Накопители

Итоги 2019 года: жесткие диски

⇣ Содержание

Если изучить историческую статистику объема жестких дисков в пересчете на шпиндель, легко заметить, что в последнюю декаду темпы роста заметно сократились. Без помощи новаторских приемов чтения и записи, способных радикально изменить и усложнить принципы работы HDD (а следовательно, требующих серьезных научных изысканий), плотность данных на пластинах увеличивается довольно медленно. По сути, она уже приблизилась к очередному физическому пределу. После того как вошла в строй технология перпендикулярной записи, производители магнитных накопителей использовали преимущественно экстенсивные методы поддержания прогресса. Открылась возможность устанавливать на шпиндель больше пяти пластин (что раньше рассматривали в качестве практического максимума) — сначала с помощью накачки гелием, а затем и без него. В настоящий момент количество «блинов» в герметичных корпусах дошло до девяти, а в вентилируемых — до семи. Даже эти числа — не предел, но все же уплотнение пластин играет роль ситуативного решения и лишено какого бы то ни было долговременного потенциала.

Другой вызов, на который предстоит ответить разработчикам жестких дисков, связан с отношением скорости передачи данных к емкости устройства. С пропускной способностью в режиме линейного чтения/записи у современных HDD полный порядок. Благодаря высокой плотности записи она перешагнула за предел 250 Мбайт/с, а большеобъемные 3,5-дюймовые накопители по этому параметру достигли уровня 2,5-дюймовых дисков со скоростью вращения шпинделя 10–15 тыс об/мин и не уступают некоторым дешевым SSD. С другой стороны, быстродействие в операциях за секунду при обращении по произвольным адресам для жестких дисков представляет собой более-менее фиксированную величину, которую определяет, с одной стороны, скорость вращения пластин и их диаметр, а с другой — скорость перемещения актуатора. Как следствие, параллельно с тем, как увеличивается емкость, показатель IOPS в пересчете на терабайт данных неуклонно падает.

И наконец, по актуальным каталогам Seagate, Toshiba и Western Digital хорошо заметна строгая специализация жестких дисков на определенный сценарий эксплуатации, которая в дальнейшем будет только усиливаться. С другой стороны, давно очерчены менее приоритетные сферы применения, которые магнитные накопители пока не покидают окончательно, но технологический прогресс в них временно заморожен. Так, за весь год производители HDD представили на троих только одну розничную модель для установки в настольные компьютеры (да и та ориентирована скорее на рабочие станции, нежели на домашние ПК) и ни единого устройства в форм-факторе 2,5 дюйма для лэптопов. Серверные SFF-диски с интерфейсом SAS и вовсе не обновлялись уже пару лет подряд, хотя это обстоятельство еще может измениться, если принять в расчет последние новости от производителей стеклянных субстратов для пластин (об этом — в заключении статьи), которые как раз-таки используются в 2,5-дюймовых корпусах.

Основным направлением развития для современных жестких дисков стали серверные хранилища категории nearline для «холодных» и, если можно так выразиться, «прохладных» данных. Именно в этой области сосредоточены усилия компаний-производителей, а вслед за серверными HDD новые достижения перетекают в диски для отдельно стоящих и стоечных NAS. За минувший год такие устройства покорили объем в 16 Тбайт, близкий к пределу возможностей конвенциональных методов записи, и набрали по девять пластин на шпинделе в окружении гелиевой атмосферы. Впору говорить о том, что эволюция HDD наткнулась на очередной технологический барьер, но, к счастью, до внедрения в коммерческие модели наконец дошли новаторские технологии, которые сохранят возможность и дальше увеличивать объем винчестеров еще долгие годы, если не десятилетия. Все три производителя работают на теми или иными разновидностями записи при помощи дополнительных источников энергии (микроволновой или тепловой), а Western Digital уже поставляет первые партии 18-терабайтных накопителей с головками MAMR (Microwave Assisted Magnetic Recording). Если же взять передовые накопители WD для «холодных» данных объемом 20 Тбайт, то эти устройства собрали просто-таки бинго технологий, о которых мы твердим из года в год — и EAMR (Energy Assited Magnetic Recording), и TDMR (Two-Dimensional Magnetic Recording), и SMR (Shingled Magnetic Recording).

