Опрос
|
реклама
Быстрый переход
Блоки питания на алмазных транзисторах уже рядом — Япония выстроила весь техпроцесс
04.10.2024 [14:18],
Геннадий Детинич
Целый ряд японских компаний и исследователей приближает коммерческий выход силовой электроники на алмазах. Произойдёт это уже в следующем году и станет широко востребованным к концу текущего десятилетия. По сравнению с кремнием алмазные компоненты могут выдерживать в 50 000 раз большие токи. Это необходимо для электромобилей, электростанций и, в целом, для компактных, надёжных и мощных блоков питания и силовых схем. Если верить японским источникам, японские компании и учёные преуспели в создании алмазных компонентов наиболее впечатляющим образом — представлены технологии, прототипы компонентов и инструменты для их изготовления. В последние годы мы только стали привыкать к силовой электронике на карбиде кремния (SiC) и нитриде галлия (GaN), а алмазы уже обещают их затмить в ряде областей. Так, согласно метрике BFOM (Baliga's Figure of Merit) алмазные силовые элементы на порядок лучше, чем элементы на нитриде галлия и в 80 раз лучше, чем карбид кремния. Но не всё так просто. Известный своей твёрдостью алмаз невозможно полировать обычными средствами, если речь идёт о пластинах для выращивания чипов и транзисторов, а ведь это стандартная и необходимая процедура для литографического производства компонентов. Собственно, вырастить достаточно большую пластину из алмаза — это тоже непросто. Лишь недавно японская компания Orbray смогла превысить размер пластин в 1 дюйм (2,54 см) и приступила к выпуску 2-дюймовых пластин (5 см), обещая вскоре разработать технологию выпуска 4-дюймовых алмазных подложек (10 см). С полировкой алмазных подложек обещает помочь японская компания JTEC. Она владеет уникальной технологией полировки поверхностей материалов высокой твердости с использованием плазмы. Ранее JTEC показала способность полировать плазмой монокристаллические алмазные подложки без нанесения повреждений и получила заказы на разработку соответствующего оборудования. С выращиванием монокристаллических алмазных подложек может помочь компания EDP, которая единственная в Японии производит и продает затравки, из которых изготавливаются синтетические бриллианты для ювелирных изделий. Крупнейшие в мире синтетические монокристаллы также производятся в этой стране, хотя лидируют в этой сфере Китай и Индия. Кстати, единых нормативных требований к синтетическим алмазам нет, что некоторым образом затруднит развитие «алмазной» электроники. Но тут слово и дело за JEDEC или другим органом стандартизации. По утверждению источника, первую в мире силовую схему, использующую алмазные полупроводники, разработала в 2023 году команда японского университета Сага (Saga University). В декабре 2023 года токийский стартап Power Diamond Systems представил алмазный компонент, способный выдерживать самую большую силу тока в 6,8 А. Компания планирует начать поставки образцов в течение нескольких лет. С практической стороны можно отметить компанию Ookuma Diamond Device, которая строит в префектуре Фукусима завод для выпуска силовых элементов для роботов, устойчивых к радиации, предназначенных для очистки развалин печально известной АЭС «Фукусима». Устойчивость к радиации и способность выдерживать запредельные для обычных чипов температуры — это гарантия для работы в космосе и авиации, куда алмазы также устремлены, как и вся будущая алмазная электроника. Представлен первый в мире тягач, работающий на аммиаке
18.01.2023 [13:02],
Геннадий Детинич
Молодая американская компания Amogy представила первый в мире, по её словам, тягач с нулевым выбросом, работающий на аммиаке. Баки грузового автомобиля вмещают запас топлива для выработки 900 кВт·ч энергии, что равно запасу энергии в литиевых аккумуляторах тягача Tesla Semi. При этом баки с аммиаком намного легче, а заправка длится не дольше восьми минут, чего не скажешь о зарядке аккумуляторов Tesla. Но есть нюансы. Разработчик силовой платформы с аммиачным топливом не уточняет эффективность всех этапов преобразования NH3 в электричество. Аммиак необходимо превратить в чистый водород с помощью системы разложения и очистки, пропустить водород через топливные ячейки и полученное электричество направить на тяговые электродвигатели, а также подать в бортовые системы. Даже если на всех этапах процессы будут достигать максимальной на сегодня эффективности, до двигателей дойдёт только половина из заявленного запаса энергии, что, впрочем, не так уж безнадёжно. Установить новый бак с аммиаком проще и дешевле, чем добавить ту же ёмкость набором из литиевых батарей. Использование аммиака вместо чистого водорода значительно упростит оборот топлива, поскольку водород необходимо хранить или в виде газа под огромным давлением (около 700 атмосфер), или в жидком виде с охлаждением до -252,87 °C. Аммиак хранится в баллонах в жидком виде при обычном давлении и температуре окружающего воздуха. Тем самым с точки зрения плотности хранения энергии аммиак выигрывает у газообразного водорода примерно в три раза по объёму, а по весу в 20 раз опережает литиевые аккумуляторы. Необходимо помнить, что в следующем десятилетии прогнозируется дефицит лития, не говоря о других важных для производства батарей металлах и минералах. Его и сейчас не хватает, если быть справедливым. Аммиак же, как и водород, можно производить экологически чистым способом, например, на атомных электростанциях или с помощью возобновляемой энергии, что делает его важным для устойчивой экономики будущего. Свою силовую платформу с питанием на основе аммиака компания Amogy установила на серийном тягаче Freightliner Cascadia 2018 года. Автомобиль прошёл испытания в кампусе Университета штата Нью-Йорк в Стони-Бруке, а в конце этого месяца планируется провести полномасштабную оценку реальных характеристик на испытательном треке. Кроме того, в активе Amogy есть 5-КВт силовая аммиачная установка для беспилотника и 100-кВт для трактора. Более того, Amogy работает в направлении мощнейших судовых установок для морского транспорта. К концу 2023 года она обещает показать работу буксира с силовой установкой мощностью 1 МВт, а к 2025 году обещает представить 10-МВт установку для морских контейнеровозов. И она не одна такая, ряд проектов предусматривает аммиак как косвенное и даже прямое топливо для авиационных и судовых двигателей. |