Опрос
|
реклама
Быстрый переход
Из-за контрафактных светодиодов в ЕС уничтожат продукцию на миллиарды евро — так решил патентный суд
15.10.2024 [19:07],
Геннадий Детинич
10 октября 2024 года Европейский объединенный патентный суд в Дюссельдорфе вынес решение в пользу компании Seoul Semiconductor и её дочки по крупному иску о нарушении патентных прав ритейлерами Expert e-Commerce и Expert Klein. Установлено, что ответчики нарушили европейский патент Seoul Semiconductor EP 3 926 698 B1, который распространяется на технологию светодиодов WICOP. Это повлечёт изъятие продукции со светодиодами в ЕС на миллиарды евро. Южнокорейская компания Seoul Semiconductor заявляет, что вот уже два десятка лет каждый год вкладывает в разработки не менее 10 % выручки или по $100 млн в год. Это позволило ей создать самые передовые технологии производства высокоэффективных светодиодов, от дискретных элементов до интегрированных, включая светодиодные дисплеи. В этой сфере компании принадлежит 18 тыс. патентов. Самой передовой на сегодня разработкой Seoul Semiconductor остаётся технология производства бескорпусных светодиодов с интегрированными электродами — WICOP. Такие светодиоды можно использовать как в качестве дискретных, например, во вспышках смартфонах или в фарах автомобилей. А можно, с небольшой модификацией, использовать в дисплеях с плотностью до 2000 точек на дюйм. Компания заявляет, что технологию WICOP недобросовестные конкуренты используют для выпуска собственной продукции и называют такие типы упаковок COB, MIP, CSP. С 2018 года Seoul Semiconductor планомерно начала выигрывать в Европе патентные суды против конкурентов и, в первую очередь, против тайваньской компании Everlight Electronics, входящей в пятёрку лидеров в этом секторе. В августе 2024 года Апелляционный совет Европейского патентного ведомства (EPO) отклонил иск Everlight о признании недействительным патента Seoul Semiconductor на технологию светодиодов без проводов (WICOP). Это решение ещё раз подтвердило надёжность патентных портфелей Seoul Semiconductor, зарегистрированных в 18 европейских странах. Октябрьское постановление Европейского объединенного патентного суда (который создан всего год назад) поставило точку в затянувшемся споре. Крупнейшего в Германии онлайн-ритейлера с оборотом до $14 млрд в год — компанию Expert e-Commerce — обязали не просто прекратить продавать нарушающую патенты Seoul Semiconductor продукцию, но также изъять всё непроданное и уничтожить. Уточняющего перечня подлежащей уничтожению продукции нет. Прежде всего, речь идёт о вспышках для смартфонов. Однако под действие запрета потенциально попадают все осветительные приборы от гирлянд до прожекторов и автомобильных стоп-сигналов, а также светодиодные дисплеи. Объём уничтожения продукции может превзойти все мыслимые масштабы. Пока это распоряжение имеет силу в восьми европейских странах — Германии, Австрии, Бельгии, Франции, Италии, Люксембурге, Нидерландах и Швеции, но потенциально может быть распространено на другие. Создан ярчайший красный светодиод MicroLED — до 1 млн кд/м² с «нормальным энергопотреблением»
09.10.2023 [15:23],
Владимир Фетисов
Jade Bird Display объявила о создании красного светодиода MicroLED, обеспечивающего яркость более 1 млн кд/м². Компания заявила, что это достижение является рекордным и оно будет иметь большое значение для развития полноцветных AR-гарнитур, смарт-очков и микропроекторов. До этого момента красные светодиоды MicroLED были слабым звеном в полноцветных микропроекторах JBD Hummingbird, используемых в AR-устройствах. В 2021 году компания создала красный светодиод MicroLED с пиковой яркостью 300 тыс. кд/м², в 2022 году — более 500 тыс. кд/м², а в начале 2023 года — 750 тыс. кд/м². Теперь же разработчики сообщили о создании красного светодиода MicroLED с пиковой яркостью 1 млн кд/м², что соответствует показателю лучшего синего светодиода, но всё же уступает зелёному MicroLED с яркостью 5 млн кд/м². Тем не менее, новые красные светодиоды MicroLED позволяют миниатюрному проектору JBD Hummingbird объёмом всего 0,4 см³ и весом 1 г выдавать до 5 люмен при энергопотреблении 200 мВт. За счёт оптических волноводных линз цветной проекционный дисплей с разрешение 640 × 480 пикселей может достигать яркости на уровне глаз выше 1000 кд/м². В пресс-релизе китайского производителя сказано, что свои плоды принесло решение использовать для создания красных светодиодов MicroLED фосфид алюминия-галлия-индия (AlGaInP). Отмечается, что этот материал стал ключом к созданию высокоэффективного красного светодиода. «Он имеет полосу пропускания, которая наилучшим образом соответствует красному свету, и является наиболее зрелым полупроводниковым материалом, используемым в отрасли для изготовления красных светодиодов», — сказано в сообщении JBD. Также отмечается, что работа компании над вспомогательными технологиями, такими как эпитаксия кристаллов и пассивация чипов, сыграла важную роль в повышении уровня яркости красного светодиода. Важно и то, что прирост яркости был достигнут при сохранении «нормального энергопотребления», благодаря чему не требуется дополнительное питание. Представлены чернила для рисования светодиодов на любой поверхности с помощью обычной шариковой ручки
