Опрос
|
реклама
Быстрый переход
Зелёная энергетика Евросоюза рискует попасть в серьёзную зависимость от Китая
18.09.2023 [12:45],
Алексей Разин
Геополитические события, ведущие свой отсчёт с весны 2022 года, нарушили зависимость Европы от ископаемых энергоносителей российского происхождения, но взятый курс на «зелёную энергетику» тоже не гарантирует странам региона самодостаточности или заметной диверсификации источников поставок сырья. Просто теперь место России в этом статусе рискует занять Китай, поскольку он контролирует существенную часть производства аккумуляторов и материалов для них. ![]() Источник изображения: CATL Осознание этого факта заставляет европейские власти, как сообщает Reuters, подготовить к намеченной на 5 октября встрече региональных лидеров в Испании доклад о назревающей проблеме попадания в зависимость от китайского сырья в сфере энергетики. Власти Евросоюза планируют диверсифицировать риски в этой сфере за счёт углубления сотрудничества со странами Африки и Латинской Америки. Чтобы достичь нейтральных выбросов диоксида углерода к 2050 году, европейская энергетическая отрасль должна будет полагаться на системы хранения электроэнергии на базе аккумуляторов, сырьё для производства которых сейчас поставляется преимущественно из Китая. Для сравнения, в 2021 году по поставкам природного газа Евросоюз на 40 % зависел от России, по нефтепродуктам эта зависимость достигала 27 %, а по каменному углю — всех 46 %. По мнению авторов доклада, аналогичная степень зависимости от Китая в сфере поставок сырья для производства аккумуляторов ничем хорошим для Европы не закончится. На направлении водородных топливных ячеек Евросоюз тоже зависит от Китая в значительной степени, но по сырью для производства электролита к аккумуляторам европейские игроки занимают лидирующие позиции с более чем 50 % мирового рынка. Если не начинать предпринимать меры по диверсификации, то к 2030 году Евросоюз окажется в такой же зависимости от Китая, как до 2022 года наблюдалась применительно к поставкам энергоносителей из России. В сфере цифровых технологий, по мнению авторов доклада, диверсификация европейской экономике тоже крайне необходима. Если по оборудованию для сетей передачи информации Европа неплохо себя обеспечивает, то по серверному оборудованию, дронам, сенсорам и системам хранения данных она опять же сильно зависит от азиатских поставщиков. При этом наблюдаемые изменения климата, по словам экспертов, не оставляют времени на раскачку, ограничивая возможности экономики региона по повышению производительности труда в сельском хозяйстве. Отрасль нуждается в оперативной модернизации, чтобы справиться с возникающими вызовами времени. В США начались испытания теплового аккумулятора на раскалённых кирпичах из графита — его электрический КПД превышает 30 %
29.08.2023 [15:17],
Геннадий Детинич
Компания Antora Energy приступила к полевым испытаниям блока теплового аккумулятора на кирпичах из графита. Токопроводность графита позволяет разогревать кирпичи до 2000 °C простым пропусканием тока через них. На выходе такого аккумулятора можно получить или тепло для промышленности, или электричество, которое получается с помощью встроенных в модуль инфракрасных фотодетекторов. ![]() Источник изображения: Antora Energy Промышленность и исследователи продолжают искать способы создать чистый и эффективный буфер для хранения энергии от возобновляемых источников. Переменный характер подачи электричества в сеть, который сопровождает выработку электричества силой ветра или лучами Солнца, заставляет использовать буферные аккумуляторы. Наиболее удобный способ — это запасать энергию в аккумуляторах, а именно — в литиевых батареях, требующих минимального обслуживания и обладающих достаточно высокой ёмкостью и плотностью хранения энергии. Но дёшево это точно не будет. По предыдущим оценкам, стоимость хранения электричества в литиевых батареях достигает $140/КВт·ч. После 2030 года она снизится до более приемлемых $20/КВт·ч, но всё равно будет дороже эксплуатации электростанций на природном газе, у которых стоимость производства электричества находится на уровне $10/КВт·ч. Тепловые аккумуляторы Antora Energy обещают приблизиться к этой нижней отметке при значительно большем уровне экологической чистоты и простоте изготовления и эксплуатации. В отличие от хранения тепла в солевых расплавах или в обычных кирпичах из глины, хранение тепла в графитовых кирпичах менее опасно и более эффективно. Разогрев кирпичей до 2000 °C (фактически — это графитовые электроды, серийно изготовляемые для нужд металлургии, к примеру, для выпуска алюминия) позволит использовать их тепло для выплавки стали. Если заказчику понадобится электрическая энергия, то модули тепловых аккумуляторов будут оборудованы инфракрасными фотодетекторами по типу солнечных панелей и КПД установки при этом будет не меньше 30 %. По словам разработчиков, особенно эффективно фотопреобразователи начинают работать после нагрева кирпичей выше температуры 1500 °C. После этой отметки в основном превалирует лучистая энергия. Но это будет на следующем этапе. Первая опытная установка будет разогреваться до 1500 °C и сможет несколько суток отдавать тепло потребителю. Интересно отметить, что компания Antora Energy частично финансируется из фондов небезызвестного филантропа Билла Гейтса. Также его фонд инвестировал в другую кирпичную компанию — Rondo Energy, которая строит в Таиланде крупнейший завод по производству кирпичей для тепловых аккумуляторов. В Китае построили первый в мире крупномасштабный гравитационный аккумулятор
