолжают пропускать ток с плавным увеличением сопротивления току.

Ключевым в новой теории стало то, что физики объединили два явления — запутанность и неоднородность, что раньше не рассматривалось для одного материала, а по отдельности это не приводит к странному поведению металлов. Тем самым учёные предлагают механизм по коррекции условий сверхпроводимости в странных металлах. Искусственно созданные неоднородности могут воспроизвести сверхпроводимость в нужном месте с заданными целями, что может найти применение, например, в квантовых вычислителях. Когда вы можете на что-то влиять, это способно привести к желаемому результату.

«Бывают случаи, когда что-то хочет перейти в сверхпроводящее состояние, но не может этого сделать, поскольку сверхпроводимость блокируется другим конкурирующим состоянием, — говорит Патель. — Тогда можно задаться вопросом, не может ли присутствие этих неоднородностей разрушить эти другие состояния, с которыми конкурирует сверхпроводимость, и оставить дорогу для сверхпроводимости открытой».

Учёные обнаружили предсказанную 67 лет назад частицу-демона, которая поможет искать сверхпроводники

Группа учёных из США в серии экспериментов с отдалённо похожим на сверхпроводящие материалы рутенатом стронция случайно обнаружила квазичастицу, предсказанную 67 лет назад. Квазичастица под именем «демон Пайнса» не имеет массы и нейтральна, а значит, напрямую себя не обнаруживает. Между тем, свойства частицы-демона могут помочь в определении сверхпроводимости, природа которой до сих пор до конца не изучена. Открытие «демона» может многое изменить.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Современная теория сверхпроводимости в основном опирается на тесные взаимодействие электронов и фононов в атомарной структуре материалов. В то же время ряд проявлений сверхпроводимости плохо согласуется с этой теорией и оставляет место для экзотических и пока не открытых процессов. Квазичастица демон Пайнса — одно из таких явлений, которое почти 70 лет считалось игрой ума физика Дэвида Пайнса, который предложил её в 1956 году. По его мнению, это безмассовая и нейтральная квазичастица, обнаружить которую по этой причине очень и очень трудно. Её и не искали, если честно.

Физики из Иллинойского университета в Урбане-Шампейне обнаружили неуловимую квазичастицу совершенно случайно. Они изучали свойства рутената стронция, который не является сверхпроводником, но в ряде аспектов очень сильно его напоминает. Рутинные измерения показали наличие «частиц», которые не были ни поверхностными плазмонами, ни акустическими фононами. Первые результаты измерений были приняты за ошибочные, и лишь их повторение заставило плотнее заняться вопросом: а что это было?

Моделирование показало, что учёные обнаружили плазмон со свойствами, предсказанными Дэвидом Пайнсом. Это особое коллективное движение электронов в твёрдом теле. По сути — это дискретная волна или групповое колебание в электронной плазме. Это не частица в чистом виде, поэтому такие конденсированные явления называют квазичастицами. Данные измерений показали, что обнаруженный плазмон не имеет массы и нейтрален по заряду. Иначе говоря, он отвечает требованиям демона Пайнса. Слово «демон» в данном случае означает «отчетливое движение электрона» с любимым физиками суффиксом «-он». В отличие, скажем, от демона Максвелла, который действительно демон при рогах и копытах, хоть и воображаемый.

Наличие в природе демона Пайнса в виде безмассовой частицы означает потенциальную возможность эффекта сверхпроводимости при любой температуре. Этой частицей можно попытаться объяснить сверхпроводимость в целом списке полуметаллов. Понять и объяснить означает открыть новые пути к осуществимости этого явления, что сделает наш мир чуть более приятным местом для жизни.

Учёные нашли источник «сверхпроводимости» LK-99 — грязные образцы и невежество экспериментаторов

Загадка южнокорейского «комнатного сверхпроводника» LK-99 разгадана в рекордные сроки. Мировое научное сообщество не могло пройти мимо такой «сенсации», а накопленный в поисках высокотемпературной сверхпроводимости опыт позволил быстро повторить эксперимент южнокорейских учёных и оценить его с точки зрения теории.

 Источник изображения: Pascal Puphal

Чистейшие кристаллы LK-99, выращенные немецкими учёными. Источник изображения: Pascal Puphal

Увы, судя по всему, революция в сверхпроводимости откладывается. Два основных индикатора сверхпроводимости — это левитация в магнитном поле (эффект Мейсснера) и резкое падение удельного сопротивления току — были объяснены с позиций обычной физики и не имеют никакого отношения к сверхпроводимости. Южнокорейских учёных подвели загрязнённые примесями образцы и ограниченные знания в ряде областей химии.

Вкратце напомним, что в конце июля группа южнокорейских учёных выложила на сайт препринтов научных статей две работы на английском языке, в которых рассказала о сенсационном открытии материала LK-99, который обладал сверхпроводимостью при комнатной температуре и обычном давлении. Подобное открытие очень сильно изменило бы наш мир. По крайней мере в энергетике, где потери от транспортировки электричества очень и очень велики и постоянно растут. Одна из статей была дополнена теоретическими выкладками, которые выглядели достаточно убедительно, чтобы к открытию отнеслись со всем вниманием.