С другой стороны, производители предпринимают серьезные усилия для того, чтобы изменить плачевную ситуацию с отношением IOPS к объему данных. Широкое распространение получили алгоритмы кеширования при помощи Flash-памяти, выросшие из не слишком удачных экспериментов в рамках потребительских моделей, но есть и другое, радикальное решение, к которому пришла уже не только фирма Seagate, но и WD. Если планы производителей осуществятся, в 2020 году мы встретим серверные HDD с двумя актуаторами, которые смогут практически удвоить быстродействие в операциях с произвольным и последовательным доступом. У Seagate — в коммерческих поставках, а WD, возможно, успеет выпустить пробные партии двухактуаторных устройств.

#Серверные HDD форм-фактора 3,5 дюйма

Важным событием для жестких дисков в 2019 году стала премьера накопителей Toshiba серии MG08, которые первыми среди коммерческих моделей освоили объем 16 Тбайт на одном шпинделе. Дорога в лидеры открылась японской фирме благодаря тонким магнитным пластинам Showa Denko с полезной емкостью 1,78 Тбайт и новому шасси, способному вместить девять таких дисков. А для того, чтобы гарантировать надежное извлечение данных из пластин высокой плотности, производителям HDD пришлось после отметки 14 Тбайт и выше использовать технологию так называемой двухмерной магнитной записи (TDMR), которая в действительности представляет собой метод чтения соседних дорожек одновременно несколькими головками, расположенными на одном лепестке актуатора. Заметим, что TDMR пока не позволяет параллельно считывать данные из нескольких дорожек и нужна лишь для того, чтобы увеличить отношение «сигнал – шум».

В накопителях столь внушительной емкости, как Toshiba MG08, проблема низкой пропускной способности в IOPS на терабайт объема стоит как никогда остро. В качестве консервативного решения Toshiba применят микросхему Flash-памяти, которая играет роль второго уровня кеш-памяти после буфера DRAM и вместе с тем способствует повышенной отказоустойчивости: в случае аварийного отключения питания твердотельный кеш позволяет спасти данные, отправленные хост-контроллером на запись. Впрочем, эта опция (Persistent Write Cache) фигурирует только в спецификациях дисков с эмуляцией 512-байтовой разметки, которая несет особенную угрозу при сбое питания в силу необходимости выполнять операцию read-modify-write при каждой записи логических блоков, не совпадающих с границами физических секторов. Означает ли это, что варианты MG08 с нативным доступом к 4К-секторам вовсе лишены Flash-микросхем (что маловероятно, если учитывать бонус к быстродействию), или что с них всего лишь сняли функцию резервного копирования — нам не известно. Но, как бы то ни было, твердотельная память в этом и других серверных винчестерах кеширует только операции записи и совсем не помогает нарастить IOPS при чтении данных. В этом должны помочь алгоритмы алгоритмы Dynamic Cache, которые, как утверждает Toshiba, оптимальным образом распределяют пространство DRAM-буфера между операциями чтения и записи (как бы размыто ни звучала эта формулировка).