03.08.2023 [11:07],
Геннадий Детинич
Швейцарская компания Energy Vault сообщила о завершении строительства и сдаче в эксплуатацию первого в мире коммерческого гравитационного аккумулятора энергии. Установка построена в Китае. Её мощность достигает 25 МВт, а ёмкость — 100 МВт·ч. Она переводит электрическую энергию в кинетическую при поднятии бетонных блоков на высоту и снова высвобождает её при спускании блоков на землю. ![]() Источник изображений: Energy Vault Построенное в Китае хранилище гравитационной энергии — это первое такое сооружение коммерческих масштабов. До этого в Швейцарии компания Energy Vault построила демонстрационную установку мощностью 5 МВт, но реализованный в Китае проект затмевает её. Более того, на волне успеха Китай требует построить ещё пять подобных накопителей общей ёмкостью 2 ГВт·ч. ![]() Гравитационные накопители по физике процесса напоминают гидроаккумулирующие электростанции, но без насосов и капризного оборудования. Груз в виде монолитных 24-т блоков поднимается на высоту до 100 и более метров и спускается в часы, когда требуется энергия. Это неплохой буфер для источников энергии из возобновляемых ресурсов и, прежде всего, от Солнца и ветра. КПД гравитационной станции Energy Vault начинается с 75 % и может превышать 80 %. Загрузка блоков (запасание энергии) может продолжаться от 2 до 12 часов и более в зависимости от задач и источников. Вводимая в эксплуатацию система в провинции Цзянсу недалеко от Шанхая будет работать в течение 4 часов. К сети электропередачи она будет подключена в четвёртом квартале текущего года. Местным властям так понравился проект, что они заказали ещё один такой накопитель. Интересно, что управляет всем этим хозяйством обучаемый алгоритм с функцией машинного зрения. Интересная будет площадка для съёмок очередного «Терминатора»… на фоне снующих вверх и вниз 24-тонных бетонных блоков. Кстати, где-то на просторах США компания Energy Vault тоже строит аналогичную гравитационную установку. Подключение источников экологически чистой энергии к энергосистеме США радикально ускорится
28.07.2023 [20:20],
Сергей Сурабекянц
Федеральная комиссия США по регулированию энергетики (FERC) вчера решила пересмотреть процесс утверждения новых энергетических проектов, который стал серьёзным препятствием для роста возобновляемой энергетики в США. Новое правило направлено на то, чтобы сократить время, необходимое для подключения проектов «зелёной» энергетики к энергосети, и устанавливает предельные сроки рассмотрения и штрафы за затягивания решений. ![]() Источник изображения: unsplash.com Сейчас для подключения нового энергетического проекта к сети требуется в среднем пять лет. Огромное количество проектов производства и хранения чистой энергии, совокупной мощностью более 2 000 гигаватт просто ждут своей очереди на одобрение. Это примерно равно мощности, которую генерируют все действующие электростанции США. Такие гигантские сроки подключения связаны с тем, что раньше деятельность FERC была сосредоточена на нескольких крупных электростанциях, работающих на ископаемом топливе, и сроки их строительства соответствовали скорости подключения к энергосистеме. В последнее время комиссия столкнулась с тысячами набирающих обороты небольших солнечных, ветряных и аккумуляторных проектов, поскольку стоимость проектов ветровой и солнечной энергетики стала ниже затрат на строительство новых угольных или газовых электростанций. Задержки могли стать ещё более длительными и, чтобы устранить отставание, новое федеральное правило потребует от управляющих сетями оценивать проекты покластерно, а не по одному. Установлены жёсткие сроки и штрафы за просрочку проверки. Новое правило отдаёт приоритет проектам, наиболее близким к завершению, и предусматривает защитные меры, такие как финансовые депозиты, от утопических нереализуемых прожектов. Председатель FERC Уилли Филлипс (Willie Phillip) назвал принятие нового правила переломным моментом для энергосети всей страны. Сегодня возобновляемые источники энергии составляют чуть более 20 % электроэнергетического баланса США. Чтобы достичь цели 100-процентной экологически чистой электросети к 2035 году необходимо кардинально ускорить подключение новых источников «зелёной» электроэнергии. Американская ассоциация чистой энергии назвала решение FERC «крайне необходимым действием, которое является ключевым шагом на пути к предсказуемому и экономически эффективному подключению новых источников чистой энергии к электрической сети». «Росатом» представил топливные сборки для АЭС западного образца и теперь может стать поставщиком почти для любого реактора
25.07.2023 [12:58],
Геннадий Детинич
