Сегодня 22 февраля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

Учёные создали термостойкий материал для термоэлектрической энергетики и космоса — он без изменений выдерживает 1000 °C

Исследователи из Корейского института науки и технологий (KIST) создали термостойкий материал, не теряющий своих свойств при нагреве до 1000 °C, а также под воздействием жёсткого ультрафиолетового излучения. Ожидается, что он найдёт применение в сфере получения электрической энергии от тепла, а также в космосе, где поможет охлаждать спутники и корабли.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

На Земле множество источников тепла, и это не считая энергии Солнца. Мы пока не научились эффективно превращать его в электрическую энергию напрямую. Из-за низкой эффективности современных термоэлектрических элементов наиболее выгодно сегодня работать с сильно нагретыми источниками. Чем выше его температура, тем лучше.

С другой стороны, по мере роста нагрева передающего тепло материала он начинает быстрее окисляться и ускоренно терять проводящие свойства. Группа южнокорейских учёных работала в этом направлении — искала материал, который не терял бы свои свойства при достаточно высоком нагреве и мог послужить проводником тепла от источника к приёмнику.

Традиционные тугоплавкие материалы, такие как вольфрам, никель и нитрид титана не подошли. Слишком активно они начинали окисляться при достижении максимальных температур. После поиска нужной формулы учёные остановились на оксиде станната бария, легированном лантаном (LBSO). Предложенный учёными процесс опирался на метод импульсного лазерного осаждения, что позволяло создавать тонкоплёночные покрытия из необычного материала.

 Материал слабо реагирует на сильный нагрев и жёсткий ультрафиолет. Источник изображения: Korea Institute of Science and Technology

Материал слабо реагирует на сильный нагрев и жёсткий ультрафиолет. Источник изображения: Korea Institute of Science and Technology

После проверок оказалось, что тонкоплёночный LBSO не коробился и не терял своих теплопроводящих свойств при нагреве до 1000 °C и был стабилен в многослойном исполнении. Также он оказался устойчив к ультрафиолетовому излучению мощностью 9 МВт/см2. Это делает его идеальным для аэрокосмического применения для отвода тепла от космических аппаратов под лучами Солнца.

«LBSO внесет свой вклад в решение проблемы изменения климата и энергетического кризиса путём ускорения коммерциализации производства термоэлектрической энергии», — уверены авторы работы, опубликованной в журнале Advanced Science.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
В рекордной краже криптовалюты у ByBit обвинили северокорейских хакеров 5 ч.
OpenAI провела зачистку ChatGPT от аккаунтов из Китая и Северной Кореи, подозреваемых во вредоносной деятельности 6 ч.
«Нам просто нужно больше мощностей»: OpenAI постепенно поборет зависимость от Microsoft 6 ч.
Трамповская криптооттепель: Coinbase удалось малой кровью отделаться от иска Комиссии по ценным бумагам США 6 ч.
Apple выпустила первую бету iOS 18.4, в которой появились «приоритетные уведомления» 8 ч.
Новая статья: Kingdom Come: Deliverance II — ролевое вознесение. Рецензия 19 ч.
Apple отключила сквозное шифрование в iCloud по требованию властей Великобритании 20 ч.
Взрывной платформер Shotgun Cop Man от создателя My Friend Pedro предложит спуститься в ад и арестовать Дьявола — трейлер и демоверсия в Steam 21 ч.
Valve заблокировала игру в российском Steam по требованию Роскомнадзора 23 ч.
Meta рассказала, как скачивать контент через торренты, но не стать пиратом 23 ч.