16-терабайтный жетский диск Toshiba MG08 (обратите внимание на стек из девяти сверхтонких пластин — вероятно, стеклянных)

Seagate, чтобы выйти на уровень 16 Тбайт в серверном накопителе Exos X16, фактически повторила рецепт Toshiba: такая же полезная емкость магнитных пластин, тоже девять «блинов» на одном шпинделе и чтение при помощи TDMR. Любопытно, что ранее Seagate планировала начать массовые поставки другой версии винчестера — с меньшим количеством пластин, но увеличенной плотностью данных, которая стала возможной благодаря термомагнитной записи. Тестовые партии дисков Exos с HAMR отправились избранным партнерам компании еще в конце 2018 года, но до широкого рынка так и не дошли. Внедрение HAMR в коммерческих устройствах Seagate начнет уже с более высокой планки емкости. А что касается настоящего Exos X16, то, помимо конфигурации пластин в шасси, а также стандартных паспортных данных производительности и отказоустойчивости, об использованных в нем вспомогательных технологиях известно довольно мало. Так, в nearline-дисках Seagate и высокопроизводительных винчестерах форм-фактора 2,5 дюйма применяется алгоритм Advanced Write Caching, значительно снижающий время отклика HDD при операциях записи мелких блоков и, отчасти, чтения. В полной конфигурации AWC опирается на резервные участки, разбросанные по поверхности пластин, куда сгруппированные в DRAM-буфере данные случайных запросов сбрасываются в последовательном порядке (Media Cache), а также на небольшой объем энергонезависимой памяти для спасения данных при аварийном отключении питания. Кроме того, жесткий диск всегда хранит зеркальную копию содержимого DRAM-буфера, которая позволяет хост-контроллеру мгновенно считывать горячие данные. Документация Seagate не говорит, есть ли AWC в Exos X16, но если судить по данным независимых тестов быстродействия, в каком-то объеме эта технология здесь все-таки используется.

16-Seagate Exos X16

В отличие от Seagate, которая, по всей видимости, испытывает непредвиденные трудности с переходом от нынешнего способа записи данных к термомагнитному методу, Western Digital уже внедрила в коммерческие устройства альтернативную конструкцию на основе микроволнового излучателя (MAMR — Microwave Assisted MagneticRecording). Подробнее о том, чем отличаются друг от друга технологии HAMR и MAMR и какими преимуществами и недостатками характеризуется каждая из них, мы расскажем позже, а пока ограничимся сухими цифрами достижений Western Digital. Две модели Ultrastar DC HC550 объемом 16 и 18 Тбайт построены на базе девяти пластин полезной емкостью 2 Тбайт каждая (заметим, чтобы удвоить плотность записи после того, как Hitachi выпустила первый HDD на терабайтных пластинах, индустрии потребовались долгие восемь лет) и нуждаются в TDMR для операций чтения. Похоже, что младшая из них новинок является винчестером short-stroke, то есть часть площади магнитных пластин в ней просто не используется. 16-терабайтный Ultrastar DC HC550 нужен WD в основном для валидации новых технологий, так как новая серия пока распространяется среди избранных партнеров фирмы, а массовые продажи стартуют лишь в 2020 году.

Накопители Ultrastar DC HC550, как и предыдущие большеобъемные диски Ultrastar, наверняка не обошлись без технологии Media Cache — резервных зон магнитной поверхности для быстрой обработки случайных запросов на запись. А начиная с 10-терабайтных серверных HDD, WD использует для кеширования операций записи еще и небольшой объем твердотельной памяти (Media Cache Plus). Однако полные спецификации новинок, включая оценки быстродействия, производитель еще не раскрывает, пока не завершатся испытания пробных партий. То же относится к родственной девятипластинной модели Ultrastar DC HC650, достигшей объема 20 Тбайт за счет черепичной записи (SMR) в комбинации с MAMR и TDMR. Благодаря такому списку внушительных аббревиатур Ultrastar DC HC650 стал самым технологичным из всех когда-либо выпущенных жестких дисков, однако специфика работы SMR отводит ему роль хранилища архивных данных или, в лучшем случае, такого рода информации, которую редко требуется перезаписывать, но часто считывать. Как и другие черепичные винчестеры WD, Ultrastar DC HC650 принадлежит к категории host-managed, то есть нуждается в прямом управлении запросами на запись, чтобы эффективно использовать емкость пластин и минимизировать число длительных операций read-modify-write.