На конференции TopFuel 2023 в китайском городе Сиане российские специалисты представили топливную сборку для легководных реакторов западного дизайна PWR. В Китае таких реакторов большинство и Россия, как минимум, может стать поставщиком в Поднебесную не просто сырья (урана), а топливных сборок — готовой высокотехнологичной продукции, которой на самом деле нет аналогов с перспективой стать поставщиком едва ли ни для любого реактора в мире. ![]() Источник изображения: «Росатом» По данным «Росатома», сегодня каждый шестой энергетический реактор в мире работает на топливе российского производства. С 90-х годов прошлого века компания Westinghouse начала предпринимать попытки создать собственный аналог топлива для реакторов советского и, позже, российского дизайна. Сразу зайти со стороны европейского рынка не получилось из-за ненадлежащих рабочих характеристик американского топлива, но прогресс был достигнут на Украине и сегодня, с учётом украинского опыта и благодаря санкционному отсечению России от ЕС, компания Westinghouse начала активно заключать контракты на поставку топливных сборок для АЭС на базе российских проектов в Европе. «Росатом», со своей стороны, тоже создал основу для поставки топливных сборок для реакторов Westinghouse и подобных. Основным преимуществом российского топлива «западного образца» считается полная независимость цепочек поставок. Процесс от начала до конца проводится в России с соблюдением всех технологических требований. Но и это не всё. Представленные российскими разработчиками топливные сборки имеют усовершенствования, которые позволяют топливу «гореть» дольше и с большей эффективностью. Иными словами, российская альтернатива позволяет реже проводить процедуру загрузки реактора и открывает возможность работать под усиленными нагрузками. Тем самым эти сборки позволяют вырабатывать более дешёвое электричество, что ещё сильнее подчёркивает статус атомной энергетики, как «зелёной». Сборки западного образца создаются на базе топлива российского дизайна ТВС-Квадрат (TVSK). Производство сборок топлива «ТВС-Квадрат» развёрнуто на Новосибирском заводе химконцентратов (ПАО «НЗХК», предприятие Топливной компании Росатома «ТВЭЛ»). Сборки прошли полный цикл испытаний в 2020 году в реакторе PWR-900 на энергоблоке № 3 АЭС «Рингхальс» в Швеции. После отработки их направили на независимую экспертизу в научный центр Studsvik в Швеции для проведения послереакторных исследований. Осенью 2021 года центр дал положительную оценку образцам. К сборкам российского производства, отработавшим на «западном» реакторе, не было никаких претензий. «Топливо TVSK даёт операторам АЭС уникальные преимущества: повышение производственных показателей энергоблоков на базе апробированных решений, повышение эксплуатационной безопасности — и всё это вместе с повышением устойчивости цепочек поставок топлива благодаря полностью независимым техническим решениям Росатома», — подчеркнул руководитель проекта группы программы ТВС-Квадрат АО «ТВЭЛ» Илья Ушмаров. Развитие солнечной энергетики усилило дисбаланс между выработкой энергии днём и потреблением ночью
06.07.2023 [16:18],
Геннадий Детинич
Управление энергетической информации США (EIA) сообщило, что по мере роста внедрения солнечной энергетики в Калифорнии углубляется так называемая «утиная кривая», что говорит об увеличении разрыва между пиковой выработкой в полуденные часы и пиковым потреблением в вечерние и ночные часы. Это создаёт критическую нагрузку на энергосистему и требует скорейшего решения. ![]() «Утиная кривая» — отношение выработки солнечной энергетики к потреблению электричества в течение суток. Источник изображения: EIA Растущий дисбаланс усложняет задачу оператора (Калифорнийского независимого системного оператора, CAISO) по балансировке энергосистемы, что грозит авариями, отключениями и убытками для поставщиков электрической энергии. Всем очевидно, что с этим что-то надо делать. От возобновляемой и солнечной энергии в частности никто не собирается отказываться, а мощности на ископаемом топливе, как минимум, не планируют расширять. Выход из этой ситуации может быть только один — это массовая, если не повсеместная, установка резервных хранилищ для электричества. Энергия запасается в пик выработки, а в пик потребления, когда цены на электричество самые высокие, подаётся в сети. В настоящее время дисбаланс устраняется за счёт регулярного оперативного вмешательства поставщиков энергии от мощностей на ископаемом топливе. Но в этом есть свои проблемы — это не даёт операторам время для согласования предложения и спроса. По крайней мере, в режиме реального времени это очень и очень сложно делать. Как итог операторы и поставщики несут убытки, а потребители рискуют оказаться без электричества. Другим следствием разрыва между пиковой выработкой солнечной энергии в полуденные часы и пиковым вечерним потреблением стала практика отключения невостребованных мощностей. Так, по данным EIA, в 2020 году Калифорнийский независимый системный оператор (CAISO) ограничил выработку солнечной энергии коммунальными предприятиями на 1,5 млн. МВт·ч, что составило 5 % от общего объёма производства. И это происходило регулярно, отчего солнечная энергетика стала наиболее распространенным источником