Сегодня 22 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

В США разработали материал для солнечных панелей с внешней квантовой эффективностью 190 %

На деньги Министерства энергетики США учёные из Лехайского университета (штат Пенсильвания) создали материал для солнечных панелей с невообразимой эффективностью. Благодаря разработке новые панели смогут вырабатывать до двух электронов на каждый поглощённый высокоэнергетический фотон, что намного выше теоретически предсказанного значения.

 Источник изображения: Ekuma Lab/ Lehigh University

Источник изображения: Ekuma Lab/ Lehigh University

Следует подчеркнуть, что привычное значение КПД панелей и внешняя квантовая эффективность фотоэлектрического материала — это не одно и то же. При падении на панель часть фотонов отражается, а другая часть нагревает панель вместо возбуждения электронов. Тем самым теоретическое значение внешней квантовой эффективности (EQE) не может быть больше 100 %, на что указывает предел Шокли-Квиссера, а КПД панелей ещё меньше. Но что это за наука, если она не может шагнуть за пределы известного?

«Эта работа представляет собой значительный скачок вперёд в нашем понимании и разработке решений в области устойчивой энергетики, подчеркивая инновационные подходы, которые могут переопределить эффективность и доступность солнечной энергии в ближайшем будущем», — сказал Чинеду Экума (Chinedu Ekuma), профессор физики, который является ведущим автором статьи в журнале Science Advances.

Поиск нужной комбинации материалов сначала был проведён с помощью моделирования на компьютере. Затем, на основе полученных данных, был создан прототип, подтвердивший удивительные свойства материала. Образец в качестве активного слоя в кремниевой фотоэлектрической ячейки продемонстрировал среднее фотоэлектрическое поглощение в 80 %, высокую скорость генерации фотовозбуждённых носителей и внешнюю квантовую эффективность (EQE) на беспрецедентном уровне 190 %.

Скачок эффективности материала во многом объясняется его отличительными «состояниями промежуточной зоны», специфическими уровнями энергии, которые расположены в электронной структуре материала таким образом, что делают их идеальными для преобразования солнечной энергии. Эти состояния имеют уровни энергии в пределах оптимальных энергетических диапазонов, в которых материал может эффективно поглощать солнечный свет и производить носители заряда — около 0,78 и 1,26 эВ (электрон-вольт). Кроме того, материал особенно хорошо проявил себя при высоких уровнях поглощения в инфракрасной и видимой областях электромагнитного спектра.

В традиционных солнечных элементах максимальное значение EQE составляет 100 %, что соответствует генерации и сбору одного электрона на каждый поглощенный фотон солнечного света. Новый материал, как и ряд других перспективных материалов, продемонстрировал способность генерировать и собирать более одного электрона из фотонов высокой энергии, что обеспечивает увеличение теоретически возможного КПД панелей до двух и более раз.

Хотя такие материалы с многократным генерированием экситонов еще не получили широкого коммерческого распространения, они обладают потенциалом для значительного повышения эффективности систем солнечной энергетики. В материале, разработанном исследователями Лехайского университета, состояния промежуточной зоны позволяют улавливать энергию фотонов, которая теряется традиционными солнечными элементами, в том числе за счет отражения и выработки тепла.

Исследователи разработали новый материал с использованием «ван-дер-ваальсовых зазоров», атомарно малых промежутков между слоистыми двумерными материалами. Эти промежутки могут удерживать молекулы или ионы, и материаловеды обычно используют их для вставки или «интеркалирования» других элементов для настройки свойств материала. По сути в этих зазорах различные межмолекулярные силы, определяемые как силы Ван-дер-Ваальса, крепко удерживают нужные молекулы или атомы, как в случае нового материала. В частности, учёные поместили между селенидом германия (GeSe) и сульфидом олова (SnS) атомы меди нулевой валентности.

«Его быстрый отклик и повышенная эффективность убедительно указывают на потенциал Cu-интеркалированного GeSe/SnS в качестве квантового материала для использования в передовых фотоэлектрических решениях, предлагая возможности для повышения эффективности преобразования солнечной энергии, — говорят разработчики. — Это многообещающий кандидат для разработки высокоэффективных солнечных элементов следующего поколения, которые сыграют решающую роль в удовлетворении глобальных потребностей в энергии».

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
Саудовская Аравия привлечёт роботов для строительства футуристического мегаполиса в пустыне 59 мин.
Облако Vultr привлекло на развитие $333 млн при оценке $3,5 млрд 5 ч.
Разработчик керамических накопителей Cerabyte получил поддержку от Европейского совета по инновациям 5 ч.
Вышел первый настольный компьютер Copilot+PC — Asus NUC 14 Pro AI на чипе Intel Core Ultra 9 7 ч.
Foxconn немного охладела к покупке Nissan, но вернётся к этой теме, если слияние с Honda не состоится 12 ч.
В следующем году выйдет умная колонка Apple HomePod с 7-дюймовым дисплеем и поддержкой ИИ 12 ч.
Продажи AirPods превысили выручку Nintendo, они могут стать третьим по прибыльности продуктом Apple 13 ч.
Прорывы в науке, сделанные ИИ в 2024 году: археологические находки, разговоры с кашалотами и сворачивание белков 21 ч.
Arm будет добиваться повторного разбирательства нарушений лицензий компанией Qualcomm 21-12 18:37
Поставки гарнитур VR/MR достигнут почти 10 млн в 2024 году, но Apple Vision Pro занимает лишь 5 % рынка 21-12 16:44