WD Ultrastar DC HC550 и DC HC650

#HDD для настольных ПК и NAS

Совокупный ассортимент трех производителей жестких дисков в потребительской сфере, как обычно, пополнился накопителями увеличенной емкости на серверном шасси в герметичном корпусе. Western Digital взяла за основу nearline-модель Ultrastar DC HC530 с восемью пластинами полезной емкостью 1,75 Тбайт и удалила невостребованные в домашних и мелкоофисных сетевых хранилищах опции — поддержку интерфейса SAS, сквозное шифрование, а также, к сожалению, Media Cache. В результате получилась 14-терабайтная версия Red Pro и аналогичный накопитель для систем видеонаблюдения WD Purple. Вдобавок к этому у стандартной версии Red скорость вращения шпинделя понижена до 5400 об/мин. Единственные примечательные особенности новых дисков для NAS — технология считывания дорожек TDMR и увеличенные показатели линейной скорости обращения к данным по сравнению с винчестерами меньшего объема.

Почти все то же самое можно сказать о новейших представителях торговых марок Seagate IronWolf и IronWolf Proобъемом 16 Тбайт, которые опираются на достижения Exos X16, однако нужно согласиться с тем, что Seagate по-прежнему идет на шаг впереди Western Digital в объеме винчестеров с интерфейсом SATA для сетевых хранилищ.

Компания Toshiba, которая в последние годы прилагает большие усилия для того, чтобы сделать свой бренд более привлекательным на потребительском рынке накопителей, тоже поспешила выпустить два жестких диска емкостью 16 Тбайт — X300 для рабочих станций и N300 для NAS. Нетрудно догадаться, что прообразом для них стал винчестер-рекордсмен Toshiba MG08 на базе девяти пластин по 1,78 Тбайт, но опять-таки были исключены за ненадобностью изощренные серверные функции. Кеширование операций записи при помощи твердотельной памяти, скорее всего, тоже утрачено, а представители серии X300 в добавок ко всему не подготовлены к работе в режиме 24/7.

Параллельно с розничными большеобъемными моделями X300 и N300 японцы без особой огласки начали отгружать OEM-партнерам десктопные накопители MD07ACA объемом 12 и 14 Тбайт, которые являются аналогом X300, в то время как ранее представленные год тому назад MN07ACA дублируют N300. Старшие представители обеих семейств представляют собой девятипластинные HDD с полезной емкостью «блина» 1,56 Тбайт и, соответственно, внушительной скоростью линейного чтения/записи.

Наконец, для полноты картины стоит отметить винчестеры Toshiba DT02-V, рассчитанные на системы видеонаблюдения базового уровня. Новые модели объемом 2, 4 и 6 Тбайт заменят устаревшие накопители MD04ABA-V, представленные еще в 2014 году. Возросшая с тех пор плотность записи позволила инженерам Toshiba нарастить пиковую производительность со скромных 157 до 185 Мбайт/с, вполне респектабельных по меркам HDD со скоростью вращения шпинделя 5400 об/мин.

#HAMR, MAMR… EAMR, EPMR — что происходит?

Два крупнейших производителя жестких дисков — Seagate и Western Digital, которые в настоящее время удерживают 75-процентную долю рынка на двоих, вплотную подошли к массовым поставкам накопителей, основанных на принципах термомагнитной (или «микроволново-магнитной») записи. Это могло произойти намного раньше, однако Seagate по тем или иным причинам перечеркнула надежды на появление HDD с технологией HAMR в широком доступе в 2019 году и вместо этого достигла объема 16 Тбайт на шпиндель за счет обычной перпендикулярной записи, считывания дорожки несколькими головками (TDMR), а главное — увеличенного до девяти штук стека пластин. Но оказалось, что и это не предел возможностей для существующих технологий. Согласно последним заявлениям компании, 18-терабайтные накопители семейства Exos поступят в продажу уже в первой половине 2020 года. Это опять-таки будут винчестеры без HAMR и, вероятнее всего, на аппаратной платформе, родственной Exos X16, только с еще немного увеличенной емкостью пластин. В то же время Seagate планирует вернуться к нишевой технологии черепичной записи, которую, казалось бы, давно забросила (последний такой HDD у Seagate в настоящий момент имеет емкость 8 Тбайт): 20-терабайтный винчестер с SMR для хранения холодных данных также пополнит каталог Exos в 2020 году.

Тем не менее Seagate вовсе не отказывается от далеко идущих планов, связанных с HAMR. Первое время ветки устройств на базе обычной и термомагнитной записи будут развиваться параллельно, но будущее, разумеется, принадлежит последней. Seagate опубликовала не только обновленный roadmap, но и набор интересных технических подробностей — о том, какие задачи ее инженерам пришлось решить на пути к коммерческому внедрению HAMR, а также показатели отказоустойчивости и плотности записи в первых поколениях термомагнитных HDD. Напомним, что сама необходимость в HAMR вызвана применением ферромагнитной поверхности, сделанной из сплавов с высокой коэрцитивной силой (значением напряженности магнитного поля, необходимого для изменения заряда), которые, в свою очередь, позволяют значительно уменьшить размер домена и уплотнить дорожки секторов без риска утраты информации в результате спонтанного размагничивания. Однако и запись данных на подобный материал вынуждает использовать электромагнит высокой мощности, водрузить который на актуатор HDD либо не представляется возможным, либо нецелесообразно с практической точки зрения.

Вместо этого одновременно с записывающей головкой в термомагнитных накопителях работает миниатюрный лазер (NFT — Near-Field Optical Transducer), который нагревает поверхность вплоть до 450 °С, тем самым временно снижая ее коэрцитивную силу. Однако термомагнитный метод влечет за собой не только перемены в принципах работы жесткого диска на фундаментальном уровне, каких технология HDD не знала со своего рождения в 1954 году, но и набор скрытых недостатков. Правда, основной недостаток, который ожидаешь увидеть, когда речь заходит про лазер, HAMR-дискам не свойственен. Вопреки возможным опасениям, HAMR вносит незначительный вклад в энергопотребление, и при мощности самого лазера в 20 мВт общая мощность 16-терабайтного накопителя Seagate не превышает 12 Вт, вполне обыденных для стандартной 3,5-дюймовой корзины. Реальная опасность — это износ ферромагнитной пленки под воздействием постоянного нагрева и охлаждения, с которым, вероятно, придется бороться при помощи алгоритмов выравнивания нагрузки, подобным тем, что применяются в твердотельной памяти. Да и сам NFT постепенно разрушается в ходе эксплуатации. Впрочем, что касается головок, Seagate оценивает ресурс каждой в 4 Пбайт записанных данных, а остальные компоненты диска, включая изготовленные самой компанией магнитные пластины и детали, купленные у сторонних поставщиков, должны по меньшей мере соответствовать расчетной годовой нагрузке в 550 Тбайт, типичной для современных серверных устройств.

Термомагнитные винчестеры объемом 16 Тбайт Seagate отправила на пробу избранным партнерам еще в декабре 2018 года, но, вопреки ожиданиям, эти устройства никогда не выйдут за пределы испытательных партий. Крупные коммерческие поставки начнутся лишь в конце 2020 года, зато сразу с отметки 20 Тбайт. Вместе с тем лабораторные тесты Seagate уже показали жизнеспособность пластин для HAMR с плотностью данных 2,381 Тбит/дюйм2 и полезной емкостью в 3 Тбайт (на 68 % больше по сравнению с 1,78 Тбайт, которые используются в обычных 16-терабайтных винчестерах). HDD с гелием, укомплектованные восемью такими пластинами, будут иметь объем в 24 Тбайт. В свою очередь, передовые экспериментальные образцы ферромагнитной поверхности достигают плотности данных в 10 Тбит/дюйм2, и в конечном счете Seagate планирует увеличить объем, доступный на одном шпинделе, до 50 Тбайт уже к 2026 году.

Western Digital развивает собственный вариант технологии, которую начали обозначать зонтичным термином EAMR (Energy-Assisted Magnetic Recording), но представители компании неоднократно выступали с критикой собственно термомагнитной записи, указывая на присущие ей трудности внедрения, а также на вероятные проблемы с износом пластин и отказоустойчивостью. Вместо лазера, разогревающего поверхность на сотен градусов, WD предпочитает микроволновый излучатель (STO — Spin Torque Oscillator), работающий на частотах 20–40 ГГц, который решает ту же задачу снижения коэрцитивной силы, но без вреда для срока службы диска. Кроме того, по заявлению WD, переход от привычных методов записи к MAMR не влечет за собой столь же глубоких изменений в устройстве самих пластин, как в случае HAMR. А в свежих 18- и 20-терабайтных накопителях Western Digital так и вовсе обошлась частичной имплементацией MAMR, о которой не известно практически ничего, за исключением того факта, что разработчики отказались от STO-головок в пользу какого-то иного источника микроволнового излучения. Зато для этого придумали еще одну аббревиатуру — EPMR (Energy-Enhanced Perpendicular Magnetic Recording).

WD твердо намерена использовать ту или иную разновидность MAMR в ближайшие годы, но в действительности компания никогда не прекращала собственные разработки в области термомагнитной записи. Более того, оба ведущих производителя жестких дисков — и Seagate, и WD — согласны с тем, что именно HAMR открывает наибольший потенциал для роста плотности записи среди всех ответвлений EAMR. Western Digital готова еще раз взвесить все аргументы за и против термомагнитной записи, когда придет черед винчестеров с емкостью 24 и 30 Тбайт, а дальние горизонты просматриваются вплоть до 50 Тбайт на одном шпинделе. И разумеется, как и Seagate вместе с Toshiba, WD вынуждена использовать блок головок TDMR при любой емкости свыше 14 Тбайт на шпиндель, так как EAMR сама по себе нисколько не помогает считывать данные с чрезвычайно тесно расположенных дорожек.

Кроме того, WD продолжает инвестировать ресурсы в другой двигатель плотности записи — SMR. Western Digital была и остается главным апологетом этой технологии среди трех поставщиков жестких дисков, в то время как Seagate затормозила работу над SMR несколько лет тому назад, а Toshiba только готовится к тому, чтобы вывести на рынок свои первые «черепичные» накопители. Сегодня большинство датацентров сторонятся SMR-дисков из-за свойственной последним низкой производительности в операциях записи данных, но если не брать во внимание морально устаревшие 8-гигабайтные модели Seagate, SMR всегда позволяет увеличить плотность хранения данных в пересчете на шпиндель на 2 Тбайт по сравнению с передовыми достижениями PRM. Прогноз WD, основанный на непрерывно возрастающих запросах к объему HDD, гласит, что уже в 2023 году больше половины данных в ЦОД будут размещены на SMR-устройствах, в сфере которых Western Digital планирует удерживать лидирующую позицию. В отличие от Seagate, WD сразу сделала ставку на так называемые host-managed-накопители, возлагающие на хост-контроллер всю ответственность за эффективную компоновку данных. Это позволило клиентам и партнерам WD сформировать программно-аппаратную инфраструктуру вокруг SMR, которая в какой-то мере компенсирует издержки технологии.