энергии в штате, который подвергался отключениям. По данным EIA, 94 % отключений мощностей в 2020 году связаны с солнечной энергетикой. Своего пика отключения достигают в весенние месяцы, когда спрос относительно низок, а солнечная активность относительно высока. Например, в марте 2021 года в первые послеполуденные часы в среднем отключались мощности солнечной энергетики в объёме 15 %, о чём говорят цифры, предоставленные Министерство энергетики США. Традиционные мощности по выработке электроэнергии также страдают, поскольку их круглосуточная работа становится нерентабельной и это может привести к их закрытию без замены на мощности на возобновляемой энергии. Всё вместе взятое «открывает двери» для накопителей энергии, что станет дорогим удовольствием, но так необходимым для поддержки баланса энергосетей. Мощность аккумуляторных накопителей энергии в Калифорнии быстро выросла с 200 МВт в 2018 году до почти 5 ГВт сегодня. Согласно данным EIA, операторы планируют развернуть еще 4,5 ГВт накопителей в штате к концу текущего года, что говорит о том, что бум солнечной энергетики с батареями только начался. В то же время аналитики предупреждают, что подобные проекты станут окупаемыми не раньше 2038 года. По данным аналитиков DNV, через 10 лет около 20 % солнечных проектов в мире будут строиться с использованием специальных накопителей, а к середине века таких проектов будет около 50 %. Это вынужденная мера и она сработает, хотя гражданам, как всегда, придётся заплатить за это из своего кармана. Да, и это касается не только Калифорнии. Такое происходит и будет происходить везде, где солнечной энергетике создают режим максимального благоприятствования не задумываясь о последствиях. В Китае разрешили тестовый запуск первой в мире АЭС на ториевом реакторе
16.06.2023 [08:48],
Геннадий Детинич
Китайский национальный регулятор в сфере ядерной энергетики дал зелёный свет опытной эксплуатации первой в мире АЭС на ториевом топливе. Успех мероприятия будет означать продвижение Китая в сторону энергетической независимости. По некоторым подсчётам, запасов тория в стране хватит на 20 тыс. лет снабжения Поднебесной электричеством и теплом. Более того, стартовал проект по созданию малого модульного реактора на тории — их будут ставить везде. ![]() Источник изображения: Pixabay В своё время проект ториевого реактора Шанхайского института прикладной физики Китайской академии наук попал на первые страницы национальных газет. Во время закладки первого камня при строительстве комплекса была приглашена группа даосских монахов для обращения к небесам за благословением проекта. Работы стартовали в 2018 году и были завершены за три года вместо расчётных шести лет. Но затем проект забуксовал. Руководству института понадобились два года на согласование работ с экологами и регулятором, чтобы доказать его безопасность. Разрешение на опытную эксплуатацию ториевого реактора выдано 7 июня 2023 года. Реактор и 2-МВт электростанция на его основе построены в провинции Ганьсу в городе Вувее (Увэйе) на окраине пустыни Гоби. В этом проявилась главная особенность ториевых реакторов — вода для их охлаждения не нужна. Теплоноситель — расплав солей — одновременно является транспортом для доставки топлива в зону реактора и он же выводит отработанное топливо из активной зоны. Ториевые реакторы считаются намного безопасней классических атомных. Вода используется только во втором контуре и не контактирует с радиоактивными материалами. Даже в случае аварии ториевый реактор просто остынет без новой порции топлива без взрывов и разброса радиоактивных веществ. Это идеальный вариант для засушливых районов. В институте поделились новостью, что стартовала разработка малых модульных реакторов на ториевом топливе. В случае успеха технология может быть реализована не только на местном рынке, но также среди стран-партнёров Китая. Этим проектом интересуются специалисты во всём мире. Два года назад после завершения строительства проект был благосклонно встречен в научной среде и удостоился обзора в журнале Nature. В США в 60-е годы прошлого века пытались создать ториевые реакторы, но они так и не вышли из стен лабораторий. Сегодня интерес к жидкосолевым реакторам на ториевом топливе возвращается. Проекты начали рассматривать в Швейцарии и Норвегии. ![]() Источник изображения: Nature Принцип работы ториевого реактора строится на ядерной реакции изотопа тория-232 в процессе облучения вспомогательным радиоактивным топливом. Изотоп поглощает нейтроны и образует уран-233. Дальше происходит обычная для ядерных реакторов реакция расщепления урана с выделением тепла. Солевой раствор нагревается примерно до 450 °C и постепенно продвигается по тепловому контуру, отдавая тепло воде, которая превращается в пар и вращает турбину. Если испытания окажутся многообещающими, то уже к 2030 году будет построена опытная ториевая АЭС мощностью до 400 МВт. Ископаемое топливо впервые проиграло ветру и солнцу в Европе по месячной выработке электричества
09.06.2023 [12:21],
Павел Котов
