|
Опрос
|
реклама
Быстрый переход
Грибная электроника приближается — учёные превратили мицелий шиитаке в нейронную сеть
28.10.2025 [12:26],
Геннадий Детинич
В последние годы учёные активно исследуют возможность использования в электронике грибного мицелия как естественной нейронной сети. С его помощью электроника может стать биоразлагаемой и энергоэффективной, создав основу для высокопроизводительных вычислений будущего, где обычная компостная куча сможет стать элементом кластера.
Источник изображения: The Ohio State University / John LaRocco Традиционные полупроводники на всех этапах обработки требуют огромных энергозатрат и наносят вред окружающей среде, тогда как грибные структуры предлагают экологически чистый и менее затратный с точки зрения потребления энергии подход к обработке и хранению данных. В новом исследовании учёные из Университета штата Огайо (The Ohio State University) предприняли попытку создать на основе обычных съедобных грибов органические мемристоры — компоненты, имитирующие нейронную активность мозга. Подобная технология открывает путь к биоэлектронике, где грибные сети выступают в роли стабильных и недорогих элементов вычислительных платформ. В ходе работы, результаты которой были опубликованы в журнале PLOS ONE, исследователи культивировали образцы мицелия шиитаке и шампиньонов, после чего высушили их для лучшей сохранности и подключили к электронным цепям. Для тестирования применялись различные напряжения и частоты: в мицелий помещались электроды, а съём данных производился в разных точках структуры. Таким образом, учёные «обучали» сеть мицелия работать подобно мемристору — элементу памяти, который сохраняет информацию о предыдущих электрических состояниях. В ходе экспериментов было обнаружено, что некоторые участки мицелия воспроизводят эффекты памяти, аналогичные работе полупроводниковых чипов. В частности, удалось добиться скорости переключения электрического состояния мицелия с частотой 5850 Гц и точностью 90 %. По мере увеличения частоты эффективность работы памяти из мицелия снижалась, однако этот барьер можно преодолеть за счёт расширения сети (и параллельной работы множества элементов памяти) — что для грибного мицелия труда не составит. В режиме ожидания, как нетрудно догадаться, мицелий не требовал энергии для поддержания состояний. Получив столь интересный результат, учёные уже мечтают о носимых гаджетах с грибным мицелием в качестве нейронной сети и о создании огромных ферм для масштабирования вычислений в интересах аэрокосмической отрасли или супервычислений — с минимальными затратами энергии и возможностью полной утилизации «грибных» компьютеров. Почему были выбраны грибы шиитаке? Возможно, это реверанс в сторону спонсора работы — Исследовательского института Honda. В России создали первую отечественную систему управления роботами «силой мысли»
11.07.2025 [14:05],
Геннадий Детинич
Российские учёные разработали полностью отечественную технологию управления роботами «силой мысли». Об этом сообщила пресс-служба Национального центра физики и математики (НЦФМ), докладывает агентство ТАСС.
Источник изображения: ИИ-генерация Grok 3/3DNews «В рамках научной программы НЦФМ создана полностью российская нейроморфная технология управления роботизированными системами, — говорится в пресс-релизе НЦФМ. — Для управления роботами "силой мысли" учёные использовали мемристоры, что делает электротехнику более мобильной, компактной и энергоэффективной, а взаимодействие с ней быстрым и надёжным». Разработчики подчёркивают, что вся используемая в проекте электроника — отечественная, как и лежащие в её основе технологии. Добавим, процесс интеграции мемристоров в полупроводниковые чипы специалисты НЦФМ довели до стадии производства ещё в марте 2024 года. Мемристоры преобразуют заряд в сопротивление, что позволяет им хранить данные без питания. Это ключевое свойство памяти RRAM (резистивной RAM), которое делает электронику с ней более энергоэффективной. Для носимого применения, включая системы управления роботами и не только, это важнейшее качество. Также схемы на мемристорах найдут применение в робототехнике и медицинских протезах, например, улучшая взаимодействие пациентов с инвалидными колясками, протезами, экзоскелетами и другими устройствами, управляемыми «силой мысли». Представленная платформа была разработана в учебном дизайн-центре электроники Нижегородского государственного университета им. Н.И. Лобачевского (ННГУ). «Нейросигналы можно будет обрабатывать на миниатюрных мобильных вычислителях и передавать их на систему управления с помощью беспроводной связи. Новая электронная компонентная база позволит снизить энергопотребление, а значит, уменьшить вес и размер устройства», — поясняет соавтор разработки, старший научный сотрудник научно-исследовательской лаборатории мемристорной наноэлектроники ННГУ Сергей Щаников. В созданной учёными системе оператор управляет движениями робота с помощью моторного воображения: «Сначала он учится представлять различные действия, при этом сигналы мозга фиксируют и анализируют. Зарегистрированные сигналы мозга поступают для анализа в систему нейроуправления — блок с мемристорным чипом, который может располагаться как на операторе, так и на самом роботе или протезе». Сигналы мозга считываются классическим ЭЭГ-шлемом и поступают по Wi-Fi на плату с мемристорным чипом, на котором команда обрабатывается и передаётся роботу. Оператор в процессе может скорректировать свою команду, например, изменить направление движения робота. |