Что касается третьего члена сложившейся олигополии в индустрии HDD, Toshiba, то азиаты доселе никогда не выражали интереса к SMR и, с другой стороны, хранили молчание о своих намерениях — несомненно, давно существующих — относительно EAMR. Однако спустя несколько лет после того, как Western Digital пришлось отдать Toshiba часть мощностей для производства 3,5-дюймовых HDD в ходе сложной сделки с покупкой HGST, японский производитель сначала сократил технологическое отставание от западных соперников по герметичным корпусам и плотности записи, затем начал использовать TDMR, а теперь готовится проставить галочки напротив двух оставшихся пунктов — SMR и EAMR. Поставщик магнитных пластин Showa Denko, с которым сотрудничает Toshiba, объявил о завершении работ над продуктом нового поколения с полезной емкостью 2 Тбайт. Они рассчитаны на запись при помощи микроволновых головок, а существующее шасси Toshiba с девятипластинным стеком (которое, как мы знаем на примере WD, наверняка не требует глубоких изменений для интеграции MAMR), позволит компании довольно быстро наладить массовое производство HDD объемом 18 Тбайт. Пробные поставки новинок уже должны были начаться в прошедшем году, а массовые продажи запланированы в 2020-м. В свою очередь, еще через год Toshiba намерена представить свой 20-терабайтный накопитель, и не исключено, что это будет HDD, основанный сразу на десяти (!) магнитных пластинах. По крайней мере такая удивительная конструкция фигурирует в официальном roadmap’е японцев. С другой стороны, на волне возродившегося интереса к SMR соответствующие модели появятся и в каталоге Toshiba, сразу в комбинации с MAMR. Наконец, и Showa Denko, и сама Toshiba признают, что рано или поздно возникнет необходимость перейти от MAMR к HAMR, но ни один из партнеров пока не озвучил даже примерных сроков выхода проекта из лабораторной стадии.

В то же время другая японская фирма — HOYA, — которая занимается производством стеклянных субстратов для магнитных пластин, начала стройку новой фабрики, оснащенной по последнему слову техники. Стеклянные субстраты используются преимущественно в 2,5-дюймовых HDD, поскольку имеют ряд преимуществ по сравнению с алюминиевыми аналогами — они тоньше, легче, жестче и в настоящий момент практически вытеснили металлическую подложку в компактных накопителях. Если компании, занимающиеся производством пластин на основе готовых субстратов (Seagate, WD и Showa Denko, на которую опирается Toshiba), сочтут нужным, мы еще увидим диски — как для лэптопов, так и для серверов — нового поколения с повышенной плотностью записи. Впрочем, HOYA дала понять, что открывает новую фабрику не только и не столько ради пластин для 2,5-дюймовых HDD. Cтекло уже нашло широкое применение в форм-факторе 3,5 дюйма, а комбинация ферромагнитной пленки из определенных материалов и стеклянного субстрата расценивается как наиболее подходящая среда для пресловутой термомагнитной записи, которая гарантирует максимальную устойчивость заряда и срок жизни под воздействием экстремальных температур.

#Двухактуаторные накопители Seagate и Western Digital

Наряду с EAMR в новостях про HDD последних двух лет прогремела еще одна революционная технология, которой, похоже, предстоит стать неотъемлемой частью современных жестких дисков — по крайней мере в серверной среде и моделях большого объема. Seagate довольно давно объявила о намерении выпустить устройства, оснащенные двумя независимыми актуаторами, за счет которых фактически удвоится пропускная способность накопителя как в показателях Мбайт/с, так и в IOPS. Последнее особенно важно, так как линейная скорость чтения/записи возрастает параллельно с плотностью данных на магнитных пластинах, а вот производительность в операциях за секунду остается более-менее постоянной величиной и, следовательно, количество IOPS на Тбайт объема неуклонно падает. Так, современный HDD обеспечивает совершенно мизерную удельную производительность в районе 6–10 IOPS на Тбайт. В рамках эшелонированных хранилищ, включающих прослойку SSD для оперативного доступа к горячим данным, удается до поры до времени компенсировать этот недостаток, а развитые системы кеширования (резервные зоны на поверхности пластин и твердотельная память) и настройка микропрограммы HDD на определенную латентность позволили отложить фундаментальное решение проблемы еще на несколько лет. И тем не менее, когда приходится считывать или записывать данные непосредственно с магнитной поверхности, большеобъемные жесткие диски уже приблизились к нижней границе пропускной способности в 5 IOPS на Тбайт, которую диктуют стандарты QoS некоторых передовых ЦОД.