По итогам мая ветряные и солнечные электростанции впервые произвели в Европе больше энергии, чем ископаемые виды топлива, гласят данные энергетического аналитического центра Ember. На ветер и солнце за отчётный период пришёлся 31 % европейской электроэнергии или 59 ТВт·ч, тогда как ископаемое топливо поставило антирекорд с 27 % и 53 ТВт·ч. ![]() Источник изображения: Bishnu Sarangi / pixabay.com Экологически чистым источникам удалось поставить рекорд за счёт активного роста солнечной энергетики в регионе, высокой производительностью ветрогенераторов и низкого спроса на электроэнергию. На одну только солнечную энергетику пришлись рекордные 14 % (27 ТВт·ч) от всей электроэнергии в ЕС по итогам мая — этому сегменту впервые удалось обойти угольную энергетику, остановившуюся на отметке в 10 %. Ветроэнергетика в мае 2023 года выросла по сравнению с маем прошлого года и достигла доли в 17 % (32 ТВт·ч) выработанного в ЕС электричества, но уступила рекордному показателю от января, когда за счёт ветра было выработано 54 ТВт·ч или 23 % электричества. ![]() Источник изображения: ember-climate.org Уголь, наиболее загрязняющий источник, помог выработать в мае 10 % (20 ТВт·ч) европейского электричества — столь низкая доля в последний раз наблюдалась в пандемийный апрель 2020 года. Последний результат — не случайное исключение: с января по май регион сократил выработку от газа и угля на 20 % и 15 % соответственно, тогда как солнечная энергия показала рост на 10 %, а ветряная — на 5 %. 2022 год стал первым в истории Европы, когда ветер и солнце обошли газовую энергетику. Теперь им удалось обойти все виды ископаемого топлива вместе взятые. ![]() Источник изображения: ember-climate.org Соответствующие результаты показали и отдельные страны. Германия, несмотря на закрытие последних АЭС в стране, снизила выработку электричества на угольном источнике до рекордно низких с 2020 года 7 ТВт·ч; Польша, один из ведущих европейских оплотов «угольного» электричества, сократила его до тех же 7 ТВт·ч — для страны это 62 %. Серийный выпуск российских 11-метровых АЭС «Шельф-М» мощностью 10 МВт начнётся в 2032 году
06.06.2023 [12:40],
Геннадий Детинич
Главный конструктор реакторных установок атомных станций малой мощности (АСММ) Денис Куликов сообщил, что серийное производство малых АЭС «Шельф-М» мощностью 10 МВт должно начаться с 2032 года. Одна установка «Шельф-М» в течение 60 лет обеспечит подачу электрической мощности 10 МВт и тепловой мощности 35 МВт, и таких модулей может быть несколько, что позволяет гибко масштабировать установки. Тепло и энергия придут во все медвежьи уголки страны. ![]() Вариант устройства реактора «Шельф-М». Источник изображения: Страна Росатом «В следующем году мы завершаем разработку технического проекта реакторной установки и основного оборудования энергоблока. До 2026 года должны пройти ресурсные испытания основных узлов и элементов конструкции, а к 2027-му планируется начать поставку оборудования на площадку. Работы там должны стартовать заранее, возможно, уже в следующем году», — отметил Куликов, которого процитировали РИА Новости. Первый атомный энергоблок с реактором «Шельф-М» построят в Якутии в районе золоторудного месторождения Совиное, лицензией на разработку которого владеет Эльконский ГМК — «дочка» горнорудного дивизиона «Росатома». Согласно плану, ввод энергоблока в эксплуатацию запланирован на 2030 год. Эксплуатация блока позволит подготовиться к серийному производству модулей, выпуск которых обещает начаться с 2032 года. Размеры «Шельф-М» составляют 11 м в длину (диаметр реактора — 8 м). Вес полностью подготовленного модуля вместе с реакторной установкой достигает 370 тонн, что допускает его перевозку с одной площадки на другую, например, на барже. Проект является одним из самых маломощных среди будущих предложений в классе малых российских АЭС. Следующей по мощности ступенькой станет АЭС на реакторе РИТМ-200Н (55 МВт). Установку создадут в якутском поселке Усть-Куйга для Кючусского золоторудного месторождения (2024 — год начало строительства, ввод — до 2030 года). Для совсем скромного потребления будет предложен реактор проекта «Елена АМ» мощностью до 400 кВт. Тем самым Россия будет иметь весь спектр реакторных установок для любых нужд. В США придумали, как использовать уголь в «зелёной» энергетике — в нём можно хранить водород
26.05.2023 [13:07],
Геннадий Детинич
Учёные из Университета Пенсильвании предложили неожиданное применение обычному углю в низкоуглеродной энергетике. Уголь любых марок можно использовать как контейнер для длительного хранения газообразного водорода. Первые эксперименты в этом направлении обнадёживают. Это позволит сохранить отрасль, десятки тысяч рабочих мест и даст старт водородной энергетике — чистой безо всяких оговорок. ![]() Источник изображения: Pixabay С выработкой водорода особых проблем сегодня нет. Есть проблемы с его длительным хранением в больших объёмах. Предлагаются как классические способы хранения с закачиванием в подземные пустоты, так и экзотические в виде гидридов металлов. Каждое из предложенных решений, которое также включает заключение водорода в порошки, пасты и разнообразные по содержанию картриджи, имеет свои плюсы и минусы. Идеального решения так и не найдено и уголь, как ни странно, может оказаться