12.08.2023 [09:19],
Геннадий Детинич
Учёные из Университета Вашингтона в Сент-Луисе (штат Миссури) разработали чернила для шариковых ручек, которыми можно рисовать светодиоды на любой поверхности и, прежде всего, на гибкой. Нарисованные светодиоды могут растягиваться и предназначены для носимых устройств и одежды. Особенно ценно изобретение для любителей мастерить: светящиеся изображения и надписи — это просто, красиво и привлекательно. Исследователи доцент Чуан Ванг (Chuan Wang) и аспирант Цзюньи Чжао (Junyi Zhao) ранее разработали специальные чернила для струйных принтеров, которые позволяли печать светодиоды. Для использования в шариковых ручках такие чернила не подходят. Необходимо было так подобрать состав чернил для рукописного письма, чтобы они не растекались на любой поверхности, не смачивали её, не смешивались и хорошо держались на основе. И такой состав был подобран. Строго говоря, чтобы нарисовать светодиоды или сделать с их помощью надписи, необходимы три вида чернил: для анода, излучающего слоя и катода, которые наносятся друг на друга, как в процессе приготовления бутерброда. В разработке учёных эти роли играют три краски, которые наносятся друг на друга без смешивания. Одна краска содержит проводящие полимеры, другая — металлические нанопроволоки, третья — кристаллические материалы в лице перовскитов. Достаточно последовательно нарисовать светодиодную ленту, подключить к ней источник питания — и она начнёт светиться в широком диапазоне цветов. Более того, рисунок можно растягивать, он не повредится и не перестанет светиться. Подобное свойство, считают разработчики, поможет в медицине, для нанесения индикации на повязки и много где ещё, например, при оформлении подарков и поздравительных надписей на открытках, в складском деле и так далее. Наверняка новинка получит горячую поддержку в среде любителей самоделок. Статья о работе опубликована в журнале Nature Photonics. По заявлению учёных, нарисованные таким образом светодиоды выдерживают не менее 10 000 включений, работают при 2,4 В и обладают яркостью 15 225 кд/м2. Ждём на AliExpress? Создан светодиод диаметром 400 нм — это открыло путь к появлению смартфонов с голографическим микроскопом
05.05.2023 [20:11],
Павел Котов
Учёные проекта SMART (Singapore-MIT Alliance for Research and Technology) разработали самый маленький в мире кремниевый светодиод и смогли построить на его основе самый маленький голографический микроскоп, который можно будет установить, например, на смартфон. Светодиод производит излучение в ближнем инфракрасном диапазоне (длина волны 1100 нм), а его излучающая площадь составляет 0,14 мкм² при диаметре 400 нм, то есть меньше длины волны. Появление такого компонента может означать прорыв в фотонике — технологической области, связанной с передачей и свойствами фотонов. Эта сфера, в частности, охватывает оптическую передачу данных, технологии визуализации, освещения и дисплеев. Важнейшей проблемой в этой области долгое время было отсутствие достаточно компактных излучателей, из-за чего приходилось использовать внешние источники света с низкой энергоэффективностью, а фотонные чипы было сложно масштабировать. Авторы изобретения решили испытать рекордно маленький светодиод, изготовив на его основе безлинзовый голографический микроскоп. Такие микроскопы меньше и дешевле обычных, поскольку они не требуют сложной и точной системы линз — её заменяет источник света, освещающий исследуемый образец, а свет попадает на КМОП-матрицу. В результате создаётся цифровая голограмма, которая после компьютерной обработки преобразуется в читаемое изображение. Последнему этапу обычно сопутствуют определённые сложности: необходимо точно знать значение апертуры, длину волны на источнике света и расстояние от образца до сенсора. Преодолеть эту трудность помог алгоритм искусственного интеллекта. Как оказалось, построенный на этих компонентах микроскоп обеспечивает достаточно высокое разрешение — примерно 20 мкм. Для сравнения, клетка человеческой кожи имеет размер от 20 до 40 мкм, а лейкоцит — 30 мкм. Учёные утверждают, что такой микроскоп можно встроить в смартфон, чтобы изучать при помощи гаджетов, например, человеческие ткани или семена растений. Голографический микроскоп сможет служить для биологической визуализации, создания различных биосенсоров и имплантируемых компонентов. |