Первый накопитель Seagate с двухактуаторной системой MACH.2 — Exos 2X14 — содержит восемь пластин совокупным объемом 14 Тбайт. В отличие от давнишних экспериментов с подобными конструкциями, в данном случае актуаторы имеют общую ось вращения, но все также нуждаются в сложной управляющей логике и высокопроизводительном чипе-контроллере. Новинка достигает пропускной способности в 160 IOPS (при чтении блоков минимального размера), в то время как типичный показатель для стандартных серверных 3,5-дюймовых дисков составляет около 80 IOPS. Если же сравнивать со скоростными SFF-накопителям, то у винчестеров со скоростью вращения шпинделя 10 тыс об/мин речь идет о 150 IOPS, а у 15-тысячников — о 200, но при небольших объемах, в пределах 2,4 Тбайт или 900 Гбайт диски этого класса по-прежнему лидируют по соотношению IOPS на Тбайт. В то же время два актуатора позволили практически удвоить скорость доступа Exos 2X14 в линейном порядке — вплоть до 480–500 Мбайт/с. По сути, новинка представляет собой аналог двух винчестеров вполовину меньшего объема, но занимает один слот и потребляет меньше электроэнергии: указанная предельная мощность в 13,3 Вт не слишком превосходит пиковые показатели в районе 10 Вт, характерные для стандартных HDD. То же производитель говорит и о планируемых ценах устройств, когда они поступят на массовый рынок.

На данном этапе Exos 2X14 предоставляется избранным партнерам Seagate для полевых испытаний, но фирма не дает каких-либо прогнозов о широкой доступности инновационных жестких дисков. Не исключено, что именно эта модель так никогда и не выйдет за пределы тестовых партии, но часть грядущих большеобъемных накопителей с термомагнитной записью Seagate твердо намерена оборудовать двумя актуаторами. А вот пришествие MACH.2 в пространство потребительских моделей для настольных ПК и NAS остается под вопросом. Дело в том, что Exos 2X14 представлен хост-контроллеру как два независимых устройства на разных LUN интерфейса SAS, и даже полную совместимость с некоторыми RAID HBA производитель не гарантирует. С другой стороны, потребительский стандарт SATA 6 Гбит/с, хоть и обеспечивает резерв пропускной способности, в котором нуждается Exos 2X14, совершенно не знаком с понятием LUN. Как следствие, Seagate придется сперва модифицировать жесткий диск таким образом, чтобы распределение нагрузки между двумя актуаторами было прозрачным для хост-контроллера.

Прототип жесткого диска Western Digital с двумя актуаторами

Одновременно с Seagate работы над собственным двухактуаторным шасси проводит Western Digital, но в этой области перед WD лежит более длинная дорога. На данный момент компания всего лишь показала прототип устройства с двумя актуаторами — опять-таки на одной оси — и опубликовала размытые рабочие характеристики, в которых фигурирует удвоенная пропускную способность по Мбайт/с и IOPS. Разработчики оценивают, что потребляемая мощность прототипа на 26 % меньше, чем у двух независимых накопителей. О каком-либо графике выхода новинок на рынок накопителей для ЦОД все еще речи не идет.

 
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме
⇣ Комментарии
Прежде чем оставить комментарий, пожалуйста, ознакомьтесь с правилами комментирования. Оставляя комментарий, вы подтверждаете ваше согласие с данными правилами и осознаете возможную ответственность за их нарушение.
Все комментарии премодерируются.
Комментарии загружаются...
window-new
Soft
Hard
Тренды 🔥