перспективным кандидатом на роль контейнера для водорода. Известно, что уголь хорошо абсорбирует газообразный метан. Это же свойство угля, решили учёные, можно перенести на водород. Для проверки идеи на практике была создана установка, которая создавала оптимальное давление для нагнетания водорода внутрь угля. «Мы собрали новую и очень сложную конструкцию, — сказал Шимин Лю (Shimin Liu), доцент кафедры энергетики и минерального машиностроения в Пенсильванском университете. — Потребовались годы, чтобы понять, как это правильно сделать. Методом проб и ошибок нам пришлось разработать систему экспериментов, для чего пригодился наш предыдущий опыт с углями и сланцами». После анализа семи марок угля из разных угольных районов США, исследователи обнаружили, что этот материал действительно исключительно хорошо хранит водород. Лучшим из них оказался битуминозный уголь с низким содержанием летучих веществ, найденный в Вирджинии, и антрацитовый уголь из Пенсильвании. Как пояснили учёные, газоулавливающая способность угля основана на его уникальном составе. Он, по сути, похож на губку, которая может удерживать гораздо больше молекул водорода по сравнению с другими неуглеродными материалами. На этом изучение угля как контейнера для длительного хранения водорода не окончено. Учёные намерены изучить его проницаемость и диффузионную способность. Это поможет понять, как быстро водород может закачиваться в различные виды угля и извлекаться из него, что, в свою очередь, может привести к созданию эффективных водородных «батарей» на основе этого ископаемого ресурса. Первый в мире микромодульный ядерный реактор построят в Канаде к 2027 году
15.05.2023 [22:03],
Николай Хижняк
В Канаде построят первый в мире микромодульный ядерный реактор. Местом строительства был выбран исследовательский центр Canadian Nuclear Laboratories в деревне Чок-Ривер, расположенной в округе Ренфру канадской провинции Онтарио. Установку разработала компания Global First Power. ![]() Источник изображений: CTV News «Один из таких реакторов сможет обеспечивать электроэнергией 5000 человек в течение 20 лет. При этом объём радиоактивных отходов от такой установки составит всего 1 кубический метр», — прокомментировал исполнительный директор Global First Power Джос Дининг (Jos Diening) в интервью CTV News. Целью Global First Power является использование компактных реакторов для обеспечения электроэнергией удалённых регионов, не подключённых к общей канадской энергетической системе, что особенно актуально в северной части страны. «На севере живёт много людей. Это открывает для нас большой потенциал. Мы хотим заменить дизельные генераторы. Одна из наших установок способна произвести объём электроэнергии эквивалентный объёму, полученному при сжигании 200 млн литров дизельного топлива», — добавил Дининг. Микромодульные реакторы будут состоять из 90 частей, каждая из которых будет иметь размеры грузовика. Эти части (или модули) будут производиться в том числе и в центрах CNL. Затем модули будут транспортировать на нужное место, где из них будет собираться реактор. Процесс чем-то напоминает сборку конструктора Lego. В собранном виде размеры реактора не будут превышать площадь футбольного поля. Первый из таких реакторов возведут в Чок-Ривер. В качестве демонстрации он будет обеспечивать электроэнергией кампус CNL. Построить реактор планируют к 2027 году. «Это идеальное место для демонстрации возможности реактора, поскольку это по сути удалённый населённый пункт. Если мы сможем сделать это здесь, то сможем везде», — прокомментировала Эми Готтшлинг (Amy Gottschling), вице-президент по науке, технологиям и коммерции компании Atomic Energy of Canada Ltd., которой принадлежит кампус CNL. Microsoft заказала строительство термоядерного реактора
10.05.2023 [17:51],
Павел Котов
Microsoft заключила соглашение с компанией Helion Energy, которая обязалась построить для софтверного гиганта первый в мире коммерческий термоядерный реактор. Управляемый термоядерный синтез долгое время считался Святым Граалем энергетики — потенциально безграничным экологически чистым источником энергии, который учёные пытались построить не одно десятилетие. ![]() Trenta — один из прототипов реактора Helion. Источник изображения: helionenergy.com Helion Energy считает, что сможет построить термоядерный реактор для Microsoft к 2028 году — он должен будет вырабатывать не менее 50 МВт электричества. Задача крайне сложная. Даже самые оптимистичные оценки учёных по поводу создания термоядерных электростанций варьируются от конца текущего десятилетия до нескольких десятилетий вперёд. Успех компании будет зависеть от возможности совершить технологический прорыв за невероятно короткий промежуток времени, а затем вывести технологию на рынок и сделать её конкурентоспособной по стоимости в сравнении с другими источниками энергии. Но Helion это не смущает, как и предусмотренные соглашением финансовые санкции в случае неудачи. Термоядерный синтез фактически повторяет то, как в звёздах образуются свет и тепло. В случае с Солнцем это формирование атомов гелия из водорода и выделение больших объёмов энергии. С пятидесятых годов прошлого века учёные пытаются воспроизвести этот процесс контролируемым образом — масштабно получалось только неконтролируемым, например, в случае с водородной бомбой. Эта технология противоположна атомным электростанциям, на которых энергия высвобождается путём деления или расщепления атомов. Главным недостатком расщепления являются остающиеся после него нестабильные ядра — радиоактивные отходы. В случае с термоядерным синтезом они не образуются, поскольку при реакции, по сути, просто появляются новые атомы гелия. ![]() Источник изображения: efes / pixabay.com Сегодня управляемый термоядерный синтез пытаются воспроизвести, обстреливая вещество мощными лазерными лучами или удерживая магнитными полями плазму в машине, называемой токамаком. Helion решила пойти своим путём, построив 12-метровый плазменный ускоритель, в котором топливо будет разогреваться до 100 млн °C. Изотоп водорода дейтерий и гелий-3 будут нагреваться до плазменного состояния и сжиматься магнитными полями до тех пор, пока не запустится реакция синтеза. Компания утверждает, что при этом будет выделяться больше энергии, чем расходоваться — до недавнего времени учёным это не удавалось, и лишь в минувшем декабре прорыва удалось достичь исследователям Ливерморской национальной лаборатории им. Э. Лоуренса (LLNL). Helion только предстоит достичь этого этапа. Ещё одним потенциальным препятствием является необходимость получить достаточное количество гелия-3 в качестве топлива, хотя в компании утверждают, что у них есть запатентованная технология получения этого редкого изотопа из атомов дейтерия. Наконец, полученная в термоядерном реакторе электроэнергия должна быть доступной, сравнимой по цене с производимой на традиционных электростанциях. Helion не уточнила, какую цену согласовала в контракте с Microsoft, но в конечном итоге компания собирается выйти на $0,01 за 1 кВт·ч. Евросоюз готовится строить ракеты с ядерными силовыми установками для исследования дальнего космоса
04.05.2023 [07:18],
Руслан Авдеев
Европейское космическое агентство (ESA) финансирует несколько исследований, изучающих возможность использования ядерных силовых установок в ракетах для освоения дальнего космоса. Движение космических аппаратов сегодня обеспечивается либо с помощью запасов химического топлива, либо с использованием аккумуляторной электроэнергии или энергии Солнца. При этом такие методы почти достигли предела эффективности, а применение ядерной электрической установки (NEP) потенциально позволяет преодолеть ограничения. Это позволит человечеству путешествовать дальше, чем когда-либо ранее. ![]() Источник изображения: ESA Одно из исследований — pReliminary eurOpean reCKon on nuclEar elecTric pROpuLsion for space appLications (RocketRoll) проводится учёными из Чехии и Германии. По мнению исследователей, ядерные силовые установки могут быть более эффективными, чем самые эффективные химические двигатели или варианты на солнечной энергии — атомная энергия позволит достичь недоступных для других технологий мест, в том числе за пределами Солнечной системы. Новые методы имеют чрезвычайно важное значение, поскольку атомная энергия не только обеспечит манёвренность в космосе, но и позволит создавать жилые модули и базы на Луне и в более отдалённых локациях, включая Марс — туда понадобится доставлять много материалов для строительства, что с существующими технологиями затруднительно. Как заявляют учёные, главным преимуществом атомных реакций перед химическими является их несоизмеримо более высокая эффективность, а в сравнении с силовыми установками на солнечных элементах, атомные совсем не требуют солнечного света. Это чрезвычайно важно для длительных путешествий с большими грузами и исследований за пределами орбиты Марса. Учёные и инженеры в рамках программы RocketRoll в следующие 11 месяцев должны будут разработать технико-экономические обоснования для программы разработки будущих ракет-носителей ESA Future Launchers Preparatory Program (FLIPP) и определить преимущества использования буксира NEP в сравнении с классическими двигательными установками. По словам учёных, целью исследования является изучение возможности использования атомного топлива для космической логистики и исследовательских миссий. Кроме того, учёные сделают обзор текущего европейского опыта, технологий и производственных возможностей для разработки космических аппаратов на ядерных двигателях. С самого начала им придётся учитывать особые требования к безопасности таких установок. Считается, что благодаря современным технологиям идея создания атомных двигателей, наконец, приобрела в Европе актуальность в сравнении с предыдущими разработками подобного типа. Ожидается, что результаты проекта RocketRoll представят уже в следующем году, они могут стать основой будущих программ ESA, а в эксплуатацию первые NEP могут начать вводить уже к 2035 году. Известно, что в NASA действует собственная программа исследований, связанных с возможным использованием ракет на ядерных силовых установках. Агентство сотрудничает с военным ведомством — DARPA для разработки ядерного теплового двигателя, испытания которого в космосе могут состояться уже в 2027 году. Китай подключил к энергосети первую солнечную электростанцию «пустынного» кластера, что может привести к значительным геомагнитным аномалиям
29.04.2023 [15:02],
Геннадий Детинич
Китайские источники сообщили о включении в национальную распределительную сеть Китая первой очереди солнечных электростанций из так называемого «пустынного» кластера. В пустыне Гоби и других засушливых районах страны планируется развернуть до 450 ГВт солнечных и ветряных мощностей. Мощность первой подключенной к сети солнечной станции составила 1 ГВт. Электричество от неё будет передаваться в центральную китайскую провинцию Хунань по линиям повышенного напряжения, и это может иметь последствия. ![]() Где-то в песках Гоби. Источник изображения: CHINA NEWS SERVICE Проект «пустынных» электростанций предусматривает создание очень и очень протяжённых высоковольтных линий передачи электричества. Для снижения потерь на таких дистанциях было решено повысить передаваемое напряжение с 800 кВ до 1100 кВ. Для сравнения, на высоковольтных линиях передачи в США используется напряжение 500 кВ. Повышение напряжения сопровождается ростом напряжённости электромагнитного поля по маршруту и ведёт к геомагнитным аномалиям. Это может приводить к более частому возникновению гроз, изменению в картине магнитного поля Земли, сбоям в работе систем позиционирования и к искажению спутниковых данных. Особой ясности в этом вопросе нет. Китай станет первым, кто всё это испытает на практике. Оператором только что введённой в строй первой очереди электростанций является компания China Energy Investment Corp. Солнечная ферма мощностью 1 ГВт должна будет вырабатывать в год до 1800 ГВт•ч, что эквивалентно потребности в электроэнергии 1,5 млн домашних хозяйств, утверждают в компании. Проект предусматривает общую установленную мощность 13 ГВт и оценивается в 85 млрд юаней ($12,28 млрд). По данным NEA, установленная мощность возобновляемых источников энергии в Китае в первом квартале продолжала расти, достигнув 47,4 ГВт, что на 86,5 % больше, чем за аналогичный период прошлого года, и составляет 80,3 % от общей вновь добавленной установленной мощности. Новые установленные мощности в ветроэнергетике выросли до 10,4 ГВт, а солнечной энергетики — до 33,66 ГВт, сказано в сообщении. В первом квартале общая установленная мощность возобновляемых источников энергии в Китае достигла 1260 ГВт, включая 376 ГВт ветровой энергии и 425 ГВт фотоэлектрической энергии. Выработка электроэнергии из возобновляемых источников также постоянно увеличивается: национальное производство электроэнергии из возобновляемых источников достигло 594 700 ГВт•ч, что на 11,4 % больше, чем в прошлом году, в том числе 342 200 ГВт•ч ветровой и солнечной энергии, что на 27,8 % больше, чем годом ранее. Швейцарская компания построит гигантские гравитационные аккумуляторы в США и Китае
25.04.2023 [13:16],
Геннадий Детинич
Швейцарская компания Energy Vault к лету завершит строительство самых масштабных в мире площадок по аккумулированию электрической энергии в гравитационных системах. Один аккумулятор строится в США, а второй — в Китае. Энергия будет запасаться при подъёме 24-тонных блоков на высоту свыше 100 метров. Её выработка будет происходить в процессе контролируемого спуска блоков на уровень земли. ![]() 24-т блок для накопления энергии подъёмом на высоту. Источник изображения: Energy Vault По словам проектировщиков, гравитационные аккумуляторы просты, надёжны, собираются из местных комплектующих, включая блоки, и могут работать в любых климатических условиях без специального контроля и сложного климатического оборудования. В момент избытка электрической энергии 24-т блоки подаются к лифтам и поднимаются на высоту. В США сооружение будет достигать в высоту 140 м, а в Китае — 120 м. Когда выработка электрической энергии падает, что актуально в случае солнечной и ветряной энергетики, блоки спускаются на лифтах вниз, раскручивая роторы генераторов и вырабатывая электричество. За время спуска блока размерами 3,5 × 2,7 × 1,3 м со скоростью 2 м/с вырабатывается примерно 1 МВт электричества с КПД более 80 %. Здания гравитационного аккумулятора можно строить не только вверх, но и вширь, таким образом наращивая ёмкость хранения энергии. Например, хотя китайский аккумулятор будет ниже строящегося в США, за счёт большей площади сооружения он может хранить до 100 МВт·ч электричества, тогда как американский — всего 36 МВт·ч. Блоки для запасания энергии изготавливаются на месте из прессованной земли. Добавляются только скрепляющие растворы не более 1 % на вес блока. Система простая и неприхотливая в эксплуатации. Разработчик даёт 35 лет гарантии на работу гравитационной аккумулирующей системы. ![]() Строительство гравитационного аккумулятора в Китае В Швейцарии компания Energy Vault с 2020 года эксплуатирует опытный аккумулятор ёмкостью 5 МВт·ч. Он подключён к местной электросети и является не просто демонстратором, а рабочим инструментом. Но это маленький по своим масштабам проект. Два новых проекта — один в США в Снайдере (штат Техас) и второй в Китае к северу от Шанхая — станут доказательством хорошего и надёжного масштабирования платформы. |