Квантовая неопределённость, или принцип неопределённости Гейзенберга, утверждает, что невозможно одновременно с высокой точностью измерить две взаимосвязанные характеристики квантового объекта. Именно поэтому электрон не движется по строго заданной орбите вокруг ядра атома, а существует в виде размытого электронного облака. Но, как выяснили учёные, этой неопределённостью можно управлять — и это открывает новые возможности для квантовых технологий.

Источник изображения: University of Arizona
Чтобы понять идею, принцип неопределённости можно представить как надутый воздушный шар. Если на него надавить, шар сплющится в одном месте, но вытянется в другом — общий объём при этом не изменится. То же самое и в квантовом мире: уточняя одну характеристику частицы (например, её фазу или амплитуду), мы неизбежно теряем точность в другой. Однако само произведение этих неопределённостей остаётся постоянным.
В то же время произведение условно противостоящих друг другу квантовых характеристик остаётся неизменным. Возможность управлять квантовой неопределённостью в реальном времени — подкручивать точность измерения то одной, то другой характеристики из «противоречивых» пар открывает новые возможности в сфере квантовых измерений и, в частности, в квантовой криптографии.
Открытие сделали учёные из Университета Аризоны (University of Arizona). Они поставили перед собой задачу научиться в реальном времени изменять точность измерения либо фазы, либо амплитуды (интенсивности) фотонов. Одновременно с высокой точностью нельзя измерить обе эти характеристики фотона. В противном случае мы бы поймали его в пространстве и времени и могли бы рассчитать траекторию полёта с предсказанием дальнейшего движения, что лишает квантовый объект его сущности — набора вероятностей.
Учёные представляют задачу как сжатие света в форму пули, где «пуля» — это область возможных значений фазы и интенсивности фотона. Они смогли управлять процессом с помощью технологии четырёхволнового смешения, при котором различные источники света взаимодействуют и комбинируются друг с другом. Для этого был использован лазер со сверхбыстрыми (фемтосекундными) импульсами. Импульс лазера разбивался на три одинаковых луча с разной длиной волны (на три цвета) и фокусировался в кварцевом стекле. Изменение ориентации кварца по отношению к лучам меняло итоговый сигнал, как будто кто-то садился на надутый шарик: он то превращался в пулю, то округлялся.
Такое управление позволяет повысить точность измерения амплитуды света и улучшить соотношение сигнал/шум. Кроме того, оно открывает новое направление в квантовой криптографии. Теперь злоумышленнику, пытающемуся перехватить квантовый ключ, будет недостаточно просто зафиксировать факт передачи фотона — ему придётся учитывать ещё и уровень неопределённости, который динамически изменяется в процессе передачи. Это делает перехват практически невозможным.
По словам авторов, технология «сверхбыстрого квантового света» может найти применение не только в защищённой связи, но и в разработке высокочувствительных датчиков, квантовой химии и биомедицине. В будущем такие системы могут помочь создавать более точные диагностические инструменты, новые методы поиска лекарств и сенсоры для мониторинга окружающей среды.
Источник: