Сегодня 13 июля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → iter

Для термоядерного реактора ITER изготовлена крупнейшая и мощнейшая магнитная система в мире — она могла бы поднять авианосец

Для международного проекта термоядерного реактора ITER на юге Франции апрель 2025 года выдался термоядерным — в хорошем смысле этого слова. На площадке произошло сразу несколько важных событий, о чём спешит сообщить руководство проекта.

 Источник изображения: ITER

Источник изображения: ITER

Наиболее значимым достижением стало завершение создания всех элементов импульсной сверхпроводящей магнитной системы реактора — как полоидальных магнитов, удерживающих плазму в рабочей камере в форме тора, так и центрального соленоида, индуцирующего ток в плазме для её разогрева. В апреле был изготовлен последний, шестой, элемент соленоида — это произошло в США на предприятии компании General Atomics. Его ещё предстоит доставить во Францию, а затем собрать все компоненты вместе, однако это произойдёт позже — уже после монтажа рабочей камеры токамака.

Полностью собранная система импульсных магнитов будет весить почти 3000 тонн. Сила их электромагнитного поля будет такова, что сможет поднять целый авианосец. Шесть кольцевых магнитов полоидального поля, предназначенных для удержания плазмы вдали от стенок рабочей камеры, были изготовлены Россией, ЕС и Китаем.

Значительную часть сверхпроводников для этих магнитов произвели в России — это около 120 тонн ниобий-титановых (NbTi) сверхпроводников для полоидальных магнитов (40 % от необходимого объёма) и около 20 % ниобий-оловянных (Nb₃Sn) сверхпроводников для тороидальных магнитов. Также в России были созданы гигантские токопроводящие шины, обеспечивающие питание магнитов необходимым напряжением и силой тока, а также верхние заглушки для вакуумных камер.

Несмотря на все трудности и очередной перенос сроков по запуску реактора ITER с 2035 года на 2039 год, в 2024 году строительные работы по проекту были полностью завершены. Кроме того, на площадку доставили большую часть основных компонентов реактора, и сейчас он фактически находится на стадии сборки. В частности, в апреле 2025 года первый сегмент вакуумного сосуда (рабочей камеры) был установлен в шахту токамака примерно на три недели раньше запланированного срока.

 Последний (шестой) сегмент центрального соленоида реактора ITER

Последний (шестой) сегмент центрального соленоида реактора ITER

Напомним, это уже второй подход по началу сборки рабочей камеры реактора в шахте проекта. Когда два года назад туда первый раз опустили два первых сегмента, обнаружилось несоответствие в размерах сопрягаемых элементов и сегменты пришлось поднимать из шахты для подгонки. Теперь все несоответствия устранены, и началась окончательная сборка вакуумной камеры — своеобразного «пончика», внутри которого будет циркулировать плазма, разогретая до 150 миллионов градусов Цельсия.

В конечном итоге дейтерий и тритий в виде газа должны быть нагреты в рабочей камере до состояния плазмы, когда атомы теряют свои электроны. Это похоже на процессы, происходящие в звёздах, где ядра водорода преодолевают кулоновское отталкивание и сливаются, образуя гелий и выделяя огромное количество энергии. В звёздах этот процесс происходит под воздействием колоссальной гравитации, поэтому температура в их недрах — всего около 15 миллионов градусов. На Земле такую гравитацию воспроизвести невозможно, поэтому требуется намного более высокая температура.

Также невозможно повлиять на квантовые процессы, происходящие при термоядерном синтезе. Во многом реакция возможна благодаря квантовой неопределённости: ядра водорода туннелируют сквозь потенциальный барьер, преодолевая кулоновское отталкивание. Ни одной гравитации и тепла было бы недостаточно для запуска самоподдерживающейся термоядерной реакции — ни в звезде, ни в реакторе. Поэтому звёзды светят, прежде всего, благодаря квантовой природе нашего мира.

Ожидается, что при полной загрузке ITER будет вырабатывать 500 МВт энергии термоядерного синтеза, потребляя при этом лишь 50 МВт входной тепловой энергии. При такой эффективности большая часть энергии будет поступать от саморазогрева плазмы, превращая её в устойчивую «горячую» среду.

Генеральный директор ITER Пьетро Барабаски (Pietro Barabaschi) отметил: «Уникальность ITER заключается не только в его технической сложности, но и в формате международного сотрудничества, который позволил проекту выжить в условиях меняющегося политического ландшафта. Это достижение доказывает, что, когда человечество сталкивается с экзистенциальными проблемами, такими как изменение климата и энергетическая безопасность, мы можем преодолеть национальные разногласия и найти решения. Проект ИТЭР — это воплощение надежды. С помощью ИТЭР мы показываем, что устойчивое энергетическое будущее и мирный путь вперёд возможны».

В проекте задействованы тысячи учёных и инженеров из 33 стран, однако в первую очередь он опирается на устойчивое партнёрство семи ключевых участников: Китая, Европы, Индии, Японии, Кореи, России и США

Запуск «искусственного Солнца» официально отложен — первые операции на термоядерном реакторе ИТЭР перенесли на 2035 год

Вчера был последний день заседания Совета ИТЭР, в ходе которого были определены новые временные рамки ключевых этапов реализации проекта по строительству масштабного термоядерного реактора. Задержки могут составить до 10 лет. Это сделает проект дороже, но в целом не повлияет на достижение поставленных десять лет назад задач — зажечь на Земле «искусственное Солнце» и получить почти бесконечный источник чистой энергии.

 Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Согласно первоначальному плану, первую плазму на реакторе ИТЭР (ITER), который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным. Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, что теперь приходится исправлять, а также выявлены дефекты сварки в охлаждающих трубах кожуха вакуумной камеры, что вынудило менять десятки километров труб.

Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. Более подробный отчёт и новые даты этапов ввода реактора в строй гендиректор проекта озвучит в июле на брифинге. Пока же он заявляет, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год. Ранее на этот год были запланированы первые полноценные термоядерные реакции на установке на дейтерий-тритиевом топливе.

Новые сроки не означают, что все научные операции на проекте сдвинуты на десять лет. Эксперименты с малыми токами плазмы начнутся раньше по мере сборки реактора. Вероятно также, что первая плазма начнёт генерироваться раньше 2035 года. В конечном итоге задача ИТЭР — набить как можно больше шишек, чтобы на его примере постройка всех последующих коммерческих реакторов шла как можно глаже. Все страны-участницы проекта, представленные на Совете ИТЭР, с этим безоговорочно согласились.

Реактор ИТЭР не предназначен для генерации электрического тока. Эта задача будет возложена на другой международный проект — DEMO, который подразумевает постройку уже электростанции на термоядерном реакторе типа токамак. В задачи ИТЭР входит доказательство концепции — работы масштабного термоядерного реактора по схеме токамака. В идеале реактор должен выдавать мощность 500 МВт не менее 400 с без перерыва при потреблении 50 МВт непосредственно на нагрев плазмы. Вспомогательные структуры реактора при этом могут дополнительно потреблять 300 МВт, но для опытной установки это мелочи. Выход энергии всё равно будет положительным. Жаль только, что он опять откладывается.

В России стартовало серийное производство ответственных компонентов термоядерного реактора ИТЭР

Предприятие Госкорпорации «Росатом» — АО «НИКИЭТ» — изготовило первую серийную партию высокотехнологичных компонентов для международного термоядерного экспериментального реактора (ИТЭР), строящегося на юге Франции. На базе компонентов российского производства будут изготовлены самые теплонагруженные передние стенки бланкета реактора — первой линии защиты реактора и внутрикамерного оборудования от контакта с плазмой.

 Несущая конструкция первой Источник изображения:

Несущая конструкция панелей первой стенки бланкета ИТЭР. Источник изображения: АО «НИКИЭТ»

Россия должна изготовить 40 % передних стенок бланкета — это 179 изделий. Со стороны плазмы они покрыты бериллием, а под его защитой будет железоводный блок охлаждения с невероятной производительностью — до 100 кг теплоносителя в секунду. Передние стенки бланкета изготавливают АО «НИКИЭТ» и АО «НИИЭФА». Каждая такая стенка должна выдерживать нагрузку до 4,7 МВт на м2. Это сменная деталь реактора, которая будет заменяться по мере износа, что продлит эксплуатацию реакторной камеры до 25 лет или дольше вместо 5 лет, если бы эти модули были несъёмными. Заменять блоки бланкета будет роботизированная система.

Основу передней стенки бланкета составляет несущая конструкция панелей первой стенки (НКПС) бланкета. АО «НИКИЭТ» сообщило об изготовлении первых серийных изделий НКПС. Всего до конца года будет изготовлено 20 таких компонентов. На базе НКПС собирается передняя стенка из защитных панелей, тепловых экранов и системы протока теплоносителя. Эти элементы будут испытывать в термоядерном реакторе колоссальные нагрузки по целому ряду воздействий — от радиационных до химических и тепловых, что требует высочайшей точности изготовления и соблюдения чистоты материалов.

«НИКИЭТ обладает значительными компетенциями и является одним из ключевых производителей компонентов для ИТЭР. Серийное производство изделий осуществляется на собственных производственных участках с применением высокотехнологичного оборудования, что гарантирует их высокое качество и соответствие всем установленным международным стандартам. До конца текущего года планируется завершить первый этап производства компонентов для 20 НКПС», — отметил заместитель главного конструктора по ядерно-физическим системам ИТЭР, начальник отдела разработки бланкетов и систем преобразования энергии для термоядерных реакторов АО «НИКИЭТ» Максим Николаевич Свириденко.

 Педняя стенка бланкета, блок охлаждения и модуль бланкета в сборе, а также схема размезщения модулей бланкета в реакторе

Передняя стенка бланкета, блок охлаждения и модуль бланкета в сборе, а также схема размещения модулей бланкета в реакторе

Разработка, изготовление и отправка уникального отечественного оборудования осуществляется в строгом соответствии с графиком сооружения экспериментального термоядерного реактора. Основной вклад Российской Федерации заключается в разработке, изготовлении и поставке 25 систем будущей установки. Но в какие сроки будет получена первая плазма в реакторе, сегодня можно только догадываться. Вместо продолжения сборки реактора его начали разбирать и ремонтировать.


window-new
Soft
Hard
Тренды 🔥
Grok вышел из-под контроля, а Турция заблокировала ИИ за оскорбление президента 5 ч.
Новая статья: Dune: Awakening — песочница Лисан аль-Гаиба. Рецензия 11 ч.
Особые цены для особо ценных клиентов: Broadcom запросила у Telefónica Germany за поддержку VMware впятеро больше прежнего 12 ч.
Франция возбудила уголовное дело в отношении соцсети X по подозрению в манипулировании алгоритмами 12 ч.
Китайский стартап Moonshot выпустил открытую ИИ-модель Kimi K2, превосходящую GPT-4 14 ч.
Microsoft представила рассуждающую ИИ-модель Phi-4-mini-flash-reasoning— в 10 раз быстрее аналогов и запустится даже на смартфоне 21 ч.
ИИ-боты оказались никудышными психотерапевтами — они давали вредные советы и отказывались общаться с алкоголиками 21 ч.
Meta не откажется от бизнес-модели «плати или соглашайся», несмотря на угрозу штрафов в ЕС 22 ч.
Meta пополнила коллекцию ИИ-талантов, поглотив специализирующийся на голосовом ИИ стартап PlayAI 22 ч.
Поглощение ИИ-стартапа Windsurf компанией OpenAI сорвалось и специалистов тут же переманила Google 23 ч.