Первые попытки синтезировать LK-99 независимыми группами дали противоречивый результат. Кто-то увидел «левитацию», у кого-то получилось измерить нулевое сопротивление току при комнатных температурах, а у кого-то и вовсе ничего не получилось. Не обошлось и без фейков, что только добавило путаницы. Серьёзной проблемой для независимого синтеза LK-99 стало то, что авторы исследования не предоставили детального описания синтеза абсолютно чистого материала и, судя по всему, сами стали жертвой собственной оплошности.

Следует сказать, что современные теоретические инструменты позволяют моделировать электронную и атомарную структуры материалов и очень точно описывать их химические и физические свойства. Но при наличии неизвестных по объёму и составу примесей такие расчёты обычно ошибочны, что, похоже, произошло в случае с LK-99. По горячим следам этот материал был проверен с помощью теории функционала плотности и отчасти подтверждал открытие южнокорейской команды. Как сегодня становится понятно, теоретиков подвели исходно ошибочные данные экспериментаторов.

Точку в «сверхпроводимости» LK-99 поставили учёные из Института исследования твердого тела Макса Планка в Штутгарте (Германия). Они вырастили кристаллы LK-99, а не синтезировали его методом отжига, как это сделали корейцы. Выращивание позволило избежать появления примесей в материале и, прежде всего, сульфида меди (Cu2S), который, как становится ясно, и стал причиной «сенсационного» открытия.

Сверхчистый материал LK-99 (Pb8.8Cu1.2P6O25) оказался не сверхпроводником, а очень даже хорошим изолятором. При этом материал проявлял некоторые свойства ферромагнетизма и диамагнетизма, но совершенно недостаточные даже для частичной левитации.

«Поэтому мы исключаем наличие сверхпроводимости, — заключили авторы. — Когда у нас есть монокристаллы, мы можем чётко изучать внутренние свойства системы». Опираясь на визуализацию электронной структуры чистого материала, немецкие исследователи показали, что она не допускает проявления сверхпроводимости, а её признаки в южнокорейском эксперименте, скорее всего, проявлялись за счёт наличия в образцах примесей сульфида меди.

Отдельно о свойствах сульфида меди высказался другой учёный — химик Прашант Джайн (Prashant Jain ) из Иллинойсского университета в Урбане-Шампейне. Он указал, что температура 104,8 °C, при которой корейцы фиксировали десятикратное падение удельного сопротивления материала примерно с 0,02 Ом/см до 0,002 Ом/см — это температура фазового перехода сульфата меди. Естественно, что при фазовом переходе сопротивление материала меняется, о чём южнокорейские учёные должны были бы знать.

Тем самым загрязнение образцов LK-99 примесями в техпроцессе «на коленке» и незнание некоторых аспектов их химического поведения привели к тому, что южнокорейские учёные приняли желаемое за действительное — увидели в двух случайных признаках сверхпроводимость, которой там не было.


window-new
Soft
Hard
Тренды 🔥
Electronic Arts косвенно подтвердила, когда выйдет Dragon Age: Dreadwolf 51 мин.
Arkane Austin до последнего работала над обновлениями для Redfall — закрытие студии застало сотрудников врасплох 2 ч.
OpenAI превратит ChatGPT в ИИ-поисковик и будет конкурировать с Google 3 ч.
США пообещали $10 млн за сведения о россиянине, который создал вирус-вымогатель LockBit 3 ч.
OpenAI научилась распознавать сгенерированные своим ИИ изображения, но не без ошибок 4 ч.
Инсайдер раскрыл планы Ubisoft на показ геймплея Assassin’s Creed Codename: Red 4 ч.
Еженедельный чарт Steam: Gray Zone Warfare обошла Counter-Strike 2, а Total War: Warhammer III заняла четыре строчки в топ-10 14 ч.
Смерть ей к лицу: критики вынесли вердикт релизной версии вампирского MMO-экшена V Rising 15 ч.
Owlcat раскрыла, когда выйдет «Танец Масок» — последнее дополнение к Pathfinder: Wrath of the Righteous 16 ч.
Симулятор космической больницы Galacticare отправит спасать галактику по одному пациенту за приём — новый трейлер и дата выхода 17 ч.
IBM представила небольшой сервер POWER S1012 для ИИ-вычислений на периферии 35 мин.
Asus представила 15,6" сенсорный монитор ProArt Display PA169CDV за $1300 и изогнутый 34" дисплей ProArt Display PA34VCNV за $730 41 мин.
«Роскосмос» запустил разработку ядерной энергоустановки для российско-китайской станции на Луне 46 мин.
Первый запуск Boeing Starliner с людьми отложили до 17 мая — ракету увезут в цех для замены кислородного клапана 2 ч.
Apple будет продавать iPad Pro и iPad Air без зарядки в некоторых странах, а ещё без наклеек в виде яблока 2 ч.
Компании Dell исполнилось 40 лет — она начала работу с инвестиций на $1000 3 ч.
Tesla оказалась крупнейшим покупателем лидаров Luminar, хотя Илон Маск вовсю критиковал эту технологию 4 ч.
Новая статья: Обзор TWS-наушников Baseus Eli Sport 1: интересный подход к решению знакомых задач 4 ч.
Дроны Amazon не станут доставлять заказы в жару — это будет время курьеров-людей 4 ч.
EHang продемонстрировала в Абу-Даби беспилотные дроны трёх модификаций: пассажирский, грузовой и пожарный 5 ч.